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ABSTRACT

The largest possible dimensions of linear spaces of real n X n matrices of constant
rank n — 1 (or n — 2) are determined using topological K-theory and expressed in
terms of Hurwitz-Radon numbers.

1. INTRODUCTION

It is well known that in the space M(m, n) of real matrices of order
m X n, for a fixed k < min(m, n), the set of rank k matrices is a smooth
manifold M(m, n; k) of dimension mn — (m — k)Xn — k). In this paper, we
study linear subspaces of M(m,n) contained in M(m, n; k) U {0}, with
particular interest in the largest possible dimension of such subspaces:

I(m,n; k) ==max{dimV:V c M(m,n; k) U {0}

is a linear subspace of M(m, n) 3 (D)

*Research partially supported by NSERC of Canada.
TResearch partially supported by NSF Grant DMS-9201204.
LINEAR ALGEBRA AND ITS APPLICATIONS 195: 69-79 (1993) 69

© Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0024-3795 /93 /$6.00


https://core.ac.uk/display/82087528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

70 KEE YUEN LAM AND PAUL YIU

Note that I(m, n; k) is an increasing function of m (and of n).

Assume m >n. Let A,,..., A, be a basis of a linear subspace of
M(m, n;n) U {0}. For a fixed k < n, let P be a fixed (projection) matrix
in M(n,n;k). Then AP,..., A P form a basis of a linear subspace in
M(m, n; k) U {0}. Consequently,

I(m,n; k) = 1l(m,n;n). (2)

The determination of I(m, n; n) is equivalent to the nonsingular bilinear
map problem: given m > n, to determine the largest possible r for the
existence of a nonsingular bilinear map f:R" X R" —» R™ satisfying

f(x,y) =0 = x=0o0r y=0. (3)

For m = n, the solution was given by J. F. Adams [1], in his celebrated
work on vector fields on spheres. For a given integer n = 9%e+b(9c 4+ 1),
0 < b < 3, define the Hurwitz-Radon function by

p(n) = 8a + 2°. (4)

THEOREM 1 (Adams [1]). I(n, n; n) = p(n).

The main results of this paper are the determination of I(n,n;n — 1),
(n,n — 1I;n — 2) and I(n, n;n — 2).

THEOREM 2. Forn > 2,

l(n,n;n-—l)= {maX{p(n),p(nil)}, nq&g’;’
n, =90, {.

THEOREM 3. Forn > 3,

max{ p(n), p(n £+ 1), p(n = 2)}, n#3,7,
n=3,
n=717.

I(n,n—1;n—-2)=1(3
6,

THEOREM 4. Forn = 3,
max{ p(n), p(n £ 1), p(n £ 2)}, n #3,6,7,

I(n,n;n —2) ={3 n =
6, n==6,7.



LINEAR SPACES OF REAL FUNCTIONS 71

These results are obtained by refining the method in Lam [5] of determin-
ing I(n + 1,n;n) and I(n + 2,n;n) (Lam uses different notation). For
completeness, we record these numbers below.

THEOREM 5 (Lam [5]; see also Berger and Friedland [4] and Lam and Yiu
[71.

() lln,n + 1; n) = max{ p(n), p(n + D}.
(i) I(n, n + 2, n) = max{3, p(n), p(n + 1), p(n + 2)}.

2. HURWITZ-RADON NUMBERS AND NORMED BILINEAR
MAPS

We begin by recording some elementary properties of the Hurwitz-Radon
function. For every positive integer n, let v,(n) be the unique integer such
that n = 2"("(2m + 1) for some integer m.

LLEMMA 6.

() p(n) = p(@»™),

(ii) p(n) < n. Equality holds if and only if n = 1,2,4,8.
(i) p2%), k=10,1,2,..., isan increasing sequence.
Giv) n — p(n) > 2 exceptfor n=124S8.

) n = 2p(n) > 2 except forn = 1,2,3,4,8,16.

As is well known, the Hurwitz-Radon number p(n) arises as the largest

possible number r for the existence of a normed bilinear map f:R" X
R" — R” satisfying

IfCx. ) =lxllliyl, xR, yeRm (5)

Let €, 1 < i < r (respectively e, 1 <j< < n), be an orthonormal basis of
R" (respectlvely R ). A bilinear map f R™ X R"® —» R" can be conveniently
tabulated by listing the images f(e, ¢ ), 1<i<r, 1<j<n Let A,
1 < i < r, be the matrix of the induced hnear map f; :R" - R" [so that the
jth row of A, gives the image f(e;, e])] Then it is clear that A, 1 <i < r,
span an r-dlmensmnal linear subspace of M(n, n; n) U {0}. ExphCIt construc-
tions of normed bilinear maps of type f: R ™ X R” — R" have been given
by various authors. See, for example, Lam and Liu [7]. It is well known that
such normed bilinear maps can be constructed so that for each 1 <i < r,
1<j<n, fleg,e) = tey ]) for some integer k = k(i, j). Equivalently,
each of the matnces A A has entries 0, &+ 1. In particular, one may
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even take A, = I, the identity matrix of order n, and if p(n) > 2, each of
Ays. oo, Ay, to be skew.

