

Available online at www.sciencedirect.com



European Journal of Combinatorics

European Journal of Combinatorics 29 (2008) 1634-1642

www.elsevier.com/locate/ejc

# 3-bounded property in a triangle-free distance-regular graph<sup>☆</sup>

Yeh-jong Pan<sup>1</sup>, Chih-wen Weng<sup>1</sup>

Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC

Received 11 May 2006; accepted 15 October 2007 Available online 19 November 2007

#### Abstract

Let  $\Gamma$  denote a distance-regular graph with classical parameters  $(D, b, \alpha, \beta)$  and  $D \ge 3$ . Assume the intersection numbers  $a_1 = 0$  and  $a_2 \ne 0$ . We show that  $\Gamma$  is 3-bounded in the sense of the article [C. Weng, *D*-bounded distance-regular graphs, European Journal of Combinatorics 18 (1997) 211–229]. © 2007 Elsevier Ltd. All rights reserved.

# 1. Introduction

Let  $\Gamma = (X, R)$  be a distance-regular graph with diameter  $D \ge 3$  and distance function  $\partial$ . Recall that a sequence x, y, z of vertices of  $\Gamma$  is *geodetic* whenever

 $\partial(x, y) + \partial(y, z) = \partial(x, z).$ 

A sequence x, y, z of vertices of  $\Gamma$  is *weak-geodetic* whenever

 $\partial(x, y) + \partial(y, z) \le \partial(x, z) + 1.$ 

**Definition 1.1.** A subset  $\Omega \subseteq X$  is *weak-geodetically closed* if for any weak-geodetic sequence x, y, z of  $\Gamma$ ,

$$x, z \in \Omega \Longrightarrow y \in \Omega.$$

<sup>&</sup>lt;sup>☆</sup> Research partially supported by the NSC grant 95-2115-M-009-002 of Taiwan ROC.

E-mail addresses: yjp.9222803@nctu.edu.tw (Y.-j. Pan), weng@math.nctu.edu.tw (C.-w. Weng).

<sup>&</sup>lt;sup>1</sup> Fax: +886 3 5724679.

<sup>0195-6698/\$ -</sup> see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2007.10.002

Weak-geodetically closed subgraphs are called *strongly closed subgraphs* in [8]. We refer the reader to [7,3,5,9,12,4] for information on weak-geodetically closed subgraphs.

**Definition 1.2.**  $\Gamma$  is said to be *i*-bounded whenever for all  $x, y \in X$  with  $\partial(x, y) < i$ , there is a regular weak-geodetically closed subgraph of diameter  $\partial(x, y)$  which contains x, y.

The properties of D-bounded distance-regular graphs were studied in [13], and these properties were used in the classification of classical distance-regular graphs of negative type [14]. Before stating our main result we give one more definition.

By a parallelogram of length i, we mean a 4-tuple xyzw consisting of vertices of  $\Gamma$  such that  $\partial(x, y) = \partial(z, w) = 1, \ \partial(x, z) = i, \ \text{and} \ \partial(x, w) = \partial(y, w) = \partial(y, z) = i - 1.$ 

It was proved that if  $a_1 = 0$ ,  $a_2 \neq 0$  and  $\Gamma$  contains no parallelograms of length 3, then  $\Gamma$  is 2-bounded [12, Proposition 6.7], [9, Theorem 1.1]. The following theorem is our main result.

**Theorem 1.3.** Let  $\Gamma$  denote a distance-regular graph with classical parameters  $(D, b, \alpha, \beta)$  and  $D \geq 3$ . Assume the intersection numbers  $a_1 = 0$  and  $a_2 \neq 0$ . Then  $\Gamma$  is 3-bounded.

Note that if  $\Gamma$  has classical parameters  $(D, b, \alpha, \beta)$  with  $D \ge 3$ ,  $a_1 = 0$  and  $a_2 \ne 0$ , then  $\Gamma$ contains no parallelograms of any length. See [6, Theorem 1.1] or Theorem 3.3 in this article.

## 2. Preliminaries

In this section we review some definitions, basic concepts and some previous results concerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10] for more background information.

