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Abstract

We explain how recent developments in game semantics can be applied to reasoning about
equivalence of terms in a non-trivial fragment of Idealized ALGOL (IA) by expressing sets
of complete plays as regular languages. Being derived directly from the fully abstract game
semantics for IA, our model inherits its good theoretical properties; in fact, for second-order
IA taken as a stand-alone language the regular language model is fully abstract. The method
is algorithmic and formal, which makes it suitable for automation. We show how reasoning
is carried out using a meta-language of extended regular expressions, a language for which
equivalence is decidable.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Reynolds’s Idealized ALGOL (IA) is a compact language which combines the funda-
mental features of imperative languages with a full higher-order procedure mechanism.
This combination makes the language very expressive. For example, simple forms of
classes and objects may be encoded in IA [28]. For these reasons, IA has attracted a
great deal of attention from theoreticians; some 20 papers spanning almost 20 years of
research were recently collected in book form [22].
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A common theme in the literature on semantics of IA, beginning with [16], is the use
of putative program equivalences to test suitability of semantic models. These example
equivalences are intended to capture intuitively valid principles such as the privacy
of local variables, irreversibility of state changes and representation independence. A
good model should support these intuitions.
Over the years, a variety of models have been proposed, each of which went some

way towards formalizing programming intuition: functor categories gave an account
of variable allocation and deallocation [24], relational parametricity was employed to
capture representation-independence properties [21], and linear logic to explain irre-
versibility [20]. Recently, many of these ideas have been successfully incorporated in
an operationally based account of IA by Pitts [26].
A frustrating situation was created with the development of a fully abstract game

semantics for IA [1]. The full abstraction result means that the model validates all (and
only) correct equivalences between terms, but unfortunately the model as originally
presented is complicated, and calculating and reasoning within the model is diEcult.
In this article, we show how by restricting attention to the second-order subset of IA,

the games model can be simpliFed dramatically: terms now denote regular languages,
and a relatively straightforward notation can be used to describe and calculate with the
simpliFed semantics. The fragment of IA which we consider contains almost all the
example equivalences from the literature, and we are able to validate them in a largely
calculational, algebraic style. We also obtain a decidability result for equivalence of
programs in this fragment.
The approach of game semantics, and therefore of this paper, has little in common

with the traditional semantics of IA. Intuitively, it comes closest to Reddy’s “object
semantics” [27] and Brookes’s trace semantics for shared-variable concurrent ALGOL [3].
Although the language has assignment, a semantic notion of store is not used; although
the language has procedures, a semantic notion of function is not used. Instead, we are
primarily concerned with behaviour, with all the possible actions that can be associated
with every language entity. Meanings of phrases are then constructed combinatorially
according to the semantic rules of the language.
We believe our new presentation of game semantics is elementary enough to be

considered a potential “popular semantics” [32]; it should at least provide a point of
entry to game semantics for those who have previously found the subject opaque.
Moreover, the property of full abstraction together with the fact that reasoning can
be carried out in a decidable formal language suggest that our approach constitutes a
good foundation on which an automatic program checker for IA and related languages
can be constructed (see also [5,7]). The idea of using game semantics to support
automated program analysis has already been independently explored in a more general
framework by Hankin and Malacaria [9,10]. They used such models to derive static
analysis algorithms which can be described without reference to games.
In the following section, we will describe the fragment of IA we are addressing.

After that, we provide a very gentle and informal introduction to the games model
of IA. Section 4 presents the regular language model for the language fragment. In
Section 5, we illustrate our model with several important putative equivalences. In the
subsequent section, we prove that this model of let-free IA is a correct representa-
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tion of the games model, then in Section 7, we address the issue of adding function
deFnitions.

2. The programming language fragment

The principles of the programming language IA were laid down by John Reynolds
in an inKuential paper [29]. IA is a language that combines imperative features with a
procedure mechanism based on a typed call-by-name lambda calculus; local variables
obey a stack discipline, having a lifetime dictated by syntactic scope; expressions,
including procedures returning a value, cannot have side eLects, i.e. they cannot assign
to non-local variables. We conform to these principles, except for the last one. This
Kavour of IA is known as IA with active expressions and has been analysed extensively
[34,1,20]. We consider only the recursion-free second-order fragment of this language,
the fragment which has been used to give virtually all the signiFcant equivalences
mentioned in the literature. In addition, we will only deal with Fnite data sets.
The data types � of the language (i.e. types of data assignable to variables) are a

Fnite subset of the integers and the booleans. The phrase types of the language are
those of commands, variables and expressions, plus Frst-order function types.

� ::= int | bool;
� ::= comm | var � | exp �;
� ::= � | � → �:

Terms are introduced using type judgements of the form:

� � M : �; � = {x1 : �1; : : : ; xk : �k};
where the xj are drawn from a countable set of identi;ers.
We will be concerned with proving equivalences of the form

� � M ≡� M ′:

The terms of the language and their typing rules are presented in Fig. 1.
The data types of the language, i.e. the types of values assignable to variables, are

bounded integers (int) and booleans (bool). The phrase types, i.e. the types of terms,
are commands (comm), boolean and integer variables (varint, varbool) and expressions
(expint, expbool), as well as Frst-order functions. The usual operators of arithmetic
and logic are employed (− ∗ −).
The imperative constructs are the common ones: assignment (:=), command se-

quencing (;), iteration (while) and branching (if). Other common branching (case) and
iterative constructs (for, do-until) are not included because they can be easily expressed
in terms of the existing ones. They do not contribute semantically, being only what is
called syntactic sugar. Branching is imposed uniformly on types, so we have branching
for expressions (similar to the ?-:- operator in C), variable and function-typed terms.
The behaviour of variables in imperative languages is dual, depending on whether
they occur on the left-hand side (l-values) or right-hand side (r-values) of assignment
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� � skip : comm � � diverge� : �

