

Linear Spaces of Real Matrices of Constant Rank

Kee Yuen Lam*
Department of Mathematics
University of British Columbia
Vancouver, B.C., Canada V6T 1Y4

Paul Yiu[†]
Department of Mathematics
Florida Atlantic University
Boca Raton, Florida, 33431

Submitted by Shmuel Friedland

ABSTRACT

The largest possible dimensions of linear spaces of real $n \times n$ matrices of constant rank n-1 (or n-2) are determined using topological K-theory and expressed in terms of Hurwitz-Radon numbers.

1. INTRODUCTION

It is well known that in the space M(m, n) of real matrices of order $m \times n$, for a fixed $k \leq \min(m, n)$, the set of rank k matrices is a smooth manifold M(m, n; k) of dimension mn - (m - k)(n - k). In this paper, we study *linear* subspaces of M(m, n) contained in $M(m, n; k) \cup \{0\}$, with particular interest in the *largest* possible dimension of such subspaces:

$$l(m, n; k) := \max\{\dim V : V \subseteq M(m, n; k) \cup \{0\}$$
is a linear subspace of $M(m, n)$.} (1)

^{*}Research partially supported by NSERC of Canada.

[†]Research partially supported by NSF Grant DMS-9201204.

Note that l(m, n; k) is an increasing function of m (and of n).

Assume $m \ge n$. Let A_1, \ldots, A_r be a basis of a linear subspace of $M(m, n; n) \cup \{0\}$. For a fixed $k \le n$, let P be a fixed (projection) matrix in M(n, n; k). Then A_1P, \ldots, A_rP form a basis of a linear subspace in $M(m, n; k) \cup \{0\}$. Consequently,

$$l(m, n; k) \geqslant l(m, n; n). \tag{2}$$

The determination of l(m, n; n) is equivalent to the nonsingular bilinear map problem: given $m \ge n$, to determine the largest possible r for the existence of a nonsingular bilinear map $f: \mathbb{R}^r \times \mathbb{R}^n \to \mathbb{R}^m$ satisfying

$$f(x,y) = 0 \quad \Rightarrow \quad x = 0 \text{ or } y = 0. \tag{3}$$

For m = n, the solution was given by J. F. Adams [1], in his celebrated work on vector fields on spheres. For a given integer $n = 2^{4a+b}(2c+1)$, $0 \le b \le 3$, define the *Hurwitz-Radon function* by

$$\rho(n) = 8a + 2^b. \tag{4}$$

THEOREM 1 (Adams [1]). $l(n, n; n) = \rho(n)$.

The main results of this paper are the determination of l(n, n; n-1), l(n, n-1; n-2) and l(n, n; n-2).

THEOREM 2. For $n \ge 2$,

$$l(n, n; n-1) = \begin{cases} \max\{\rho(n), \rho(n \pm 1)\}, & n \neq 3, 7, \\ n, & n = 3, 7. \end{cases}$$

THEOREM 3. For $n \ge 3$,

$$l(n, n-1; n-2) = \begin{cases} \max \{ \rho(n), \rho(n \pm 1), \rho(n-2) \}, & n \neq 3, 7, \\ 3, & n = 3, \\ 6, & n = 7. \end{cases}$$

THEOREM 4. For $n \ge 3$,

$$l(n, n; n-2) = \begin{cases} \max\{\rho(n), \rho(n \pm 1), \rho(n \pm 2)\}, & n \neq 3, 6, 7, \\ 3, & n = 3, \\ 6, & n = 6, 7. \end{cases}$$

These results are obtained by refining the method in Lam [5] of determining l(n+1, n; n) and l(n+2, n; n) (Lam uses different notation). For completeness, we record these numbers below.

THEOREM 5 (Lam [5]; see also Berger and Friedland [4] and Lam and Yiu [7].

- (i) $l(n, n + 1; n) = \max{\{\rho(n), \rho(n + 1)\}}$.
- (ii) $l(n, n+2, n) = \max\{3, \rho(n), \rho(n+1), \rho(n+2)\}.$

2. HURWITZ-RADON NUMBERS AND NORMED BILINEAR MAPS

We begin by recording some elementary properties of the Hurwitz-Radon function. For every positive integer n, let $v_2(n)$ be the unique integer such that $n = 2^{v_2(n)}(2m+1)$ for some integer m.