Let  $\Gamma = (X, R)$  denote a finite undirected, connected graph without loops or multiple edges with vertex set X, edge set R, distance function  $\partial$ , and diameter  $D := \max\{\partial(x, y) \mid x, y \in X\}$ . By a *pentagon*, we mean a 5-tuple  $x_1x_2x_3x_4x_5$  consisting of vertices in  $\Gamma$  such that  $\partial(x_i, x_{i+1}) =$ 1 for 1 < i < 4 and  $\partial(x_5, x_1) = 1$ .

For a vertex  $x \in X$  and an integer  $0 \le i \le D$ , set  $\Gamma_i(x) := \{z \in X \mid \partial(x, z) = i\}$ . The valency k(x) of a vertex  $x \in X$  is the cardinality of  $\Gamma_1(x)$ . The graph  $\Gamma$  is called *regular* (with *valency k*) if each vertex in X has valency k.

A graph  $\Gamma$  is said to be *distance-regular* whenever for all integers  $0 \le h, i, j \le D$ , and all vertices  $x, y \in X$  with  $\partial(x, y) = h$ , the number

$$p_{ij}^h = |\{z \in X \mid z \in \Gamma_i(x) \cap \Gamma_j(y)\}|$$

is independent of x, y. The constants  $p_{ij}^h$  are known as the *intersection numbers* of  $\Gamma$ . Let  $\Gamma = (X, R)$  be a distance-regular graph. For two vertices  $x, y \in X$ , with  $\partial(x, y) = i$ , set

$$B(x, y) \coloneqq \Gamma_1(x) \cap \Gamma_{i+1}(y),$$
  

$$C(x, y) \coloneqq \Gamma_1(x) \cap \Gamma_{i-1}(y),$$
  

$$A(x, y) \coloneqq \Gamma_1(x) \cap \Gamma_i(y).$$

Note that

$$|B(x, y)| = p_{1 i+1}^{i},$$
  

$$|C(x, y)| = p_{1 i-1}^{i},$$
  

$$|A(x, y)| = p_{1 i}^{i}$$

are independent of x, y.

For convenience, set  $c_i := p_{1i-1}^i$  for  $1 \le i \le D$ ,  $a_i := p_{1i}^i$  for  $0 \le i \le D$ ,  $b_i := p_{1i+1}^i$  for  $0 \le i \le D - 1$  and put  $b_D := 0$ ,  $c_0 := 0$ ,  $k := b_0$ . Note that k is the valency of  $\Gamma$ . It is immediate from the definition of  $p_{ii}^h$  that  $b_i \ne 0$  for  $0 \le i \le D - 1$  and  $c_i \ne 0$  for  $1 \le i \le D$ . Moreover

$$k = a_i + b_i + c_i \quad \text{for } 0 \le i \le D.$$

$$(2.1)$$

From now on we assume that  $\Gamma = (X, R)$  is distance-regular with diameter  $D \ge 3$ . Recall that a sequence x, y, z of vertices of  $\Gamma$  is weak-geodetic whenever

$$\partial(x, y) + \partial(y, z) \le \partial(x, z) + 1.$$

**Definition 2.1.** Let  $\Omega$  be a subset of X, and pick any vertex  $x \in \Omega$ .  $\Omega$  is said to be *weak-geodetically closed with respect to x* whenever, for all  $z \in \Omega$  and for all  $y \in X$ ,

x, y, z are weak-geodetic  $\Longrightarrow y \in \Omega$ . (2.2)

Note that  $\Omega$  is weak-geodetically closed with respect to a vertex  $x \in \Omega$  if and only if

$$C(z, x) \subseteq \Omega$$
 and  $A(z, x) \subseteq \Omega$  for all  $z \in \Omega$ 

[12, Lemma 2.3]. Also  $\Omega$  is weak-geodetically closed if and only if for any vertex  $x \in \Omega$ ,  $\Omega$  is weak-geodetically closed with respect to x. We list a few results which will be used later in this paper.

**Theorem 2.2** ([12, Theorem 4.6]). Let  $\Gamma$  be a distance-regular graph with diameter  $D \ge 3$ . Let  $\Omega$  be a regular subgraph of  $\Gamma$  with valency  $\gamma$  and set  $d := \min\{i \mid \gamma \le c_i + a_i\}$ . Then the following (i), (ii) are equivalent.