� � b : expbool
b∈{true; false}

� � n : expint
n∈Z

�; 
 : �� 
 : �
� �V : var �
� � !V : exp �

� �E1 : exp � � �E2 : exp �
� �E1 ∗ E2 : exp �′

�; 
 : var ��C : comm
� � new �
 inC : comm

� �V : var � � �E : exp �
� �V := E : comm

� �C : comm � �M : �
� �C;M : �

� �B : bool � �M1 : � � �M2 : �
� � if B M1 else M2 : �

� �B : expbool � �C : comm
� �while B do C : comm

�; 
 : � �P : �
� � �
:�:P : �→ �

� �P : � �; 
 : ��P′ : �′

� � let 
 be P in P′ in : �′

� �F : �→ � � �M : �
� �FM : �

Fig. 1. Terms and typing rules of IA.

statements. The proper behaviour is usually automatically resolved by compilers using
type-coercion rules, from variable types to expression types, when a variable is used
on the right-hand side. For clarity of presentation we will not introduce such coercion
rules, but we will use instead an explicit de-referencing operator (!) in the language.
The main diLerence between the IA variant presented here and Reynolds’s is that
commands can be sequenced not only with commands but also with expressions or
variables. The result is what is called an active expression (or variable). The informal
semantics of an active expression is that it calculates a value while possibly writing
to non-local variables. This is a common feature of most imperative languages. One
special command of the language is diverge. It causes a program to enter an unre-
sponsive state similar to that caused by an inFnite loop. The command that performs
no operation, similar to the empty command in C or PASCAL, is skip. For function
declarations we use Frst-order lambda abstraction and a let constructor.
We call this self-contained programming language second-order IA.

2.1. Operational semantics of second-order IA

Our language has a standard operational semantics, given in terms of stores, func-
tions from locations of type � to values of type �. The operational semantics is then
an inductively deFned relation of the form s;M ⇓� s′; M ′, where M and M ′ are terms
of type � and s; s′ are stores. We omit the deFnition here (see [1,26] for the details).
The notion of equivalence between terms is deFned in the standard way. Given two

terms � �M; M ′:� we say that they are observationally equivalent, written � �M≡� M ′
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if and only if for any context C[−] such that �C[M ]; C[M ′] : comm, for all states s
there exists state s′ such that s; C[M ]⇓� s′; skip iL there exists s′′ such that
s; C[M ′]⇓� s′′; skip.
We should remark that in the above deFnition, it makes no diLerence whether we

consider contexts drawn from the second-order subset of IA on which we are focusing,
or allow contexts to range over the full IA language. This is a consequence of Pitts’s
Operational Extensionality Theorem for IA [26], and can be demonstrated as follows.

Proposition 1 (Context restriction). For all terms of second-order IA such that � �P1

�≡� P2, there is a context C[−] such that �C[P1] �≡comm C[P2] with �C[Pi] : comm
closed terms of second-order IA.

Proof (Outline). We denote extensional equivalence of IA terms [7, DeFnition 2.4]
by ∼=.
From the Operational Extensionality Theorem, � �P1 �≡� P2 iL � �P1 �∼=� P2, which,

using extensional equivalence of open terms is the case if and only if

W � P1[x1; x2; : : : ; xn=P′
1; P

′
2; : : : ; P

′
n] �∼=� P2[x1; x2; : : : ; xn=P′

1; P
′
2; : : : ; P

′
n]

for some set of global variables W = {v1; : : : ; vk} and terms P′
i of IA with global

variables in W .
From the operational semantics of let, this means that discriminating contexts can

be chosen to have the form:

new v1 in · · · new vk in let x1 be P′
1 in · · · let xn be P′

n in [−]:

Observation. Pitts’s Operational Extensionality Theorem applies to IA without side
eLects in expressions, but in [13, Section 2.2] the Frst author shows that active IA
also has this property.

3. An informal introduction to the game semantics of IA

In game semantics, a computation is represented as an interaction between two
protagonists: Player (P) represents the program, and Opponent (O) represents the
environment or context in which the program runs. For example, for a program of the
form f : expint→ comm�M : comm, Player will represent the program M ; Opponent
represents the context, in this case the non-local procedure f. This procedure, if called
by M , may in turn call an argument, in which case O will ask P to provide this
information.
The interaction between O and P consists of a sequence of moves, alternating be-

tween players. In the game for the type comm, for example, there is an initial move
run to initiate a command, and a single response done to signal termination. Thus a
simple interaction corresponding to the command skip is
O: run (start executing)
P: done (immediately terminate).
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O: run (start executing)
P: run〈f〉 (execute f)
O: q〈1f〉 (what is the Frst argument to f?)
P: 0〈1f〉 (the argument is 0)
O: done〈f〉 (f terminates)
P: done (whole command terminates).

Fig. 2. Typical play for term f : expint→ comm�f(0) : comm.

