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ABSTRACT 

The largest possible dimensions of linear spaces of real n X n matrices of constant 
rank n - 1 (or n - 2) are determined using topological K-theory and expressed in 

terms of Hurwitz-Radon numbers. 

1. INTRODUCTION 

It is well known that in the space M(m, n) of real matrices of order 
m X n, for a fixed k < min(m, n), the set of rank k matrices is a smooth 
manifold M(m, n; k) of dimension mn - (m - k)(n - k). In this paper, we 
study linear subspaces of M(m, n) contained in M(m, n; k) U {O}, with 
particular interest in the largest possible dimension of such subspaces: 

l(m,n;k) := max{dimV:VcM(m,n;k) U (0) 

is a linear subspace of M ( m, n) .} (1) 
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Note that E(m, n; k) is an increasing function of m (and of n>. 
Assume m > n. Let A,,. . ., A, be a basis of a linear subspace of 

~(m, n; n) u {O). For a fmed k G n, let P be a fixed (projection) matrix 
in M(n, n; k). Then A,P,. . , A,P f orm a basis of a linear subspace in 

M(m, n; k) U (0). Consequently, 

Z(m,n;k) >Z(m,n;n). (2) 

The determination of Z(m, n; n) is equivalent to the nonsingular bilinear 

map problem: given m 2 n, to determine the largest possible r for the 
existence of a nonsingular bilinear map f : R’ x R” + R” satisfying 

f(x,Y)=O * x=Oor y=O. (3) 

For m = n, the solution was given by J. F. Adams [l], in his celebrated 
work on vector fields on spheres. For a given integer n = 24”+b(2~ + 11, 

0 < b < 3, define the Hurt&z-Radon function by 

p(n) = 8a + 2b. (4) 

THEOREM 1 (Adams [l]). l(n, n; n) = p(n). 

The main results of this paper are the determination of Z(n, n; n - 11, 
E(n, n - 1; n - 2) and Z(n, n; n - 2). 

THEOREM 2. For n > 2, 

Z(n, 72; n - 1) = 
i 

ma{ p(n), p(n & I)}, n + 3,7, 

n, n = 3,7. 

THEOREM 3. For n 2 3, 

max{ p(n), p(n f l), p(n - 2)}, n # 3,7, 
Z(n,n - l;n -2) = 3, n = 3, 

6, n = 7. 

THEOREM 4. For n 2 3, 

max{ p(n), p(n k l), p(n f 2)}, n + 3,6,7, 
Z(n, 12; n - 2) = 3, n = 3, 

6, n = 6,7. 
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These results are obtained by refining the method in Lam [5] of determin- 
ing Z(n + 1, n; n) and Z(n + 2, n; n) (Lam uses different notation). For 
completeness, we record these numbers below. 

THEOREM 5 (Lam [5]; see also Berger and Friedland [4] and Lam and Yiu 

[71. 

(i) I(n, n + 1; n) = max{ p(n), P(n + 1)). 
(ii) Z(n, n + 2, n> = max{3, p(n), p(n + 0, p(n + 2)]. 

2. HURWITZ-RADON NUMBERS AND NORMED BILINEAR 
MAPS 

We begin by recording some elementary properties of the Hurwitz-Radon 
function. For every positive integer n, let u,(n) be the unique integer such 
that n = 2”2(n)(2m + 1) for some integer m. 

LEMMA 6. 

(i) p(n) = p(2”2(“9. 
(ii) p(n) < n. Equality holds if and only if n = 1,2,4,8. 

(iii) ~(2~1, k = 0, 1,2,. . . , is an increasing sequence. 

(iv) n - p(n) 2 2 except for n = 1,2,4,8. 

(VI n - 2pCn) > 2 except for n = 1,2,3,4,8, 16. 