- (i)  $\Omega$  is weak-geodetically closed with respect to at least one vertex  $x \in \Omega$ .
- (ii)  $\Omega$  is weak-geodetically closed with diameter d.

In this case  $\gamma = c_d + a_d$ .

**Lemma 2.3** ([9, Lemma 2.6]). Let  $\Gamma$  be a distance-regular graph with diameter 2, and let x be a vertex of  $\Gamma$ . Suppose  $a_2 \neq 0$ . Then the subgraph induced on  $\Gamma_2(x)$  is connected of diameter at most 3.

**Theorem 2.4** ([12, Proposition 6.7], [9, Theorem 1.1]). Let  $\Gamma$  be a distance-regular graph with diameter  $D \geq 3$ . Suppose  $a_1 = 0$ ,  $a_2 \neq 0$  and  $\Gamma$  contains no parallelograms of length 3. Then  $\Gamma$  is 2-bounded.

**Theorem 2.5** ([12, Lemma 6.9], [9, Lemma 4.1]). Let  $\Gamma$  be a distance-regular graph with diameter  $D \geq 3$ . Suppose  $a_1 = 0$ ,  $a_2 \neq 0$  and  $\Gamma$  contains no parallelograms of any length. Let x be a vertex of  $\Gamma$ , and let  $\Omega$  be a weak-geodetically closed subgraph of  $\Gamma$  with diameter 2. Suppose that there exists an integer i and a vertex  $u \in \Omega \cap \Gamma_{i-1}(x)$ , and suppose  $\Omega \cap \Gamma_{i+1}(x) \neq \emptyset$ . Then for all  $t \in \Omega$ , we have  $\partial(x, t) = i - 1 + \partial(u, t)$ .

#### 3. *Q*-polynomial properties

Let  $\Gamma = (X, R)$  denote a distance-regular graph with diameter  $D \ge 3$ . Let  $\mathbb{R}$  denote the real number field. Let  $\operatorname{Mat}_X(\mathbb{R})$  denote the algebra of all the matrices over  $\mathbb{R}$  with the rows and columns indexed by the elements of X. For  $0 \le i \le D$  let  $A_i$  denote the matrix in  $\operatorname{Mat}_X(\mathbb{R})$  defined by the rule

$$(A_i)_{xy} = \begin{cases} 1, & \text{if } \partial(x, y) = i; \\ 0, & \text{if } \partial(x, y) \neq i \end{cases} \quad \text{for } x, y \in X.$$

We call  $A_i$  the *distance matrices* of  $\Gamma$ . We have

$$A_0 = I,$$
  

$$A_i^t = A_i \quad \text{for } 0 \le i \le D \text{ where } A_i^t \text{ means the transpose of } A_i,$$
  

$$A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h \quad \text{for } 0 \le i, j \le D.$$

Let M denote the subspace of  $Mat_X(\mathbb{R})$  spanned by  $A_0, A_1, \ldots, A_D$ . Then M is a commutative subalgebra of  $Mat_X(\mathbb{R})$ , and is known as the *Bose–Mesner algebra* of  $\Gamma$ . By [2, p. 59, 64], M has a second basis  $E_0, E_1, \ldots, E_D$  such that

$$E_0 = |X|^{-1}J \quad \text{where } J = \text{all 1's matrix,}$$

$$E_i E_j = \delta_{ij} E_i \quad \text{for } 0 \le i, j \le D,$$

$$E_0 + E_1 + \dots + E_D = I,$$

$$E_i^t = E_i \quad \text{for } 0 \le i \le D.$$
(3.1)

The  $E_0, E_1, \ldots, E_D$  are known as the *primitive idempotents* of  $\Gamma$ , and  $E_0$  is known as the *trivial* idempotent. Let *E* denote any primitive idempotent of  $\Gamma$ . Then we have

$$E = |X|^{-1} \sum_{i=0}^{D} \theta_i^* A_i$$
(3.2)

for some  $\theta_0^*, \theta_1^*, \dots, \theta_D^* \in \mathbb{R}$ , called the *dual eigenvalues* associated with *E*.