In more interesting games, such as the one used to interpret programs like f : expint
→ comm�f(0) : comm, there are more moves. Corresponding to the result type comm,
there are the moves run and done. The program needs to run the procedure f, so there
are also moves run〈f〉 and done〈f〉 to represent that; here the run〈f〉 move is a move
for P, and done〈f〉 is a move for O. Finally, the procedure f may need to evaluate
its argument. For this purpose, O has a move q〈1f〉, meaning “what is the value of the
Frst argument to f?”, to which P may respond with an integer n, tagged as n〈1f〉 for
the sake of identiFcation.
In Fig. 2, we show a sample interaction in the interpretation of the above term. In

this interaction, at the third move, O was not compelled to ask for the argument to f: if
O represented a non-strict procedure, the move done〈f〉 would be played immediately.
Similarly, at the Ffth move, O could repeat the question q〈1f〉 to represent a procedure
which calls its argument more than once.

3.1. Strategies

Using the above ideas, each possible execution of a program is represented as a
sequence of moves in the appropriate game. A program can therefore be represented
as a strategy for P, i.e., a predetermined way of responding to the moves O makes.
A strategy can also choose to make no response in a particular situation, representing
divergence, so, for example, there are two strategies for the game corresponding to
comm: the strategy for skip responds to run with done, and the strategy for diverge
fails to respond to run at all.
Strategies are usually represented as sets of sequences of moves, so that a strategy

is identiFed with the collection of possible traces that can arise if P plays according
to that strategy. The fact that O can repeat questions, as we remarked above, means
that these sets are very often inFnite, even for simple programs. The strategy for the
program f(0), for example, is capable of supplying the argument 0 to f as often as
O asks for it.
A property of strategies necessary for deFning function application is composition-

ality. For example, consider a typical play of the addition operator, (Fig. 3) written in
tabular format to indicate to what type occurrence every move belongs, together with
the strategy for the constant pair (3; 5).
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(3,5): expint× expint + : expint×expint → expint
q

q q
3 m

q q
5 n

m+ n

+(3,5) : expint × expint +→ expint
O: q
P: q
O: 3
P: q
O: 5
P: 8

Fig. 3. Typical plays for the addition operator.

The addition operation 3 + 5 is the application +(3; 5), and it is interpreted by
composing the two strategies. The composition of strategies is deFned by two stages:
parallel composition followed by hiding. The parallel composition is the matching of
the moves in the type of the arguments, expint× expint.
Hiding is the elimination of all the moves from the type of the arguments, resulting

in

3 + 5 = 8 : expint
O : q
P : 8

A certain special class of strategies plays an important role in modelling identity,
abstraction, free identiFers and universal quantiFers. They are called copy-cat strategies,
and are simply ways of copying information back and forth between the games. The
typical play for the copy-cat strategy on expint is, for example,

3.2. Interpretation of variables

The type var � is represented as a game in the following way. For each element v of
� there is an initial move write(v), representing an assignment. There is one possible
response to this move, ok, which signals successful completion of the assignment.



476 D.R. Ghica, G. McCusker / Theoretical Computer Science 309 (2003) 469–502

O: run
P: read〈v〉 (get the value from v)
O: 3〈v〉 (O supplies the value 3)
P: write(4)〈v〉 (write 4 into v)
O: ok〈v〉 (the assignment is complete)
P: done (the whole command is complete)

Fig. 4. Typical interaction for v : varint� v := !v + 1.

For dereferencing, there is an initial move read, to which P may respond with any
element of �.
In Fig. 4, we show an interaction in the strategy for v : varint� v :=!v+ 1.
In general, in these interactions, O is not constrained to exhibit the expected causal

dependency between reads and writes. For example, in the game for terms of the form
c : comm; v : varint�M : comm, we may Fnd interactions such as

run · write(4)〈v〉 · ok〈v〉 · read〈v〉 · 3〈v〉 · run〈c〉 · done〈c〉 · read〈v〉 · 7〈v〉 · · · :

This play has two notable features:
• O has not played a good variable (in the sense of [30, Section 3.3.4]) in v, the

value read immediately after a write being diLerent than the written value. This can
happen, for example, if the variable v stands for “bad variable” phrases.

• Two consecutive reads yielded diLerent values, although no explicit writes to v
intervened. This can happen if command c stands for a phrase that interferes with
v, such as v := 7.

There is one situation in which neither of the above can happen: when the variable v is
made local. This has two eLects. The local interaction with v is guaranteed to exhibit
good variable behaviour, and non-local entities cannot interfere with it. We shall call
a variable which is both good and not interfered with (other than explicitly) a stable
variable.
Also, the interaction with v is not an observable part of the program’s behaviour.

Therefore, the games interpretation of new � v in M is given by taking the set of
sequences interpreting M , considering only those in which O plays a good variable in
v, then deleting all the moves pertaining to v, to hide it from the outside context.

3.3. Full abstraction

In [1], it was shown that games give rise to a fully abstract model of IA, in the
following sense. Say that an interaction is complete if and only if it begins with an
initial move and ends with a move which answers that initial move. Thus, for example,
run ·run〈
〉 is not complete but run ·run〈
〉 ·done〈
〉 ·done is. Then we have the following
theorem:
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Theorem 2 (Full abstraction for IA). For any � �P;Q : �, programs P and Q are
contextually equivalent in IA (P≡Q) if and only if the sets of complete plays in
the strategies interpreting P and Q are equal.

In the above account, a very simple notion of game has been used. In fact, game
models require a great deal more machinery, including the notions of justi;cation
pointer and determinism, in order for full abstraction to be achieved. The key obser-
vation which makes the present paper possible is that, for the interpretation of IA up
to second-order types, this extra machinery is redundant. For a detailed account of the
games model used here see [1,2,15].