LEMMA 6.

- (i) $\rho(n) = \rho(2^{\nu_2(n)}).$
- (ii) $\rho(n) \le n$. Equality holds if and only if n = 1, 2, 4, 8.
- (iii) $\rho(2^k)$, k = 0, 1, 2, ..., is an increasing sequence.
- (iv) $n \rho(n) \ge 2$ except for n = 1, 2, 4, 8.
- (v) $n-2\rho(n) \ge 2$ except for n=1,2,3,4,8,16.

As is well known, the Hurwitz-Radon number $\rho(n)$ arises as the largest possible number r for the existence of a *normed* bilinear map $f: \mathbb{R}^r \times \mathbb{R}^n \to \mathbb{R}^n$ satisfying

$$||f(x,y)|| = ||x|| ||y||, \quad x \in \mathbb{R}^r, \quad y \in \mathbb{R}^n.$$
 (5)

Let ϵ_i , $1 \leq i \leq r$ (respectively e_j , $1 \leq j \leq n$), be an orthonormal basis of \mathbb{R}^r (respectively \mathbb{R}^n). A bilinear map $f: \mathbb{R}^r \times \mathbb{R}^n \to \mathbb{R}^n$ can be conveniently tabulated by listing the images $f(\epsilon_i, e_j)$, $1 \leq i \leq r$, $1 \leq j \leq n$. Let A_i , $1 \leq i \leq r$, be the matrix of the induced linear map $f_i: \mathbb{R}^n \to \mathbb{R}^n$ [so that the jth row of A_i gives the image $f(\epsilon_i, e_j)$]. Then it is clear that A_i , $1 \leq i \leq r$, span an r-dimensional linear subspace of $M(n, n; n) \cup \{0\}$. Explicit constructions of normed bilinear maps of type $f: \mathbb{R}^{\rho(n)} \times \mathbb{R}^n \to \mathbb{R}^n$ have been given by various authors. See, for example, Lam and Liu [7]. It is well known that such normed bilinear maps can be constructed so that for each $1 \leq i \leq r$, $1 \leq j \leq n$, $f(\epsilon_i, e_j) = \pm e_{k(i,j)}$ for some integer k = k(i,j). Equivalently, each of the matrices $A_1, \ldots, A_{\rho(n)}$ has entries $0, \pm 1$. In particular, one may

even take $A_1 = I$, the identity matrix of order n, and if $\rho(n) \ge 2$, each of $\Lambda_2, \ldots, \Lambda_{\rho(n)}$ to be *skew*.

Example 7. Table 1 shows a normed bilinear map $\mathbb{R}^9 \times \mathbb{R}^{16} \to \mathbb{R}^{16}$. Note that $\rho(16) = 0$.

We remark that the first 8 rows and the first 8 columns restrict to a normed bilinear map $\mathbb{R}^8 \times \mathbb{R}^8 \to \mathbb{R}^8$ giving the 8-dimensional linear subspace of $M(8,8;8) \cup \{0\}$ consisting of the matrices

$$B_{x} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\ -x_{2} & x_{1} & x_{4} & -x_{3} & x_{6} & -x_{5} & -x_{8} & x_{7} \\ -x_{3} & -x_{4} & x_{1} & x_{2} & x_{7} & x_{8} & -x_{5} & -x_{6} \\ -x_{4} & x_{3} & -x_{2} & x_{1} & x_{8} & -x_{7} & x_{6} & -x_{5} \\ -x_{5} & -x_{6} & -x_{7} & -x_{8} & x_{1} & x_{2} & x_{3} & x_{4} \\ -x_{6} & x_{5} & -x_{8} & x_{7} & -x_{2} & x_{1} & -x_{4} & x_{3} \\ -x_{7} & x_{8} & x_{5} & -x_{6} & -x_{3} & x_{4} & x_{1} & -x_{2} \\ -x_{8} & -x_{7} & x_{6} & x_{5} & -x_{4} & -x_{3} & x_{2} & x_{1} \end{bmatrix}.$$
 (6)