Set  $V = \mathbb{R}^{|X|}$  (column vectors), and view the coordinates of V as being indexed by X. Then the Bose–Mesner algebra M acts on V by left multiplication. We call V the *standard module* of  $\Gamma$ . For each vertex  $x \in X$ , set

$$\hat{x} = (0, 0, \dots, 0, 1, 0, \dots, 0)^t,$$
(3.3)

where the 1 is in coordinate x. Also, let  $\langle , \rangle$  denote the dot product

$$\langle u, v \rangle = u^t v \quad \text{for } u, v \in V.$$
 (3.4)

Then referring to the primitive idempotent *E* in (3.2), we compute from (3.1)–(3.4) that for *x*,  $y \in X$ ,

$$\langle E\hat{x}, E\hat{y} \rangle = |X|^{-1}\theta_i^*, \tag{3.5}$$

where  $i = \partial(x, y)$ .

Let  $\circ$  denote the entrywise multiplication in Mat<sub>*X*</sub>( $\mathbb{R}$ ). Then

$$A_i \circ A_j = \delta_{ij} A_i \quad \text{for } 0 \le i, j \le D,$$

so *M* is closed under  $\circ$ . Thus there exists  $q_{ij}^k \in \mathbb{R}$  for  $0 \le i, j, k \le D$  such that

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^{D} q_{ij}^k E_k \text{ for } 0 \le i, j \le D$$

 $\Gamma$  is said to be *Q*-polynomial with respect to the given ordering  $E_0, E_1, \ldots, E_D$  of the primitive idempotents if for all integers  $0 \le h, i, j \le D, q_{ij}^h = 0$  (resp.  $q_{ij}^h \ne 0$ ) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive idempotent of  $\Gamma$ . Then  $\Gamma$  is said to be *Q*-polynomial with respect to E whenever there exists an ordering  $E_0, E_1 = E, \ldots, E_D$  of the primitive idempotents of  $\Gamma$ , with respect to which  $\Gamma$  is *Q*-polynomial. If  $\Gamma$  is *Q*-polynomial with respect to E, then the associated dual eigenvalues are distinct [10, p. 384].

The following theorem about the Q-polynomial property will be used in this paper.

**Theorem 3.1** ([11, Theorem 3.3]). Assume  $\Gamma$  is Q-polynomial with respect to a primitive idempotent E, and let  $\theta_0^*, \ldots, \theta_D^*$  denote the corresponding dual eigenvalues. Then for all integers  $1 \le h \le D$ ,  $0 \le i, j \le D$  and for all  $x, y \in X$  such that  $\partial(x, y) = h$ ,

$$\sum_{\substack{z \in X \\ \vartheta(x,z)=i\\ \vartheta(y,z)=j}} E\hat{z} - \sum_{\substack{z' \in X \\ \vartheta(x,z')=j\\ \vartheta(y,z')=i}} E\hat{z'} = p_{ij}^h \frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_h^*} (E\hat{x} - E\hat{y}).$$
(3.6)

 $\Gamma$  is said to have *classical parameters*  $(D, b, \alpha, \beta)$  whenever the intersection numbers of  $\Gamma$  satisfy

$$c_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left( 1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \le i \le D,$$
(3.7)

$$b_{i} = \left( \begin{bmatrix} D\\1 \end{bmatrix} - \begin{bmatrix} i\\1 \end{bmatrix} \right) \left( \beta - \alpha \begin{bmatrix} i\\1 \end{bmatrix} \right) \quad \text{for } 0 \le i \le D,$$
(3.8)

where

$$\begin{bmatrix} i \\ 1 \end{bmatrix} := 1 + b + b^2 + \dots + b^{i-1}.$$
(3.9)

The following theorem characterizes the distance-regular graphs with classical parameters in an algebraic way.