As is well known, the Hun&z-Radon number p(n) arises as the largest 
possible number r for the existence of a nomd bilinear map f : [w’ X 
R” + R” satisfying 

Ilf( x, y)lI = llxll II yll, x E R’, y E R”. (5) 

Let ei, 1 < i < r (respectively ej, 1 < j < n), be an orthonormal basis of 
1w’ (respectively [Wn>. A bilinear map f : R’ X R” -+ R” can be conveniently 
tabulated by listing the images f(ei, ej>, 1 Q i < r, 1 < j Q n. Let Ai, 
1 < i < r, be the matrix of the induced linear map fi : R” + R” [so that the 

jth row of Ai gives the image f(ej, ej)]. Then it is clear that Ai, 1 < i < r, 
span an r-dimensional linear subspace of M(n, n; n) U {O}. Explicit construc- 
tions of normed bilinear maps of type f : R p(n) X R” + R” have been given 
by various authors. See, for example, Lam and Liu 171. It is well known that 
such normed bilinear maps can be constructed so that for each 1 < i < r, 

1 <j < n, f(q, ej> = fekci,jj for some integer k = k(i,j). Equivalently, 
each of the matrices A,, . , ApCnj has entries 0, f 1. In particular, one may 
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even take A, = I, the identity matrix of order n, and if p(n) 2 2, each of 
A,, . , A,,(,,) to be skew. 

EXAMPLE 7. Table 1 shows a normed bilinear map [wg X R16 + [w16. 

Note that ~(16) = 0. 

We remark that the first 8 rows and the first 8 columns restrict to a 
normed bilinear map [ws X R8 + R8 giving the g-dimensional linear sub- 
space of M(8,8; 8) U (0) consisting of the matrices 

B, = 

Xl x2 x3 x4 x5 ‘6 X? ‘8 

-x2 Xl x4 -x3 X6 -x5 -x8 x7 

-x3 -x4 Xl x2 x7 X6 -x5 -x6 

-x4 x3 --x2 Xl ‘8 -‘7 x6 -x5 

-x5 -x6 -x7 -x8 Xl x2 x3 x4 

-‘6 ‘5 -‘8 x7 -x2 Xl -x4 x3 

--x7 ‘8 x5 -x6 -x3 x4 Xl -x2 

-x8 -x7 x6 x5 -x4 -x3 x2 Xl 

(6) 

3. LOWER BOUNDS 

Let k < n. It follows from (2) that Z(n, R; k) > Z(n, n; n) > p(n). More 
generally, for every integer m in the range k < m < n, a p(m)-dimensional 
linear subspace in M(m, m; m) U {O} gives rise to a subspace of M(m, m; 

k) U {O}, and (by appending to each matrix rr - m extra rows and n - m 

extra columns of zeros) to a subspace of M(n, n; k) U {O} of the same 
dimension. From this, 

,!( n, n; k) > max{ p(m) : k < m G n}. (7) 

LEMMA 8. Letf: R’ X R” + R” be a normed bilinear map. Suppose 

there are linear subspaces U, V c R” of dimensions h and k respec- 

tively, satisfying f(x, U) I V f or every x E R’. Then Z(n - h, n - k; n - 

h-k)>r. 

Proof. Choose orthonormal bases ej, 1 <j < n, and eJ, 1 <j < n, of 
[w” such that ej, n -h + 1 <j < n, and e;, n - k + 1 <j < n, are bases 
of U and V respectively. For each (nonzero) x E [w’, consider the matrix A, 
of the induced linear map f, : R” -+ R” relative to these bases. The matrices 
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{A, : x E lRr} form an r-dimensional linear subspace of M(n, n; n> u {O}. 
Indeed, if x z 0, then the rows of A, are mutually orthogonal, and of the 
same length 11x11. Note that A, b em a square matrix, its columns are also ’ g 
mutually orthogonal, and of the same length 11 x 11. The submatrix Z?, consist- 
ing of the first n - h rows of A, clearly has rank n - h. The h X k 
submatrix in the lower right hand comer of A, being identically zero, each of 
the first n - k columns of B, is orthogonal to each of the rightmost k 
columns, which are mutually orthogonal and of the same length Ilxll. It 
follows that the (n - h) X (n - k) su ma r-ix in the upper left hand comer b t 
of A, has rank n - h - k. From this, we obtain a linear subspace of 
M(n - h, n - k; n - h - k) U (0) of dimension r, and the proof is 
complete. n 

PROPOSITION 9. Zf n # 1, 3, 7, then Z(n, n; n - 1) > max{ p(n), 
p(n f 1)). 