ExaMPLE 7. Table 1 shows a normed bilinear map R® x R® —» R,
Note that p(16) = 0.

We remark that the first 8 rows and the first 8 columns restrict to a
normed bilinear map R® x R® - R® giving the 8-dimensional linear sub-
space of M(8,8;8) U {0} consisting of the matrices

[ x Xy Xy Xy X5 Xg X xg ]
—x, X, Xy  —Xg X —X5 @ —Xg Xy
—X3 Ty x) Xy Xq Xg —X5  —Xg
B - —x, Xy —Xg X Xg  TXy Xg X (6)
x —X5 —Xg —X; —Xg x, Xy x5 x4 |
—Xxg X5  —Xg Xy Xy X, Ty X4
~%x; Xg X5 —Xg X5 Xy X, Xy
—Xg x5 Xg Xs Xy TX4 Xy X,

3. LOWER BOUNDS

Let k < n. It follows from (2) that I(n, n; k) > I(n, n; n) > p(n). More
generally, for every integer m in the range k < m < n, a p(m)-dimensional
linear subspace in M(m, m; m) U {0} gives rise to a subspace of M(m, m;
k) U {0}, and (by appending to each matrix n — m extra rows and n — m
extra columns of zeros) to a subspace of M(n, n;k) U {0} of the same
dimension. From this,

I(n,n;k) > max{ p(m):k <m < n}. (7)

LEMMA 8. Let f:R" X R® —» R" be a normed bilinear map. Suppose
there are linear subspaces U,V C R" of dimensions h and k respec-
tively, satisfying f(x,U) L V for every x € R". Then l(n — h,n —k;n —
h—k)>r.

Proof. Choose orthonormal bases e, 1<j<n, and e}, 1<j<n,of
R" such that € n—h+1<j<n,and e]’., n —k + 1 <j < n, are bases
of U and V respectively. For each (nonzero) x &€ R’, consider the matrix A,

of the induced linear map f, : R® — R” relative to these bases. The matrices
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{A,:x € R} form an r-dimensional linear subspace of M(n,n;n) U {0}.
Indeed, if x # 0, then the rows of A, are mutually orthogonal, and of the
same length [|x|. Note that A, being a square matrix, its columns are also
mutually orthogonal, and of the same length ||x}l. The submatrix B, consist-
ing of the first n —h rows of A, clearly has rank n —h. The h Xk
submatrix in the lower right hand corner of A, being identically zero, each of
the first n — k columns of B, is orthogonal to each of the rightmost k
columns, which are mutually orthogonal and of the same length [Ix|. It
follows that the (n — h) X (n — k) submatrix in the upper left hand corner
of A, has rank n —h — k. From this, we obtain a linear subspace of
M(n —h,n —k;n —h —k)U{0} of dimension r, and the proof is
complete. [ |

ProposITION 9. If n # 1,3,7, then l(n, n;n — 1) > max{ p(n),
p(n £ D}

Proof. For n > 2, it follows from (7) that l(n,n;n — 1) >
max{ p(n), p(n — D}. If n # 3,7, then p(n + 1) <n + 1 by Lemma 6(ii).
Consider a normed bilinear map f: R*"*1 x R"*! - R"*!. Clearly, there
are 1-dimensional subspaces of R"*!, say spanned by unit vectors y and z,
such that f(x,y) Lz for every x € R?"*Y. Indeed, one may choose
y = e, and z to be any unit vector orthogonal to each f(e;, ¢;), 1 <i <
p(n + 1). With n replaced by n + 1 and h =k =1 in Lemma 8, we
obtain I(n,n;n — D) > p(n + Difn #+1,3,7. [ |

PROPOSITION 10. Ifn = 3,7, then l(n,n;n — 1) > n.
Proof. Let W ={x € R®:x, =0}, and C,, x €W, be the skew 7 X 7

matrix obtained by deleting the bottom row and the rightmost column of B,
in (6). Since C, is skew, rank C, must be even. If x # 0, then

rank C, > rank B, — 2 = 6,

and indeed rank C, = 6. It follows that {C_:w € W} is a 7-dimensional
linear subspace of M(7,7;6) U {0} and I(7,7;6) > 7. Similarly, I(3,3;2) > 3
by considering the 3 X 3 submatrix in the upper left hand corner of B, in
(6), with x; = 0. [}

ProrosiTiION 11. Forn # 3,7,

I(n,n — 1;n —2) > max{ p(n), p(n £ 1), p(n — 2)}.
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Proof. For n > 3, clearly, l(n,n — 1I;n — 2) > p(n — 2). Also, by (2),
I(n,n—=1;n-2)>2l(n,n—1;n—1).