**Theorem 3.2** ([11, Theorem 4.2]). Let  $\Gamma$  denote a distance-regular graph with diameter  $D \ge 3$ . Choose  $b \in \mathbb{R} \setminus \{0, -1\}$ , and let [] be as in (3.9). Then the following (i)–(ii) are equivalent. (i)  $\Gamma$  is *Q*-polynomial with associated dual eigenvalues  $\theta_0^*, \theta_1^*, \ldots, \theta_D^*$  satisfying

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i} \quad for \ 1 \le i \le D.$$
(3.10)

(ii)  $\Gamma$  has classical parameters  $(D, b, \alpha, \beta)$  for some real constants  $\alpha, \beta$ .

The following theorem characterizes the distance-regular graphs with classical parameters and  $a_1 = 0$ ,  $a_2 \neq 0$  in a combinatorial way.

**Theorem 3.3** ([6, Theorem 1.1]). Let  $\Gamma$  denote a distance-regular graph with diameter  $D \ge 3$  and intersection numbers  $a_1 = 0$ ,  $a_2 \ne 0$ . Then the following (i)–(iii) are equivalent.

(i)  $\Gamma$  is Q-polynomial and contains no parallelograms of length 3.

(ii)  $\Gamma$  is *Q*-polynomial and contains no parallelograms of any length *i* for  $3 \le i \le D$ .

(iii)  $\Gamma$  has classical parameters  $(D, b, \alpha, \beta)$  for some real constants  $b, \alpha, \beta$  with b < -1.

## 4. Proof of main theorem

Assume  $\Gamma = (X, R)$  is a distance-regular graph with classical parameters  $(D, b, \alpha, \beta)$  and  $D \ge 3$ . Suppose the intersection numbers  $a_1 = 0$  and  $a_2 \ne 0$ . Then  $\Gamma$  contains no parallelograms of any length by Theorem 3.3. We first give a definition.

**Definition 4.1.** For any vertex  $x \in X$  and any subset  $C \subseteq X$ , define

 $[x, C] := \{v \in X \mid \text{there exists } z \in C, \text{ such that } \partial(x, v) + \partial(v, z) = \partial(x, z)\}.$ 

Throughout this section, fix two vertices  $x, y \in X$  with  $\partial(x, y) = 3$ . Set

$$C \coloneqq \{z \in \Gamma_3(x) \mid B(x, y) = B(x, z)\}$$

and

$$\Delta = [x, C]. \tag{4.1}$$

We shall prove that  $\Delta$  is a regular weak-geodetically closed subgraph of diameter 3. Note that the diameter of  $\Delta$  is at least 3. If D = 3 then  $C = \Gamma_3(x)$  and  $\Delta = \Gamma$  is clearly a regular weak-geodetically closed graph. Thereafter we assume  $D \ge 4$ . By referring to Theorem 2.2, we shall prove that  $\Delta$  is weak-geodetically closed with respect to x, and the subgraph induced on  $\Delta$  is regular with valency  $a_3 + c_3$ .

**Lemma 4.2.** For all adjacent vertices  $z, z' \in \Gamma_i(x)$ , where  $i \leq D$ , we have B(x, z) = B(x, z').

**Proof.** By symmetry, it suffices to show that  $B(x, z) \subseteq B(x, z')$ . Suppose there exists  $w \in B(x, z) \setminus B(x, z')$ . Then  $\partial(w, z') \neq i + 1$ . Note that  $\partial(w, z') \leq \partial(w, x) + \partial(x, z') = 1 + i$  and  $\partial(w, z') \geq \partial(w, z) - \partial(z, z') = i$ . This implies  $\partial(w, z') = i$  and wxz'z forms a parallelogram of length i + 1, a contradiction.  $\Box$ 

We know that  $\Gamma$  is 2-bounded by Theorem 2.4. For two vertices z, s in  $\Gamma$  with  $\partial(z, s) = 2$ , let  $\Omega(z, s)$  denote the regular weak-geodetically closed subgraph containing z, s of diameter 2.

**Lemma 4.3.** Suppose stuzw is a pentagon in  $\Gamma$ , where  $s, u \in \Gamma_3(x)$  and  $z \in \Gamma_2(x)$ . Pick  $v \in B(x, u)$ . Then  $\partial(v, s) \neq 2$ .