Proof. For n > 2, it follows from (7) that Z(n, n; n - 1) 2 
max{ p(n), p(n - 1)). If n # 3,7, then p(n + 1) < n + 1 by Lemma 6(E). 
Consider a normed bilinear map f : R CJ(“+~) X R”+ ’ + Rnt ‘. Clearly, there 
are I-dimensional subspaces of R”+ r, say spanned by unit vectors y and z, 
such that f(x, y) I .z for every x E R p(nfl). Indeed, one may choose 
y = er and z to be any unit vector orthogonal to each fCei, el), 1 Q i < 
p(n + 1). With n replaced by n + 1 and h = k = 1 in Lemma 8, we 
obtain Z(n, n; n - 1) > p(n + 1) if n # 1,3,7. n 

PROPOSITION 10. If n = 3,7, then Z(n, n; n - 1) > n. 

Proof. Let W = {x E R8 : xl = 0}, and C,, x E W, be the skew 7 X 7 
matrix obtained by deleting the bottom row and the rightmost column of B, 
in (6). Since C, is skew, rank C, must be even. If x # 0, then 

rank C, z rank B, - 2 = 6, 

and indeed rank C, = 6. It follows that {C, : w E W} is a 7-dimensional 
linear subspace of M(7,7; 6) U {O} and Z(7,7; 6) > 7. Similarly, Z(3,3; 2) > 3 
by considering the 3 X 3 submatrix in the upper left hand comer of B, in 
(61, with xl = 0. n 

PROPOSITION 11. For n # 3,7, 

Z(n,n-l;n-2) ~mmax{p(n),p(n~l),p(n-2)1 
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proof. For n > 3, clearly, l(n, n - 1; n - 2) a p(n - 2). Also, by (3, 

Z(n,n - l;n - 2) > Z(n,n - l;n - 1). 

Clearly, Z(n, n - 1; n - 1) > p(n - 1). Note that Lemma 8 is valid 
when one or both of h and k is zero. In particular, starting with a normed 
bilinear map of the Hurwitz type R P(n) X R" + R", and h = 0, k = 1, we 

obtain Z(n, n - 1; n - 1) > p(n). Consequently, 

Z(n,n - 1;n - 2) > max{p(n),p(n - l),p(n - 2)). 

Now consider a normed bilinear map f : R p("+ ') X [W"+' + [Wn+l. If 
n # 3,7, then (n + 1) - p(n + 1) > 2 by Lemma 6(k). Let U = span(e,) 
and V = span(z,, z,), where zl, z2 are two linearly independent vectors 
orthogonal to f(ei, e,), 1 < i < p(n + 1). An application of Lemma 8 with n 

replaced by n + 1 and h = 1, k = 2 yields Z(n, n - 1; n - 2) > p(n + 1). 

This completes the proof of the proposition. W 

PROPOSITION 12. If n # 3,6,7, then 

Z(n, n; n - 2) > max{ p(n), p(n f I), p(n + 2)1. 

Proof. Clearly, Z( n, n; n - 2) 3 maxi p(n), p(n - 11, p(n - 2)) by (7). 
For n > 3, consider a normed bilinear map of Rp(“+‘) X [Wn+' -+ R"+2. 
If n # 6,14, then (n + 2) - 2p( n + 2) > 2 by Lemma 6(v). In these 
cases, we can choose 2dimensional subspaces U and V of IQ”+’ satisfying 
f(r, U) I V for every x E R p(n+2) Indeed, the same thing can also be done . 
for n = 14: for the normed bilinear map IQ9 X [wi6 + [w16 in Example 7, we 
simply choose U = span(e,, e,> and V = span(e,,, eiz>. It follows from 
Lemma 8, with n replaced by n + 2 and h = k = 2, that Z(n, n; n - 2) 2 
P(n + 2) for n 2 3, n # 6. 