4. Regular-language semantics

If we restrict IA to its recursion-free Fnitary second-order fragment, then much of
the games apparatus becomes unnecessary. The justiFcation pointers for all sets of
complete plays of strategies are uniquely determined by the plays themselves, so need
not be explicitly represented. Moreover, these sets are regular and can be described by
a meta-language of extended regular expressions.

4.1. Lexical, alphabet and language operations

Several lexical operations are Frst needed. They involve tagging a symbol or chang-
ing the tagging of a symbol, resulting in a new symbol:

De#nition 3 (Lexical operations).
Tag: Given two symbols '0; '∈A, '〈'〉0 is a new symbol obtained by tagging the
former with the latter.
We deFne the alphabet A〈'〉 = {'〈'〉0 | '0 ∈A}. Conversely, we deFne the alpha-

bet of all strings not tagged by a symbol A R' = {'′ ∈A | there is no '0 such that
'′ = '〈'〉0 }.

Increment: The lexical operation − ↑ is deFned as follows:

' ↑=
{

'〈n+1〉
0 if ' = '〈n〉0 ; n ∈ N;

' otherwise:

We deFne the alphabet A ↑ = {' ↑ | '∈A}.
Decrement: The lexical operation − ↓ is deFned as follows:

' ↓=
{

'〈n−1〉
0 if ' = '〈n〉0 ; n ∈ N; n ¿ 0;

' otherwise:

We deFne the alphabet A ↓ = {' ↓ | '∈A}.

If a symbol is tagged more than once we will write the tags as follows:

('〈'1〉0 )〈'2〉 = '〈'1'2〉0 :
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De#nition 4 (Extended regular expressions). The sets RA of extended regular expres-
sions over Fnite alphabets A are deFned inductively as the smallest sets for which:
Constants: ∅; )∈RA; if '∈A then '∈RA.
Concatenation: If R; R′ ∈RA then R · R′ ∈RA.
Iteration: If R∈RA, then R∗ ∈RA.
Set operators: If R; R′ ∈RA then R+ R′; R∩R′ ∈RA.
Restriction: If R∈RA; A′ ⊆A then R �A′ ∈RA′ .
Substitution: If R; R′ ∈RA; !∈A∗ then R[!=R′]∈RA.
Tagging: If R∈RA; '∈A then R〈'〉 ∈RA〈'〉 .
Increment=decrement: If R∈RA, then R ↑ ∈RA↑, R ↓ ∈RA↓.
Shuffle: If R; R′ ∈RA then R ./R′ ∈RA.

If A is a Fnite alphabet, so are A〈'〉; A ↑; A ↓.
Constant ∅ denotes the empty language; constant ) denotes the empty string. The

constant ' is the language of the singleton sequence. Restriction is removing from all
sequences in the language of a regular expression all symbols not in A′.
The language of substitution R[!=R′] is the language of R where all occurrences of

substring ! have been replaced by the strings of R′. If a Fnite number of substitutions
must be performed simultaneously, we can write either R[!1=R′

1] · · · [!n=R′
n] or R[.]

where . is the Fnite function (!1 �→R′
1; : : : ; !n �→R′

n).
The tagging of a language is the tagging of all symbols in its strings (similarly

increment, decrement). The shuSe of two regular languages is deFned as

De#nition 5 (ShuSe). L1 ./L2 =
⋃

!1∈L1 ; !2∈L2
!1 ./!2, where −./− is deFned on

strings as !./ )= ) ./!=! and '1 ·!1 ./ '2 ·!2 = '1 ·(!1 ./ '2 ·!2)+'2 ·('1 ·!1 ./!2).

Proposition 6. Every extended regular expression R∈RA denotes a regular language
over A.

Proof. In addition to the normal regular expression operators (·; ∗;+), we have:
Set operators: Regular languages are closed under these set operations.
Restriction: From a Fnite-state automaton accepting R we can obtain the Fnite-state
automaton accepting R �A′ by replacing all transitions on inputs ' �∈A′ with )-
transitions.

Substitution: The language of R[!=R′] is, by deFnition, the image of a regular-language
homomorphism. It is known that regular languages are closed under homomorphisms.

Tagging; increment; decrement: Same reason as for substitution.
Shu'e: The shuSe operation has been studied quite extensively, [13] is a starting
point in the literature. ShuSe is known to preserve regularity.

We also need the notion of the eAective alphabet of a regular expression, which is
the set of all symbols appearing in the language denoted by that regular expression.
The eLective alphabet only depends on R.

De#nition 7 (ELective alphabet). For any R∈RA0 , the eLective alphabet of R is
�R�= {'∈A0 |! � ' �= ) for some !∈R}.
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A regular expression is broadened by shuSing with all strings not in its eLective
alphabet.

De#nition 8 (Broadening). R̃=R ./ (A\�R�)∗.
The operation of broadening is relative to an alphabet A, which must be appro-

priately speciFed in the context. Broadening will be used in modelling local variable
declarations.

4.2. Interpretation of types

An alphabet A<−= is associated with every data type � and ground type �; Frst-order
types also have associated alphabets. The alphabets of types contain symbols q∈Q<�=
called questions, and every question q has a set of answers, a∈Aq<�=.

De#nition 9 (Type alphabets).