**Proof.** Suppose  $\partial(v, s) = 2$ . Note  $\partial(z, s) \neq 1$ , since  $a_1 = 0$ . Note that  $z, w, s, t, u \in \Omega(z, s)$ . Then  $s \in \Omega(z, s) \cap \Gamma_2(v)$  and  $u \in \Omega(z, s) \cap \Gamma_4(v) \neq \emptyset$ . Hence  $\partial(v, z) = \partial(v, s) + \partial(s, z) = 2 + 2 = 4$  by Theorem 2.5. A contradiction occurs since  $\partial(v, x) = 1$  and  $\partial(x, z) = 2$ .  $\Box$ 

**Lemma 4.4.** Suppose stuzw is a pentagon in  $\Gamma$ , where  $s, u \in \Gamma_3(x)$  and  $z \in \Gamma_2(x)$ . Then B(x, s) = B(x, u).

**Proof.** Since  $|B(x, s)| = |B(x, u)| = b_3$ , it suffices to show  $B(x, u) \subseteq B(x, s)$ . By Lemma 4.3,

 $B(x, u) \subseteq \Gamma_3(s) \cup \Gamma_4(s).$ 

Suppose

 $|B(x, u) \cap \Gamma_3(s)| = m,$  $|B(x, u) \cap \Gamma_4(s)| = n.$ 

Then

$$m+n=b_3. \tag{4.2}$$

By Theorem 3.1,

$$\sum_{r \in B(x,u)} E\hat{r} - \sum_{r' \in B(u,x)} E\hat{r'} = b_3 \frac{\theta_1^* - \theta_4^*}{\theta_0^* - \theta_3^*} (E\hat{x} - E\hat{u}).$$
(4.3)

Observe  $B(u, x) \subseteq \Gamma_3(s)$ ; otherwise  $\Omega(u, s) \cap B(u, x) \neq \emptyset$  and this leads  $\partial(x, s) = 4$  by Theorem 2.5, a contradiction. Taking the inner product of *s* with both sides of (4.3) and evaluating the result using (3.5), we have

$$m\theta_3^* + n\theta_4^* - b_3\theta_3^* = b_3\frac{\theta_1^* - \theta_4^*}{\theta_0^* - \theta_3^*}(\theta_3^* - \theta_2^*).$$
(4.4)

Solve (4.2) and (4.4) to obtain

$$n = b_3 \frac{(\theta_2^* - \theta_3^*)}{(\theta_3^* - \theta_4^*)} \frac{(\theta_1^* - \theta_4^*)}{(\theta_0^* - \theta_3^*)}.$$
(4.5)

Simplifying (4.5) using (3.10), we have  $n = b_3$  and then m = 0 by (4.2). This implies  $B(x, u) \subseteq B(x, s)$  and ends the proof.  $\Box$ 

**Lemma 4.5.** Let  $z, u \in \Delta$ . Suppose stuzw is a pentagon in  $\Gamma$ , where  $z, w \in \Gamma_2(x)$  and  $u \in \Gamma_3(x)$ . Then  $w \in \Delta$ .

**Proof.** Observe  $\Omega(z, s) \cap \Gamma_1(x) = \emptyset$  and  $\Omega(z, s) \cap \Gamma_4(x) = \emptyset$  by Theorem 2.5. Hence  $s, t \in \Gamma_2(x) \cup \Gamma_3(x)$ . Observe  $s \in \Gamma_3(x)$ ; otherwise  $w, s \in \Omega(x, z)$ , and this implies  $u \in \Omega(x, z)$ , a contradiction to the diameter of  $\Omega(x, z)$  being 2. Hence B(x, s) = B(x, u) by Lemma 4.4. Then  $s \in C$  and  $w \in \Delta$  by construction.  $\Box$ 