3. LOWER BOUNDS

Let $k \le n$. It follows from (2) that $l(n, n; k) \ge l(n, n; n) \ge \rho(n)$. More generally, for every integer m in the range $k \le m \le n$, a $\rho(m)$ -dimensional linear subspace in $M(m, m; m) \cup \{0\}$ gives rise to a subspace of $M(m, m; k) \cup \{0\}$, and (by appending to each matrix n - m extra rows and n - m extra columns of zeros) to a subspace of $M(n, n; k) \cup \{0\}$ of the same dimension. From this,

$$l(n, n; k) \geqslant \max\{\rho(m) : k \leqslant m \leqslant n\}. \tag{7}$$

LEMMA 8. Let $f: \mathbb{R}^r \times \mathbb{R}^n \to \mathbb{R}^n$ be a normed bilinear map. Suppose there are linear subspaces $U, V \subseteq \mathbb{R}^n$ of dimensions h and k respectively, satisfying $f(x, U) \perp V$ for every $x \in \mathbb{R}^r$. Then $l(n - h, n - k; n - h - k) \ge r$.

Proof. Choose orthonormal bases $e_j,\ 1\leqslant j\leqslant n,\$ and $e'_j,\ 1\leqslant j\leqslant n,\$ of \mathbb{R}^n such that $e_j,\ n-h+1\leqslant j\leqslant n,\$ and $e'_j,\ n-k+1\leqslant j\leqslant n,\$ are bases of U and V respectively. For each (nonzero) $x\in\mathbb{R}^r$, consider the matrix A_x of the induced linear map $f_x:\mathbb{R}^n\to\mathbb{R}^n$ relative to these bases. The matrices

[ABLE]

e_{16}	$-e_{15}$	e_{14}	e_{13}	$^{-e_{12}}$	$-e_{11}$	e_{10}	- <i>e</i> ₉	e_8
e_{15}	e_{16}	e_{13}	$-e_{14}$	$-e_{11}$	e_{12}	$-e_9$	$-e_{10}$	64
614	e_{13}	$-e_{16}$	615	$-e_{10}$	$-e_9$	$-e_{12}$	e_{11}	99
e_{13}	$-e_{14}$	$-e_{15}$	$-e_{16}$	$-e_9$	e_{10}	e_{11}	e_{12}	e_{5}
e_{12}	e_{11}	$-e_{10}$	-69	e_{16}	$-e_{15}$	e_{14}	$-e_{13}$	e_4
e_{11}	$-e_{12}$	-e ₉	e_{10}	e_{15}	e_{16}	$-e_{13}$	$-e_{14}$	e_3
e_{10}	$-e_9$	e_{12}	$-e_{11}$	e_{14}	$-e_{13}$	$-e_{16}$	e_{15}	e_2
69	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16}	$-e_1$
88	67	$-e_{6}$	$-e_5$	64	e_3	$-e_2$	$-e_1$	$-e_{16}$
67	$-e_8$	$-e_5$	$e_{\rm f}$	e_3	$-e_4$	$-e_1$	e_2	$-e_{15}$
		<i>e</i> ⁸						
65	<i>e</i> ⁶	e_7	<i>e</i> 8	$-e_1$	$-e_2$	$-e_3$	-64	$-e_{13}$
64	$-e_3$	e_2	$-e_1$	$-e_8$	e_7	$-e_6$	e_5	$-e_{12}$
e_3	e_4	$-e_1$	$-e_2$	$-e_7$	$-e_8$	e_5	<i>e</i> ⁶	$-e_{11}$
e_2	$-e_1$	$-e_4$	e_3	$-e_6$	e_5	<i>e</i> ⁸	$-e_7$	$-e_{10}$
$\lceil e_1 \rceil$	63	<i>e</i> ³	<i>e</i> ⁴	e_5	e^{e}	67	88	69

 $\{A_x:x\in\mathbb{R}^r\}$ form an r-dimensional linear subspace of $M(n,n;n)\cup\{0\}$. Indeed, if $x\neq 0$, then the rows of A_x are mutually orthogonal, and of the same length $\|x\|$. Note that A_x being a square matrix, its columns are also mutually orthogonal, and of the same length $\|x\|$. The submatrix B_x consisting of the first n-h rows of A_x clearly has rank n-h. The $h\times k$ submatrix in the lower right hand corner of A_x being identically zero, each of the first n-k columns of B_x is orthogonal to each of the rightmost k columns, which are mutually orthogonal and of the same length $\|x\|$. It follows that the $(n-h)\times (n-k)$ submatrix in the upper left hand corner of A_x has rank n-h-k. From this, we obtain a linear subspace of $M(n-h,n-k;n-h-k)\cup\{0\}$ of dimension r, and the proof is complete.