A<int= = Z = {−Zmax; : : : ;−1; 0; 1; : : : ; Zmax} ⊂ Z;
A<bool= = {tt; A };
Q<exp �= = {q}; Aq<exp �= = A<�=;
Q<var �= = {read} ∪ {write(') | ' ∈ A<�=};

Aread <var �= = A<�=; Awrite(') = {ok};
Q<comm= = {run}; Arun<comm= = {done};
Q<�1 → · · · → �k → �= =

∑
16i6k

Q<�i=〈i〉 ∪ Q<�=;

Aq〈i〉 <�1 → · · · → �k → �= = (Aq<�i=)〈i〉; q ∈ Q<�i=; 16 i 6 k;

Aq<�1 → · · · → �k → �= = Aq<�=; q ∈ Q<�=;
A<�= = Q<�= ∪ ⋃

q∈Q<�=
Aq<�=:

We use meta-variables ' to range over any symbols, q over symbols which are
questions and a over symbols which are answers.
Terms � �P : � are interpreted by an evaluation function <− = which maps them into

a regular language. This regular language is deFned over an alphabet induced by the
environment:

De#nition 10 (Environment alphabets).

A<x : �==A<�=〈x〉;
A<�==

∑
x : �∈�

A<x : �=;

A<� �P : �==A<�= ∪A<�=:
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Example 11. A<f : comm→ comm== {run〈f〉; done〈f〉; run〈1f〉; done〈1f〉}.
Every regular language that denotes the meaning of a term has a certain form,

given by its possible initial and Fnal moves. These moves indicate that a complete
computation has occurred and give the result of the computation. In formulating the
semantic deFnitions, it is useful to introduce the auxiliary notation ( − ) deFned below,
taking advantage of the fact that for any type the regular language interpreting the term
has a certain form. Exploiting this structure we can give more compact deFnitions.

De#nition 12 (Semantic decompositions).

<� �C : comm= = run · (� �C : comm ) · done;
<� �E : exp �= =

∑
'∈<�=

q · (� �E : exp � )' · ';

<� �V : var �= =
∑
'∈<�=

read · (� �V : var � )r' · '

+
∑
'∈<�=

write(') · (� �V : var � )w' · ok:

Intuitively, the language (C ) is the actual computation performed by C; (E )' is
only that particular computation of expression E which produces value ' as a result.
Variables contain two kinds of computations: (V )r', which happen when V reads value
', and (V )w' which happen when V writes value '. The full meaning of a term <P=
is then the union of all these possible traces (P ). If it does not cause confusion, we
may abbreviate the above notations to <M : �= or <M =, and similarly for ( − ).
The ( − ) notation can in turn be deFned in terms of the <− = notation. For example:

(� � C : comm ) = {w | run · w · done ∈ <� � C : comm=}:
The two notations are completely interchangeable, and we will use whichever is more
convenient in context.

4.3. Expressions and control structures

The regular-language interpretation of integer and boolean constants is

De#nition 13 (Constants).

( n )n = ); (n )n′ = ∅; n′ �= n;
( true )true = ); ( true )false = ∅;
( false )false = ); ( false )true = ∅:

DeFnition 13 uses the property that the <− = and ( − ) notations are equally expres-
sive, because each can be formulated in terms of the other. The interpretations of the
constants can also be expressed as

<n= = q · n; <true= = q · tt; <false= = q · A :

The deFnitions of IA arithmetic-logic operators are
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De#nition 14 (Operators).

(E1 ? E2 : exp �′ )' =
∑

'1 ;'2∈A<�=
'='1?'2

(E1 : exp � )'1 · (E2 : exp � )'2 ; ' ∈ <�′=:

Arithmetic operators over a Fnite set of integers can be interpreted in several ways.
The Frst possibility is to have all operators modulo some maximum value, like in
JAVA or C ++. The second possibility is to leave the operators undeFned if the value
produced is out of range. This identiFes the run-time error of numerical overKow with
divergence, which is an expedient approximation, coarse but not entirely unacceptable
(see for example, [3, Sections 2.7 and 5.1] for a discussion). A third possibility is to
use the special values of Infty; −Infty and NaN (not-a-number) to denote positive
respective negative overKow, or an indeterminate result. This approach is common
in Koating point operations (for example, ANSI/IEEE Standard 754-1985). All these
approaches to handling overKow are compatible with the regular-language semantics,
in that each can be modelled with appropriate changes to the semantic details.
Another semantic detail packaged in the deFnitions above is order of evaluation, left-

to-right. DeFning similar, but right-to-left, operators using this style of semantics can be
done in the obvious way. Also, for logical operators, we have similar choices regarding
lazy (short-circuit) or eager implementation of operators. Non-deterministic operators
are also relatively easy to introduce. However, operators with parallel evaluation require
substantial revisions of the semantic framework, which is unsurprising.
The imperative features are interpreted by

De#nition 15 (Commands).

( skip ) = );

(diverge ) = ∅;
(C;C′ ) = (C ) · (C′ );

(C;M )' = (C ) · (M )';

(while B do C ) = ((B )tt · (C ))∗ · (B )A ;

( if B then C else C′ ) = (B )tt · (C ) + (B )A · (C′ );

We can now consider a simple, standard example.

Example 16. � �while true do C ≡comm diverge.

Proof.