**Lemma 4.6.** The subgraph  $\Delta$  is weak-geodetically closed with respect to x.

**Proof.** Clearly  $C(z, x) \subseteq \Delta$  for any  $z \in \Delta$ . It suffices to show  $A(z, x) \subseteq \Delta$  for any  $z \in \Delta$ . Suppose  $z \in \Delta$ . We discuss this case by case in the following. The case  $\partial(x, z) = 1$  is trivial since  $a_1 = 0$ . For the case  $\partial(x, z) = 3$ , we have B(x, y) = B(x, z) = B(x, w) for any  $w \in A(z, x)$  by definition of  $\Delta$  and Lemma 4.2. This implies  $A(z, x) \subseteq \Delta$  by the construction of  $\Delta$ . For the remaining case  $\partial(x, z) = 2$ , fix  $w \in A(z, x)$  and we shall prove  $w \in \Delta$ . There exists  $u \in C$  such that  $z \in C(u, x)$ . Observe that  $\partial(w, u) = 2$  since  $a_1 = 0$ . Choose  $s \in A(w, u)$  and  $t \in C(u, s)$ . Then *stuzw* is a pentagon in  $\Gamma$ . The result comes immediately by Lemma 4.5.

**Proof of Theorem 1.3.** By Theorem 2.2 and Lemma 4.6, it suffices to show that  $\Delta$  defined in (4.1) is regular with valency  $a_3 + c_3$ . Clearly from the construction and Lemma 4.6,  $|\Gamma_1(z) \cap \Delta| =$ 

 $a_3 + c_3$  for any  $z \in C$ . First we show that  $|\Gamma_1(x) \cap \Delta| = a_3 + c_3$ . Note that  $y \in \Delta \cap \Gamma_3(x)$  by construction of  $\Delta$ . For any  $z \in C(x, y) \cup A(x, y)$ ,

$$\partial(x, z) + \partial(z, y) \le \partial(x, y) + 1.$$

This implies  $z \in \Delta$  by Definition 2.1 and Lemma 4.6. Hence  $C(x, y) \cup A(x, y) \subseteq \Delta$ . Suppose  $B(x, y) \cap \Delta \neq \emptyset$ . Choose  $t \in B(x, y) \cap \Delta$ . Then there exists  $y' \in \Gamma_3(x) \cap \Delta$  such that  $t \in C(x, y')$ . Note that B(x, y) = B(x, y'). This leads to a contradiction to  $t \in C(x, y')$ . Hence  $B(x, y) \cap \Delta = \emptyset$  and  $\Gamma_1(x) \cap \Delta = C(x, y) \cup A(x, y)$ . Then we have  $|\Gamma_1(x) \cap \Delta| = a_3 + c_3$ .

Since each vertex in  $\Delta$  appears in a sequence of vertices  $x = x_0, x_1, x_2, x_3$  in  $\Delta$ , where  $\partial(x, x_i) = j$  and  $\partial(x_{i-1}, x_i) = 1$  for  $1 \le j \le 3$ , it suffices to show

$$|\Gamma_1(x_i) \cap \Delta| = a_3 + c_3 \tag{4.6}$$

for  $1 \le i \le 2$ . For each integer  $0 \le i \le 2$ , we show

 $|\Gamma_1(x_i) \setminus \Delta| \le |\Gamma_1(x_{i+1}) \setminus \Delta|$ 

by the 2-way counting of the number of the pairs (s, z) for  $s \in \Gamma_1(x_i) \setminus \Delta$ ,  $z \in \Gamma_1(x_{i+1}) \setminus \Delta$  and  $\partial(s, z) = 2$ . For a fixed  $z \in \Gamma_1(x_{i+1}) \setminus \Delta$ , we have  $\partial(x, z) = i + 2$  by Lemma 4.6, so  $\partial(x_i, z) = 2$  and  $s \in A(x_i, z)$ . Hence the number of such pairs (s, z) is at most  $|\Gamma_1(x_{i+1}) \setminus \Delta|a_2$ .

On the other hand, we show that this number is exactly  $|\Gamma_1(x_i) \setminus \Delta | a_2$ . Fix an  $s \in \Gamma_1(x_i) \setminus \Delta$ . Observe  $\partial(x, s) = i + 1$  by Lemma 4.6. Observe  $\partial(x_{i+1}, s) = 2$  since  $a_1 = 0$ . Pick any  $z \in A(x_{i+1}, s)$ . We shall prove  $z \notin \Delta$ . Suppose  $z \in \Delta$  in the arguments below and choose any  $w \in C(s, z)$ .