Finally, for n # 3,7 it follows from Proposition 11 that 

Z(n, n; n - 2) > Z( n,n - l;n - 2) 2 p(n + 1). 

This completes the proof of the proposition. 

PROPOSITION 13. 

(i> 1(3,3; 1) > Z(3,2; 1) a 3. 
(ii) Z(7, 7; 5) > Z(7,6; 5) 2 6. 

(iii) Z(6,6; 4) > 6. 
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Proof. (i) is trivial. 
Consider the normed bilinear map [w6 X Rs + R” tabulated by the first 

6 rows and the first 8 columns of Table 1. Denote by U the 2-dimensional 
subspace spanned by e, and e2. 

(ii): Let V be the l-dimensional subspace spanned by e7. Applying 
Lemma 8 with n = 8, h = 2, k = 1, we obtain E(7,6; 5) 2 6. Consequently, 
E(7, 7; 5) > 6 also. 

(iii): Let V be the 2dimensional subspace spanned by e7 and es instead. 
Applying Lemma 8 with n = 8, h = k = 2, we obtain Z(6,6; 4) > 6. W 

4. VECTOR BUNDLES 

Let V be a linear subspace of M(m, n; k) U {O], of dimension T. 
J. Sylvester [12] h as shown how V gives rise to a map between vector bundles 
over the real projective space [w P r- ‘. Denote by tr;- i the Hopf line bundle 
over [WI’-i, and by E the trivial line bundle. A basis A,, . . . , A, of 
V furnishes a bundle map f : m&i -+ n& as follows. For each x = 

(Xi,. . . , x,) E Srpl, let fX : R” -+ R” be the linear map with matrix 

A(x) = xlAl + ... +x,A, (8) 

relative to the canonical bases e,, . . , e, of [w” and l 1, . . . , E,, of LQ”. 
Identifying ml with &_ i @ Cm&), we define f : mtr- 1 + nc by 

Since the restriction of f to each fiber of m&_ 1 is a linear map of rank 
k, Im f is a k-plane bundle of ne. It follows that there is a complementary 
(n - k )-plane bundle 77 such that 

Im f @ vnek = ns. (10) 

On the other hand, 5 = Kerf is an (m - k)-plane bundle satisfying 

(11) 
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Consequently, 

m(r_1 CB 7f-k = 5n-k CB n&, (12) 

and m&, CB qnek is stably equivalent to 5. By considering the total 
Stiefel-Whitney classes of the bundles in (10) and (111, Meshulam 191 has 
established 

PROPOSITION 14. Z(n, n; k) < nfor every k =G n. 

We shall determine better upper bounds for l(n, n; k), n - k < 2, using 
topological K-theory. Adams has calculated the KO-theory of IfB P r- ‘, which 
we now summarize. For each integer m, let 6(m) be the Adams function 

defined by 

4(m) = Card(j : 1 <j < m, j = 0, 1,2,4 (mod 8)). (13) 

THEOREM 15 (Adams [l]). KO([W P’- ‘1 = Z @ %Q P’- i), where 

E(rW P r- ‘) is the cyclic group of order 2 4(r- I) with generator x = 5,_ 1 - 
1. The multiplicative structure of KO([W P’- ‘> is given by (,“_ i = I, or 

equivalently, x ’ = -2x in E5(RP’-‘). 

A basic relationship between the Adams function and the Hurwitz-Radon 
function defined in (4) is given by 

P(2 dJ(r- 1) 1 a r for every r>, 1. (14) 

Writing the stable equivalence class of 77 in (10) as ax E E(R P’- ‘> and 
that of t in (11) as bx, we have from (12) 

(15) 

It follows that u,(m + a - b) > $(r - 1). By Lemma 6 and (14), 

,,(” + a - b) = p(2”2(m+a-h)) >, p(2’+“-9 > r. 
(16) 

It is well known that every line bundle over [w P’- ’ is equivalent to &_ i 
or E. On the other hand, Levine [8] has shown that every 2-plane bundle over 
R P rp i necessarily splits into a direct sum of line bundles. Consequently, for 
k = 1,2, the stable equivalence class of a k-plane bundle over [w Prel, r > 2, 

is of the form ax E E(rW P'- I) for some integer a satisfying 0 < a < k. 
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PROPOSITION 16. 