Clearly, l(n,n — 1;n — 1) » p(n — 1). Note that Lemma 8 is valid
when one or both of h and k is zero. In particular, starting with a normed
bilinear map of the Hurwitz type R?™ X R" > R", and h = 0, k = 1, we
obtain I(n,n — 1;n — 1) > p(n). Consequently,

I(n,n— L;n —2) > max{ p(n), p(n — 1), p(n — 2)}.

Now consider a normed bilinear map f:R?"*D x R**! —» R*+1 If
n# 3,7, then (n + 1) — p(n + 1) > 2 by Lemma 6(iv). Let U = span(e,)
and V = span(z,, z,), where z;, 2z, are two linearly independent vectors

orthogonal to f(e€;, ¢)), 1 <i < p(n + 1). An application of Lemma 8 with n
replacedbyn+landh—1 k =2 yields i(n,n — 1;n — 2) > p(n + 1).
This completes the proof of the proposition. |

ProposITION 12.  If n # 3,6,7, then

I(n,n;n —2) > max{ p(n), p(n £ 1), p(n £ 2)}.

Proof. Clearly, I(n, n; n — 2) > max{ p(n), p(n — 1), p(n — 2)} by (7).
For n > 3, consider a normed bilinear map of R"*? X R**2 — R"*2,
If n+#614, then (n +2) —2p(n + 2) > 2 by Lemma 6(v). In these
cases, we can choose 2-dimensional subspaces U and V of R"*? satisfying
f(x,U) LV for every x € R?("*?_ Indeed, the same thing can also be done
for n = 14: for the normed bilinear map R® x R — R' in Example 7, we
simply choose U = span(e,, e,) and V = span(e,|, e,,). It follows from
Lemma 8, with n replaced by n + 2 and h =k = 2, that l(n,n;n — 2) >
p(n +2)for n >3, n # 6.

Finally, for n # 3,7 it follows from Proposition 11 that

(n,n;n —2) 2l(n,n— 1L;n—2) > p(n+1).

This completes the proof of the proposition. |
PROPOSITION 13.

@ I13,3;1)>13,2,1) >3
(i) 1(7,7;5) = I(7,6:5) = 6
(iii) 1(6,6;4) > 6.
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Proof. (i) is trivial.

Consider the normed bilinear map R® X R® — R® tabulated by the first
6 rows and the first 8 columns of Table 1. Denote by U the 2-dimensional
subspace spanned by e, and e,.

(ii: Let V be the 1l-dimensional subspace spanned by e,. Applying
Lemma 8 with n = 8, h = 2, k = 1, we obtain I(7,6;5) > 6. Consequently,
I(7,7;5) > 6 also.

(iii): Let V be the 2-dimensional subspace spanned by e and ey instead.
Applying Lemma 8 with n = 8, h = k = 2, we obtain /(6,6;4) > 6. [ |

4. VECTOR BUNDLES

Let V be a linear subspace of M(m,n; k) U {0}, of dimension r.
J. Sylvester [12] has shown how V gives rise to a map between vector bundles
over the real projective space RP"~!. Denote by £ _, the Hopf line bundle
over RP™™! and by & the trivial line bundle. A basis A ,..., A, of

V' furnishes a bundle map f:mé&,_, = ne as follows. For each x =

(x,..., x,) € ST let f,:R™ — R" be the linear map with matrix
A(x) =x A + - +x, A, (8)
relative to the canonical bases e,. .., e, of R™ and €,,..., ¢, of R™

Identifying mé& with £,_, ® (me), we define f: m¢,_, = ne by

f{zx}, x®@y) = ({ £}, fi(y)), «xe85" (9)

Since the restriction of f to each fiber of mé,_, is a linear map of rank
k, Im f is a k-plane bundle of ne. It follows that there is a complementary
(n — k)-plane bundle 1 such that

Im f® " % =ne. (10)
On the other hand, ¢ = Ker f is an (m — k)-plane bundle satisfying

("o Im f=me¢,_ . (11)
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Consequently,
mé,_, @ " k=" " @ ne, (12)

and mé_, ® n" % is stably equivalent to {. By considering the total
Stiefel-Whitney classes of the bundles in (10) and (11), Meshulam [9] has
established

PROPOSITION 14. I(n, n; k) < n for every k < n.