Proposition 9. If $n \neq 1, 3, 7$, then $l(n, n; n - 1) \ge \max\{\rho(n), \rho(n \pm 1)\}$.

Proof. For $n \ge 2$, it follows from (7) that $l(n, n; n-1) \ge \max\{\rho(n), \rho(n-1)\}$. If $n \ne 3, 7$, then $\rho(n+1) < n+1$ by Lemma 6(ii). Consider a normed bilinear map $f: \mathbb{R}^{\rho(n+1)} \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$. Clearly, there are 1-dimensional subspaces of \mathbb{R}^{n+1} , say spanned by unit vectors y and z, such that $f(x, y) \perp z$ for every $x \in \mathbb{R}^{\rho(n+1)}$. Indeed, one may choose $y = e_1$ and z to be any unit vector orthogonal to each $f(\epsilon_i, e_1)$, $1 \le i \le \rho(n+1)$. With n replaced by n+1 and n+1 and n+1 in Lemma 8, we obtain n+1 of n+1 and n+1 and n+1 if n+1 if n+1 and n+1 if n+1 if n+1 if n+1 and n+1 if n+1 i

PROPOSITION 10. If n = 3, 7, then $l(n, n; n - 1) \ge n$.

Proof. Let $W = \{x \in \mathbb{R}^8 : x_1 = 0\}$, and C_x , $x \in W$, be the skew 7×7 matrix obtained by deleting the bottom row and the rightmost column of B_x in (6). Since C_x is skew, rank C_x must be even. If $x \neq 0$, then

$$\operatorname{rank} C_x \geqslant \operatorname{rank} B_x - 2 = 6,$$

and indeed rank $C_x = 6$. It follows that $\{C_x : w \in W\}$ is a 7-dimensional linear subspace of $M(7,7;6) \cup \{0\}$ and $l(7,7;6) \geqslant 7$. Similarly, $l(3,3;2) \geqslant 3$ by considering the 3×3 submatrix in the upper left hand corner of B_x in (6), with $x_1 = 0$.

Proposition 11. For $n \neq 3, 7$,

$$l(n, n-1; n-2) \ge \max \{ \rho(n), \rho(n \pm 1), \rho(n-2) \}.$$

Proof. For $n \ge 3$, clearly, $l(n, n-1; n-2) \ge \rho(n-2)$. Also, by (2),

$$l(n, n-1; n-2) \ge l(n, n-1; n-1).$$

Clearly, $l(n, n-1; n-1) \ge \rho(n-1)$. Note that Lemma 8 is valid when one or both of h and k is zero. In particular, starting with a normed bilinear map of the Hurwitz type $\mathbb{R}^{\rho(n)} \times \mathbb{R}^n \to \mathbb{R}^n$, and h = 0, k = 1, we obtain $l(n, n-1; n-1) \ge \rho(n)$. Consequently,

$$l(n, n-1; n-2) \ge \max \{ \rho(n), \rho(n-1), \rho(n-2) \}.$$

Now consider a normed bilinear map $f: \mathbb{R}^{\rho(n+1)} \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$. If $n \neq 3, 7$, then $(n+1) - \rho(n+1) \geq 2$ by Lemma 6(iv). Let $U = \operatorname{span}(e_1)$ and $V = \operatorname{span}(z_1, z_2)$, where z_1, z_2 are two linearly independent vectors orthogonal to $f(\boldsymbol{\epsilon}_i, e_1)$, $1 \leq i \leq \rho(n+1)$. An application of Lemma 8 with n replaced by n+1 and n=1, n=1 yields n=1 if n=1 is completes the proof of the proposition.