(i) Z(n, n; n - 1) < max{ p(n), p(n f l)} fir n 2 2. 
(ii) Z(n, n - 1; 12 - 2) < max{ p(n), p(n + 11, p(n - 2)} for n > 3. 

(iii) Z(n, n; n - 2) < max{ p(n), p(n * 11, p(n + 2)) for n > 3. 

Proof. (i): Let T = Z(n, n; n - 1) for n 2 2. Clearly, r > 2 by 
Propositions 9 and 10. In (161, we take m = n. Since 77 and 5 are line 
bundles in (10) and (111, the integers a and b in (16) are 0,l. It follows that 
one of ~(n - 1) > r, p(n) > r, and p(n + 1) > r is true. This proves (i). 

For (ii), with m = n in (16), 71 in (10) is a 2-plane bundle and C in (11) is 
a line bundle. It follows that a = 0, 1,2, and b = 0,l. From (16), one of 

p(n - 2) > r, p( n - 1) > T, p(n) > T, and p( n + 1) > T is true. 
The proof of (iii) is th e same except that a and b are in the range 

0 < a, b < 2. n 

5. PROOF OF THEOREMS 2,3,4 

Theorem 2 follows from Propositions 9, 16(i) for n # 3,7, and from 
Propositions 10, 14 for n = 3,7. 

Theorem 3 follows from Propositions 11, 16(ii) for n # 3,7, and from 
Propositions 13(i) and 14 for n = 3. It remains to consider Z(7,6; 5). 

Theorem 4 follows from Propositions 12, 16(iii) for n # 3,6,7, and from 
Propositions 13(i), (“‘1 m and 14 for n = 3,6. It remains to consider Z(7, 7; 5). 

Since Z(7,7; 5) > Z(7,6; 5) > 6 by Proposition 13(ii), we complete the 
proof of Theorems 3 and 4 by showing that there is no 7dimensional linear 
subspace of M(7,7; 5) U (0). Th e existence of such a linear subspace would 
give, by (ll), a splitting 

75, = 32 @ x5. (17) 

Since the Stiefel-Whitney class ws(7&) # 0, the bundle 7& has exactly one 
section. It follows that &” = & @ E or 2 &, and its stable equivalence class is 

bx E K(RP6), b = 1 or 2. Since 71 in (10) is also a 2-plane bundle, its 

stable equivalence class is M E E(rWP6), a = 0, 1 or 2. Note that z(rWP6> 
is cyclic of order 8. From (15) with m = 7, we see that a = 2 and b = 
1. This means that 5 ’ = - 5, @ E and the stable equivalence class of x5 in 

(17) is 6x E KO(IW P6). Consequently, the geometric dimension of 6x is at 
most 5: 

This is a contradiction, since the top Stiefel-Whitney class ~~(65~) # 0. The 
proof of Theorems 3 and 4 is now complete. 
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6. REMARKS 

(1) Let Zc(m, n; k) denote the analogue of Z(m, n; k) for matrices with 
complex entries. L. Smith [ll] h as solved the nonsingular complex bilinear 
map problem, namely, l&m, n; m> = n - m + 1 for m < n. More gener- 
ally, Westwick [13, 141 has shown that Z,(m, n, k) = n - k + 1 whenever 

n - k + 1 does not divide (m - l)!/(k - l)!, and completely determined 
Z&m, n; m - 1) for m < n. 

(2) The nonsingular real bilinear map problem has been extensively 
studied in the works of J. Adem [2, 31, K. Y. Lam [5, 61 and J. Milgram [lo]. 

The authors wish to express their thanks to the referee for valuable 

suggestions leading to improvement of this paper. 
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