<while true do C== run · (( true )tt · (C ))∗ · ( true )A · done
= run · () · (C ))∗ · ∅ · done
= ∅ = <diverge=:
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The regular language semantics reveals some computational intuitions which are in-
teresting in their own right. For example, skip is interpreted by the bracketing moves for
commands enclosing the empty string. This suggests that it is a command which com-
pletes without having any eLects. The regular expression interpreting any arithmetic-
logic operator is decomposed into '-producing plays, where every such play is any
concatenation of plays producing '1 and '2 in the arguments, if and only if '1 ?'2 = '.
Composition of commands is simply concatenation of plays. Looping is interpreted as
an iteration of plays in the guard of the loop producing true concatenated with complete
plays in the body, followed by one single play in the guard, producing false. Remark-
ably, this is exactly the trace-based interpretation used to interpret iteration as early
as the 1970s (see for example Section 2.3.4 in [11]). It is also similar to Brookes’s
trace-based interpretation of parallel IA [3]. Non-termination diverge is interpreted as
the empty set of complete, i.e. terminating, plays.

4.4. Free identi;ers and functions

Free identiFers, of ground and function type, are given a concrete interpretation;
i.e., they are represented by a regular language, just like a closed term. This “Katten-
ing” of the semantics, so that no higher-order entities such as functions or quan-
tiFers are needed in the model, is arguably the most remarkable feature of game
semantics.
In order to interpret free identiFers, we use regular languages which represent the

ubiquitous copy-cat strategies.

De#nition 17 (Copy-cat). The copy-cat regular languages K'
� where ' is an arbitrary

symbol, are deFned as

K'
�1→···→�k

=
∑

q∈Q<�k =

∑
a∈Aq<�k =

q · q〈'〉 ·
( ∑

16j¡k
(L';j

�j
)

)∗
· a〈'〉 · a;

where L
'; j
� =

∑
q∈Q<�=

∑
a∈Aq<�= q〈 j'〉 · q〈 j〉 · a〈 j〉 · a〈 j'〉.

The languages L
'; j
� are traces representing a function using an argument; the lan-

guages K'
�1→···→�k

represent all the possible ways in which a function can use its
arguments.
Then, the deFnition of free identiFers is

De#nition 18 (IdentiFers). <�; x : �� x : �==Kx
�.

Example 19.

<f : comm → comm � f : comm → comm=
= run · run〈f〉 · (run〈1f〉 · run〈1〉 · done〈1〉 · done〈1f〉)∗ · done〈f〉 · done
= Kf

comm→comm:
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Conceptually, the moves tagged with f represent the eLects of calling then returning
from the function; moves tagged by 1f are the eLects caused by f whenever it eval-
uates its Frst, and in this example its only, argument. The argument may be evaluated
an arbitrary number of times, sequentially (no interleaving), hence the Kleene closure.
The moves with only numerical tags correspond to the formal parameters.

Example 20.

<f : comm → comm → comm � f : comm → comm → comm=
= Kf

comm→comm→comm

= run · run〈f〉 · (run〈1f〉 · run〈1〉 · done〈1〉 · done〈1f〉
+ run〈2f〉 · run〈2〉 · done〈2〉 · done〈2f〉)∗ · done〈f〉 · done:

The example above illustrates why the games model gives an intuitively appealing
account of sequentiality, because it makes obvious the property that function f can
only evaluate one of its arguments after it has completed the evaluation of the other
argument.
Abstraction is interpreted as a re-tagging of symbols in the language. Conceptually,

this corresponds to the “moving” of the identiFer from the environment to the term.
This rule is another instance of the remarkable “Katness” and concreteness of the game
semantics.

De#nition 21 (Abstraction).

<� � �m: �:P : � → �= = (<�;m : � � P : �= ↑)[.];

where .('〈m〉)= '〈1〉.

The moves associated with m become “anonymous”, and are tagged with a number.
In order to keep the tags unique, all other symbols are incremented.
Application is modelled by trace-level substitution:

De#nition 22 (Application).

<PM : �= = (<P : � → �=[.]) ↓;

where .(q〈1〉 · a〈1〉)= {w | q · w · a∈ <M : �=}, for any q∈Q<�=; a∈AQ<�=.

The moves corresponding to the outermost identiFer bound by lambda are tagged
with 1, so upon application the pairs of symbols corresponding to the formal parameter
are substituted by the concrete traces of the argument. The rest of the indices are
decremented. This mechanism is quite similar to the representation of lambda calculus
using de Bruijn indices [4].
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Example 23.

<(�x: expint:x + 1)7=
= (<�x: expint:x + 1=[.]) ↓
= (((<x : expint � x + 1=) ↑ [.′])[.]) ↓

=

((( ∑
n;n′∈Z

q · ( x : expint� x ) · ( 1 )n′ · (n+ n′)

)
↑ [.′]

)
[.]

)
↓

=
(((∑

n∈Z

q · q〈x〉 · n〈x〉 · (n+ 1)
)

↑ [.′]
)
[.]
)

↓

=
(((∑

n∈Z

q · q〈x〉 · n〈x〉 · (n+ 1)
)
[.′]
)
[.]
)

↓

=
((∑

n∈Z

q · q〈1〉 · n〈1〉 · (n+ 1)
)
[.]
)

↓

=
((∑

n∈Z

q · q〈1〉 · n〈1〉 · (n+ 1)
)
[.]
)

↓
= (q · 8) ↓
= q · 8;

where .′(q〈x〉 · n〈x〉)= q〈1〉 · n〈1〉 and .(q〈1〉 · n〈1〉)=
{

) if n = 7
∅ if n �= 7:

4.5. Store

Reading and writing to a variable is achieved by dereferencing and assignment,
respectively.

De#nition 24 (Variable manipulation).