PROPOSITION 12. If $n \neq 3, 6, 7$, then

$$l(n, n; n-2) \ge \max \{ \rho(n), \rho(n \pm 1), \rho(n \pm 2) \}.$$

Proof. Clearly, $l(n, n; n-2) \ge \max\{\rho(n), \rho(n-1), \rho(n-2)\}$ by (7). For $n \ge 3$, consider a normed bilinear map of $\mathbb{R}^{\rho(n+2)} \times \mathbb{R}^{n+2} \to \mathbb{R}^{n+2}$. If $n \ne 6$, 14, then $(n+2)-2\rho(n+2)\ge 2$ by Lemma 6(v). In these cases, we can choose 2-dimensional subspaces U and V of \mathbb{R}^{n+2} satisfying $f(x, U) \perp V$ for every $x \in \mathbb{R}^{\rho(n+2)}$. Indeed, the same thing can also be done for n=14: for the normed bilinear map $\mathbb{R}^9 \times \mathbb{R}^{16} \to \mathbb{R}^{16}$ in Example 7, we simply choose $U=\mathrm{span}(e_1,e_2)$ and $V=\mathrm{span}(e_{11},e_{12})$. It follows from Lemma 8, with n replaced by n+2 and n+2 and n+3 that n+4 for n+3 and n+4 and n+4 and n+4 for n+4 for

Finally, for $n \neq 3, 7$ it follows from Proposition 11 that

$$l(n, n; n-2) \ge l(n, n-1; n-2) \ge \rho(n+1).$$

This completes the proof of the proposition.

Proposition 13.

- (i) $l(3,3;1) \ge l(3,2;1) \ge 3$.
- (ii) $l(7,7;5) \ge l(7,6;5) \ge 6$.
- (iii) $l(6, 6; 4) \ge 6$.

Proof. (i) is trivial.

Consider the normed bilinear map $\mathbb{R}^6 \times \mathbb{R}^8 \to \mathbb{R}^8$ tabulated by the first 6 rows and the first 8 columns of Table 1. Denote by U the 2-dimensional subspace spanned by e_1 and e_2 .

- (ii): Let V be the 1-dimensional subspace spanned by e_7 . Applying Lemma 8 with n = 8, h = 2, k = 1, we obtain $l(7, 6; 5) \ge 6$. Consequently, $l(7, 7; 5) \ge 6$ also.
- (iii): Let V be the 2-dimensional subspace spanned by e_7 and e_8 instead. Applying Lemma 8 with n = 8, h = k = 2, we obtain $l(6, 6; 4) \ge 6$.

4. VECTOR BUNDLES

Let V be a linear subspace of $M(m,n;k) \cup \{0\}$, of dimension r. J. Sylvester [12] has shown how V gives rise to a map between vector bundles over the real projective space $\mathbb{R}P^{r-1}$. Denote by ξ_{r-1} the Hopf line bundle over $\mathbb{R}P^{r-1}$, and by ε the trivial line bundle. A basis A_1,\ldots,A_r of V furnishes a bundle map $f:m\xi_{r-1}\to n\varepsilon$ as follows. For each $x=(x_1,\ldots,x_r)\in S^{r-1}$, let $f_x:\mathbb{R}^m\to\mathbb{R}^n$ be the linear map with matrix

$$A(x) = x_1 A_1 + \dots + x_r A_r$$
 (8)

relative to the *canonical* bases e_1, \ldots, e_m of \mathbb{R}^m and $\epsilon_1, \ldots, \epsilon_n$ of \mathbb{R}^n . Identifying $m\xi$ with $\xi_{r-1} \otimes (m\varepsilon)$, we define $f: m\xi_{r-1} \to n\varepsilon$ by

$$f(\{\pm x\}, x \otimes y) = (\{\pm x\}, f_x(y)), \quad x \in S^{r-1}.$$
 (9)

Since the restriction of f to each fiber of $m\xi_{r-1}$ is a linear map of rank k, Im f is a k-plane bundle of $n\varepsilon$. It follows that there is a complementary (n-k)-plane bundle η such that

$$\operatorname{Im} f \oplus \eta^{n-k} = n\varepsilon. \tag{10}$$

On the other hand, $\zeta = \text{Ker } f$ is an (m - k)-plane bundle satisfying

$$\zeta^{m-k} \oplus \operatorname{Im} f \simeq m \xi_{r-1}. \tag{11}$$

Consequently,

$$m\xi_{r-1} \oplus \eta^{n-k} \simeq \zeta^{m-k} \oplus n\varepsilon,$$
 (12)

and $m\xi_{r-1} \oplus \eta^{n-k}$ is stably equivalent to ζ . By considering the total Stiefel-Whitney classes of the bundles in (10) and (11), Meshulam [9] has established

PROPOSITION 14. $l(n, n; k) \le n$ for every $k \le n$.