#### Case 1: i = 0.

Observe  $\partial(x, z) = 2$ ,  $\partial(x, s) = 1$  and  $\partial(x, w) = 2$ . This will force  $s \in \Delta$  by Lemma 4.6, a contradiction.

## Case 2: i = 1.

Observe  $\partial(x, z) = 3$ ; otherwise  $z \in \Omega(x, x_2)$  and this implies  $s \in \Omega(x, x_2) \subseteq \Delta$  by Lemmas 2.3 and 4.6, a contradiction. This also implies  $s \in \Delta$  by Definition 2.1 and Lemma 4.6, a contradiction.

## Case 3: i = 2.

Observe  $\partial(x, z) = 2$  or 3. Suppose  $\partial(x, z) = 2$ . Then  $B(x, x_3) = B(x, s)$  by Lemma 4.4 (with  $x_3 = u, x_2 = t$ ). Hence  $s \in \Delta$ , a contradiction. So  $z \in \Gamma_3(x)$ . Note that  $\partial(x, w) \neq 2, 3$ ; otherwise  $s \in \Delta$  by Lemmas 4.4 and 4.6 respectively. Hence  $\partial(x, w) = 4$ . Then by applying  $\Omega = \Omega(x_2, w)$  in Theorem 2.5 we have  $\partial(x_2, z) = 1$ , a contradiction to  $a_1 = 0$ .

From the above counting, we have

$$|\Gamma_1(x_i) \setminus \Delta|a_2 \le |\Gamma_1(x_{i+1}) \setminus \Delta|a_2 \tag{4.7}$$

for  $0 \le i \le 2$ . Eliminating  $a_2$  from (4.7), we find

$$|\Gamma_1(x_i) \setminus \Delta| \le |\Gamma_1(x_{i+1}) \setminus \Delta|,\tag{4.8}$$

or equivalently

$$|\Gamma_1(x_i) \cap \Delta| \ge |\Gamma_1(x_{i+1}) \cap \Delta| \tag{4.9}$$

for  $0 \le i \le 2$ . We already know that  $|\Gamma_1(x_0) \cap \Delta| = |\Gamma_1(x_3) \cap \Delta| = a_3 + c_3$ . Hence (4.6) follows from (4.9).  $\Box$ 

**Remark 4.7.** The 4-bounded property seems to be much harder to prove. We expect the 3-bounded property to be enough for classifying all the distance-regular graphs with classical parameters,  $a_1 = 0$  and  $a_2 \neq 0$ .

## References

- [1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, 1984.
- [2] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- [3] A.E. Brouwer, H.A. Wilbrink, The structure of near polygons with quads, Geometriae Dedicata 14 (1883) 145–176.
- [4] A. Hiraki, Strongly closed subgraphs in a regular thick near polygon, European Journal of Combinatorics 20 (8) (1999) 789–796.
- [5] A.A. Ivanov, S.V. Shpectorov, Characterization of the association schemes of Hermitian forms over GF(2<sup>2</sup>), Geometriae Dedicata 30 (1989) 23–33.
- [6] Y. Pan, M. Lu, C. Weng, Triangle-free distance-regular graphs, Journal of Algebraic Combinatorics (in press). http://www.springerlink.com/content/11180j3068130238/.
- [7] E.E. Shult, A. Yanushka, Near n-gons and line systems, Geometriae Dedicata 9 (1980) 1-72.
- [8] H. Suzuki, On strongly closed subgraphs of highly regular graphs, European Journal of Combinatorics 16 (1995) 197–220.
- [9] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, Kyushu Journal of Mathematics 50 (2) (1996) 371–384.
- [10] P. Terwilliger, The subconstituent algebra of an association scheme (part I), Journal of Algebraic Combinatorics 1 (1992) 363–388.
- [11] P. Terwilliger, A new inequality for distance-regular graphs, Discrete Mathematics 137 (1995) 319–332.
- [12] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs and Combinatorics 14 (1998) 275–304.
- [13] C. Weng, D-bounded distance-regular graphs, European Journal of Combinatorics 18 (1997) 211-229.
- [14] C. Weng, Classical distance-regular graphs of negative type, Journal of Combinatorial Theory, Series B 76 (1999) 93–116.