(� �!V : exp � )' = (� � V : var � )r'; ' ∈ A<�=
(� � V := E : comm ) =

∑
'∈A<�=

(� � E : exp � )' · (� � V : var � )w':

Note that the semantics above imposes no causal correlation between the reads and
writes of variables. For example, the expression with side-eLects v := 1; !v has the
interpretation:

<v : varint � v := 1; !v= =
∑
n∈Z

q · write(1)〈v〉 · ok〈v〉 · read〈v〉 · n〈v〉 · n:

In other words, upon writing 1 to the variable it is still possible to get any value when
reading the variable. Why is this possible? The reason is that the identiFer v may be
bound by function application to any variable-typed term, for example, (�v: varint:v :=
1; !v)(if !x=1 then x := 7; x else x := 0; x). Even worse than in the case of side-eLect



D.R. Ghica, G. McCusker / Theoretical Computer Science 309 (2003) 469–502 485

free IA, variables are not even guaranteed to return the same value upon consecutive
readings. The reason is the same, the variable identiFer may be bound to a phrase that
has side-eLects which may include changing the variable itself.
Only variables that are known to be locally declared in the evaluation context are

guaranteed to be “well-behaved” in the sense that there is an expected causal connection
between the values that are read and the values that are written. This property is
captured by the following regular language:

De#nition 25 (Variable stability).

2vvar � = (read〈v〉 · '〈v〉� )∗ ·
( ∑

'∈A<�=
write(')〈v〉 · ok〈v〉 · (read〈v〉 · '〈v〉)∗

)∗
;

where 'int =0; 'bool = false.

Initially, the value read from the variable v is the default value '�. Any legal sequence
consists of a write followed by an arbitrary number of reads, all yielding the value
that was written. In the terminology used by Reynolds, a stable variable is a variable
which is good and not interfered with.
The semantics of the local-variable block consists of two operations: imposing the

stable-variable behaviour and then removing all occurrences of actions of that variable
as it becomes invisible outside its binding scope:

De#nition 26 (Block variable).

<� � new � v in M : �= = (<�; v : var � � M : �= ∩ 2̃vvar �) �A
Rv;

where A=A<�; v : var ��M : �=.

The actions not tagged by v are not constrained. All other actions are not constrained
by stability, and they depend on the context. They are introduced at the point of the
deFnition of the variable in a block using the broadening operation (DeFnition 8).
Scope is modeled by restriction, which hides away all interactions of v (DeFnition 4).
The following section contains numerous examples showing this deFnition at work.
Terms of the language fragment interpreted in this section are observationally equiv-

alent if and only if their regular language interpretations are equal.

Theorem 27 (Full abstraction). For any two terms of the second-order fragment of
IA, � �M ≡� N iA <� �M == <� �N =.

The proof is given in Section 6. Using Theorem 27 we can prove numerous inter-
esting example equivalences.
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5. Examples of equational reasoning

We have presented so far a substantial part of the semantics of second-order IA.
The part that is missing, introduced later in Section 7, is function deFnition. Although
the language fragment presented so far is not complete, it contains all the deFnitions
necessary to prove many interesting example equivalences.

5.1. Locality

c : comm � newint v in c ≡comm c:

This deceptively simple equivalence ([16, Example 1]) is not validated by the traditional
models of imperative computation relying on a global store model, traceable back to
Scott and Strachey [33]. It reKects the fact that a non-locally deFned procedure cannot
modify a local variable. It was Frst proved in the “possible worlds” model of Reynolds
and Oles, constructed using functor categories [24].

Proof.

<c : comm � newint v in c : comm=
= (<c : comm; v : var � � c : comm= ∩ 2̃v�) �A

Rv

= (run · run〈c〉 · done〈c〉 · done ∩ 2̃v�) �A
Rv

= run · run〈c〉 · done〈c〉 · done
because run · run〈c〉 · done〈c〉 · done ∈ (A Rv)∗

= <c : comm � c : comm=:

5.2. Snapback

f : comm → comm �
newint v in

v := 0;f(v := 1);
if !v = 1 then diverge else skip

≡comm f(diverge):

This example [20, Section 7.1] captures the intuition that state changes are in some
way irreversible. A procedure executing an argument which is a command changes the
state in a way that cannot be undone from within the procedure. If procedure f uses
its argument both sides will fail to terminate; if procedure f does not use its argument,
the behaviour of each side will be identical because of the locality of v, as seen above.
The Frst model to correctly address this issue was O’Hearn and Reynolds’s interpre-

tation of IA using the polymorphic linear lambda calculus [20]. Reddy also addressed
this issue using a novel “object semantics” approach [27], but in a particular Kavour of
IA known as interference-controlled ALGOL [18]. A further development of the model,
which also satisFes this equivalence, is O’Hearn and Reddy’s [19], a model fully
abstract for the second-order subset.
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Proof. We proceed in a “bottom up” fashion. The following evaluation is routine:

<v : varint; f : comm → comm � f(v := 1) : comm=
= (run · run〈f〉 · (run〈1f〉 · run〈1〉 · done〈1〉 · done〈1f〉)∗ · done〈f〉 · done)
[run〈1〉 · done〈1〉=write(1)〈v〉 · ok〈v〉]

= run · run〈f〉 · (run〈1f〉 · write(1)〈v〉 · ok〈v〉 · done〈1f〉)∗ · done〈f〉 · done:
The following evaluation is also routine:

<if !v = 1 then diverge else skip : comm= =
∑

1�='∈Z

run · read〈v〉 · '〈v〉 · done:

Using the two above, we have that

<v := 0;f(v := 1); if !v = 1 then diverge else skip : comm=
= run · write(0)〈v〉 · ok〈v〉 · run〈f〉 · (run〈1f〉 · write(1)〈v〉 · ok〈v〉 · done〈1f〉)∗
·done〈f〉 · ∑

1�='∈Z

read〈v〉 · '〈v〉 · done:

The Frst part of the interpretation of v as a block variable is the intersection with 2̃vint.
We note that:
• if the iteration (∗) is empty then the stability of v forces all the subsequent reads
to produce 0;

• if the iteration is non-empty then the stability of v forces the subsequent reads to
produce 1; but the condition ' �=1 stipulates that 1 cannot be produced. Therefore,
the entire trace is empty in this case.