We shall determine better upper bounds for l(n, n; k), $n - k \le 2$, using topological K-theory. Adams has calculated the KO-theory of $\mathbb{R}P^{r-1}$, which we now summarize. For each integer m, let $\phi(m)$ be the Adams function defined by

$$\phi(m) = \text{Card}\{j: 1 \le j \le m, j \equiv 0, 1, 2, 4 \pmod{8}\}. \tag{13}$$

THEOREM 15 (Adams [1]). $KO(\mathbb{R}P^{r-1}) = \mathbb{Z} \oplus \widetilde{KO}(\mathbb{R}P^{r-1})$, where $\widetilde{KO}(\mathbb{R}P^{r-1})$ is the cyclic group of order $2^{\phi(r-1)}$ with generator $x = \xi_{r-1} - 1$. The multiplicative structure of $KO(\mathbb{R}P^{r-1})$ is given by $\xi_{r-1}^2 = 1$, or equivalently, $x^2 = -2x$ in $\widetilde{KO}(\mathbb{R}P^{r-1})$.

A basic relationship between the Adams function and the Hurwitz-Radon function defined in (4) is given by

$$\rho(2^{\phi(r-1)}) \geqslant r \quad \text{for every} \quad r \geqslant 1.$$
(14)

Writing the stable equivalence class of η in (10) as $ax \in \widetilde{KO}(\mathbb{R}P^{r-1})$ and that of ζ in (11) as bx, we have from (12)

$$(m+a-b)x = 0 \in \widetilde{KO}(\mathbb{R}P^{r-1}). \tag{15}$$

It follows that $v_2(m+a-b) \geqslant \phi(r-1)$. By Lemma 6 and (14),

$$\rho(m+a-b) = \rho(2^{\nu_2(m+a-b)}) \geqslant \rho(2^{\phi(r-1)}) \geqslant r. \tag{16}$$

It is well known that every line bundle over $\mathbb{R}P^{r-1}$ is equivalent to ξ_{r-1} or ε . On the other hand, Levine [8] has shown that every 2-plane bundle over $\mathbb{R}P^{r-1}$ necessarily splits into a direct sum of line bundles. Consequently, for k=1,2, the stable equivalence class of a k-plane bundle over $\mathbb{R}P^{r-1}$, $r \ge 2$, is of the form $ax \in \widetilde{KO}(\mathbb{R}P^{r-1})$ for some integer a satisfying $0 \le a \le k$.

Proposition 16.

- (i) $l(n, n; n 1) \le \max\{\rho(n), \rho(n \pm 1)\}\$ for $n \ge 2$.
- (ii) $l(n, n-1; n-2) \le \max\{\rho(n), \rho(n \pm 1), \rho(n-2)\}\$ for $n \ge 3$.
- (iii) $l(n, n; n-2) \le \max\{\rho(n), \rho(n \pm 1), \rho(n \pm 2)\}\$ for $n \ge 3$.

Proof. (i): Let r = l(n, n; n - 1) for $n \ge 2$. Clearly, $r \ge 2$ by Propositions 9 and 10. In (16), we take m = n. Since η and ζ are line bundles in (10) and (11), the integers a and b in (16) are 0, 1. It follows that one of $\rho(n-1) \ge r$, $\rho(n) \ge r$, and $\rho(n+1) \ge r$ is true. This proves (i).

For (ii), with m = n in (16), η in (10) is a 2-plane bundle and ζ in (11) is a line bundle. It follows that a = 0, 1, 2, and b = 0, 1. From (16), one of $\rho(n-2) \ge r$, $\rho(n-1) \ge r$, $\rho(n) \ge r$, and $\rho(n+1) \ge r$ is true.

The proof of (iii) is the same except that a and b are in the range $0 \le a, b \le 2$.

5. PROOF OF THEOREMS 2, 3, 4

Theorem 2 follows from Propositions 9, 16(i) for $n \neq 3, 7$, and from Propositions 10, 14 for n = 3, 7.

Theorem 3 follows from Propositions 11, 16(ii) for $n \neq 3, 7$, and from Propositions 13(i) and 14 for n = 3. It remains to consider l(7, 6; 5).

Theorem 4 follows from Propositions 12, 16(iii) for $n \neq 3, 6, 7$, and from Propositions 13(i), (iii) and 14 for n = 3, 6. It remains to consider l(7, 7; 5).