We shall determine better upper bounds for I(n, n; k), n — k < 2, using
topological K-theory. Adams has calculated the KO-theory of RP™™ 1 which
we now summarize. For each integer m, let ¢(m) be the Adams function

defined by
$(m) = Card{j:1 <j<m,j=0,1,2,4(mod8)}. (13)

Tueorem 15 (Adams [1). KORP™!) = Z & KORP" 1), where
KORP™ 1Y) is the cyclic group of order 2%~V with generator x = £,_ | —
1. The multiplicative structure of KO(RP™™') is given by &2, =1, or
equivalently, x> = —2x in KORP™ ).

A basic relationship between the Adams function and the Hurwitz-Radon
function defined in (4) is given by

p(290 "Dy > r  forevery r> 1. (14)

Writing the stable equivalence class of 7 in (10) as ax € KO@®RP™ Y and
that of ¢ in (11) as bx, we have from (12)

(m+a—b)x=0eKORP ). (15)
It follows that v,(m + @ — b) > ¢(r — 1). By Lemma 6 and (14),
p(m +a—b) = p(2mTa™P) 5 p(290 D) > r, (16)

It is well known that every line bundle over RP™~! is equivalent to &,_,
or £. On the other hand, Levine [8] has shown that every 2-plane bundle over
RP"! necessarily splits into a direct sum of line bundles. Consequently, for
k = 1,2, the stable equivalence class of a k-plane bundle over RP"~ Vr>2,

is of the form ax Eé(RP’_ 1) for some integer a satisfying 0 < a < k.
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PROPOSITION 16.

(@) Un,n;n — 1) < max{ p(n), p(n £ 1} forn > 2.
(i) (n,n — L;n — 2) < max{ p(n), p(n £ 1), p(n — 2)} forn > 3.
(iii) i(n, n;n — 2) < max{ p(n), p(n + 1), p(n £ 2)} forn > 3.

Proof. (i): Let r=1IUn,n;n —1) for n > 2. Clearly, r>2 by
Propositions 9 and 10. In (16), we take m = n. Since 1 and { are line
bundles in (10) and (11), the integers a and b in (16) are 0, 1. It follows that
one of p(n — 1) 2 r, p(n) > r, and p(n + 1) > r is true. This proves (i).

For (ii), with m = n in (16), 7 in (10) is a 2-plane bundle and ¢ in (11) is
a line bundle. It follows that ¢ = 0,1,2, and b = 0, 1. From (16), one of
pn—2)>r, pln — 1 =r, p(n) > r,and p(n + 1) > r is true.

The proof of (iii) is the same except that ¢ and b are in the range
0<ab<? [ |

5. PROOF OF THEOREMS 2,3,4

Theorem 2 follows from Propositions 9, 16() for n # 3,7, and from
Propositions 10, 14 for n = 3,7.

Theorem 3 follows from Propositions 11, 16(ii) for n # 3,7, and from
Propositions 13(i) and 14 for n = 3. It remains to consider I(7, 6; 5).

Theorem 4 follows from Propositions 12, 16(ii) for n # 3,6, 7, and from
Propositions 13(1), (iii) and 14 for n = 3, 6. It remains to consider I(7, 7; 5).

Since U(7,7;5) > l(7,6;5) > 6 by Proposition 13(ii), we complete the
proof of Theorems 3 and 4 by showing that there is no 7-dimensional linear
subspace of M(7,7;5) U {0}. The existence of such a linear subspace would
give, by (11), a splitting

Tés = {2 ® x°. (17

Since the Stiefel-Whitney class wg(7€;) # 0, the bundle 7£; has exactly one
section. It follows that {2 = & ® & or 2&;, and its stable equivalence class is
bx € KO(RP®), b =1 or 2. Since 7 in (10) is also a 2-plane bundle, its
stable equivalence class is ax € KO(RP®), a = 0, 1 or 2. Note that KO(R P9)
is cyclic of order 8. From (15) with m = 7, we see that ¢« = 2 and b =
1. This means that {2 = & @ £ and the stable equivalence class of x° in
(17) is 6x € KO(R P®). Consequently, the geometric dimension of 6x is at
most 5:

6 =x° @ &,

This is a contradiction, since the top Stiefel-Whitney class wg(6&;) # 0. The
proof of Theorems 3 and 4 is now complete.
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6. REMARKS

(1) Let lo(m, n; k) denote the analogue of I(m, n; k) for matrices with
complex entries. L. Smith [11] has solved the nonsingular complex bilinear
map problem, namely, Ic(m,n;m) =n —m + 1 for m < n. More gener-
ally, Westwick [13, 14] has shown that Io(m,n, k) =n — k + 1 whenever
n —k + 1 does not divide (m — D!/(k — 1)!, and completely determined
letm,n;m — 1) for m < n.

(2) The nonsingular real bilinear map problem has been extensively
studied in the works of J. Adem [2, 3], K. Y. Lam [5, 6] and J. Milgram [10].

The authors wish to express their thanks to the referee for valuable
suggestions leading to improvement of this paper.
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