Since $l(7,7;5) \ge l(7,6;5) \ge 6$ by Proposition 13(ii), we complete the proof of Theorems 3 and 4 by showing that there is *no* 7-dimensional linear subspace of $M(7,7;5) \cup \{0\}$. The existence of such a linear subspace would give, by (11), a splitting

$$7\xi_6 \simeq \zeta^2 \oplus \chi^5. \tag{17}$$

Since the Stiefel-Whitney class $w_6(7\xi_6) \neq 0$, the bundle $7\xi_6$ has exactly one section. It follows that $\zeta^2 = \xi_6 \oplus \varepsilon$ or $2\xi_6$, and its stable equivalence class is $bx \in \overline{KO}(\mathbb{R}P^6)$, b=1 or 2. Since η in (10) is also a 2-plane bundle, its stable equivalence class is $ax \in \overline{KO}(\mathbb{R}P^6)$, a=0,1 or 2. Note that $\overline{KO}(\mathbb{R}P^6)$ is cyclic of order 8. From (15) with m=7, we see that a=2 and b=1. This means that $\zeta^2 \simeq \xi_6 \oplus \varepsilon$ and the stable equivalence class of χ^5 in (17) is $6x \in \overline{KO}(\mathbb{R}P^6)$. Consequently, the geometric dimension of 6x is at most 5:

$$6\xi_6 \simeq \chi^5 \oplus \varepsilon.$$

This is a contradiction, since the top Stiefel-Whitney class $w_6(6\xi_6) \neq 0$. The proof of Theorems 3 and 4 is now complete.

6. REMARKS

- (1) Let $l_{\mathbb{C}}(m,n;k)$ denote the analogue of l(m,n;k) for matrices with complex entries. L. Smith [11] has solved the nonsingular *complex* bilinear map problem, namely, $l_{\mathbb{C}}(m,n;m)=n-m+1$ for $m\leqslant n$. More generally, Westwick [13, 14] has shown that $l_{\mathbb{C}}(m,n,k)=n-k+1$ whenever n-k+1 does not divide (m-1)!/(k-1)!, and completely determined $l_{\mathbb{C}}(m,n;m-1)$ for $m\leqslant n$.
- (2) The nonsingular *real* bilinear map problem has been extensively studied in the works of J. Adem [2, 3], K. Y. Lam [5, 6] and J. Milgram [10].

The authors wish to express their thanks to the referee for valuable suggestions leading to improvement of this paper.

REFERENCES

- 1 J. F. Adams, Vector fields on spheres, Ann. Math. 75:603-632 (1962).
- 2 J. Adem, On nonsingular bilinear maps, in *Lecture Notes in Math.* 168, 1970, pp. 11-24.
- 3 J. Adem, On nonsingular bilinear maps II, Bol. Soc. Mat. Mexicana 16:64-70 (1971).
- 4 M. A. Berger and S. Friedland, The generalized Radon-Hurwitz numbers, Compositio Math. 59:113-146 (1986).
- 5 K. Y. Lam, Thesis, Princeton Univ., 1966.
- 6 K. Y. Lam, Construction of some nonsingular bilinear maps, Bol. Soc. Mat. Mexicana 13:88-94 (1968).
- 7 K. Y. Lam and P. Yiu, Sums of squares formulae near the Hurwitz-Radon range, Contemp. Math. 58(II):51-56 (1987).
- 8 J. Levine, Imbedding and immersion of real projective spaces, *Proc. Amer. Math. Soc.* 14:801-803 (1963).
- 9 R. Meshulam, On k-spaces of real matrices, Linear and Multilinear Algebra 26:39-41 (1990).
- 10 R. J. Milgram, Immersing projective spaces, Ann. Math. 85:473-482 (1967).
- 11 L. Smith, Nonsingular bilinear forms, generalized J homomorphisms, and the homotopy of spheres I, *Indiana J. Math.* 27:697-737 (1978).
- 12 J. Sylvester, On the dimension of spaces of linear transformations satisfying rank conditions, *Linear Algebra Appl.* 78:1–10 (1986).
- 13 R. Westwick, Spaces of matrices of fixed rank, Linear and Multilinear Algebra 20:171-174 (1987).
- 14 R. Westwick, Examples of constant rank spaces, *Linear and Multilinear Algebra* 28:155–174 (1990).