So,

run · write(0)〈v〉 · ok〈v〉 · run〈f〉 · (run〈1f〉 · write(1)〈v〉 · ok〈v〉 · done〈1f〉)∗

·done〈f〉 · ∑
1�='∈Z

read〈v〉 · '〈v〉 · done ∩ 2̃〈v〉int

= run · write(0)〈v〉 · ok〈v〉 · run〈f〉 · done〈f〉 · read〈v〉 · 0〈v〉 · done:
After restriction to A Rv, we have that

<LHS= = run · run〈f〉 · done〈f〉 · done:
It can be immediately seen that this is also the interpretation of the right-hand side.

5.3. Invariant preservation

f : comm → comm �
newint v in

v := 0;f(v :=!v+ 2);
if !v mod 2 = 0 then diverge else skip

≡ diverge:
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The principle illustrated in this example [16, Example 5] is that of invariant preser-
vation. Although procedure f has read and write access to variable v, the access is
only through command v :=!v + 2, so the variable can only be incremented by two.
Therefore, variable v will always hold an even value.

Proof. Following the same bottom-up approach, it is routine to evaluate[[
f : comm → comm � v := 0;f(v :=!v+ 2);

if !v mod 2 = 0 then diverge else skip : comm

]]
to

run · write(0)〈v〉 · ok〈v〉 · run〈f〉 ·
(∑

'∈Z

run〈1f〉 · read〈v〉 · '〈v〉

·write('+ 2)〈v〉 · ok〈v〉 · done〈1f〉
)∗

· done〈f〉 ·
( ∑

'∈Z;'mod 2=1
read〈v〉 · '〈v〉

)
·done:

It is immediately seen that upon introducing the stable-variable constraint for v, this
regular expression becomes ∅, because for any k¿0 iterations the value stored in v is
even, equal to 2× k. This contradicts the clause 'mod 2=1 in the second part of the
trace.
Therefore, <LHS== ∅= <diverge=.

5.4. Representation independence

f : comm → expbool → comm �
newint v in

v := 0;
f(v := 1)(!v = 0)

≡comm

newint v in
v := 0;
f(v := −1)(!v = 0):

The two sides of the equivalence represent two possible implementations of a switch
object. The switch is initially in the on state. The Frst argument is a method that
changes the state of the switch to oA; the second one returns a boolean expression
representing the state. The Frst implementation changes the state by assigning one, the
second by assigning negative one. The behaviour of the two implementations should,
however, be identical, illustrating a principle of representation independence. Although
Oles does not prove this example, it can be proved using his possible-worlds model
[23].

Proof. As in the previous examples, evaluating the phrase bottom-up is mechanical:

<f : comm → expbool → comm � v := 0;f(v := 1)(!v = 0) : comm=
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is given by

run · write(0)〈v〉 · ok〈v〉 · run〈f〉 ·
( Rwrite︷ ︸︸ ︷

run〈1f〉 · write(1)〈v〉 · ok〈v〉 · done〈1f〉

+ q〈2f〉 · read〈v〉 · 0〈v〉 · tt〈2f〉︸ ︷︷ ︸
Rtt

+
∑

0�='∈Z

q〈2f〉 · read〈v〉 · '〈v〉 · A 〈2f〉

︸ ︷︷ ︸
RA

)∗

·done〈f〉 · done:

When the stability property for v is imposed, it is obvious that in the iterated part, Rtt

must occur only before Rwrite, and RA only after

2̃vint ∩
(
run · write(0)〈v〉 · ok〈v〉 · run〈f〉 ·

( Rwrite︷ ︸︸ ︷
run〈1f〉 · write(1)〈v〉 · ok〈v〉 · done〈1f〉

+ q〈2f〉 · read〈v〉 · 0〈v〉 · tt〈2f〉︸ ︷︷ ︸
Rtt

+
∑

0�='∈Z

q〈2f〉 · read〈v〉 · '〈v〉 · A 〈2f〉

︸ ︷︷ ︸
RA

)∗
· done〈f〉 · done

)

= run · write(0)〈v〉 · ok〈v〉 · run〈f〉 · (R∗
tt ·R∗

write · ()+Rwrite

· (Rwrite +RA )∗)) · done〈f〉 · done:

Restriction to A Rv gives <LHS=:

run · run〈f〉 · ((q〈2f〉 · tt〈2f〉)∗ · (run〈1f〉 · done〈1f〉)∗
· ()+ run〈1f〉 · done〈1f〉 · (run〈1f〉 · done〈1f〉 + q〈2f〉 · A 〈2f〉)∗))

·done〈f〉 · done:

Note that this interpretation captures the dynamics of the term quite well. In English,
it shows that in function f the second argument will always evaluate to true, until
the Frst argument is evaluated; thereafter, the second argument will evaluate to false,
regardless of whether the Frst argument is evaluated or not.
Evaluating RHS gives the same regular expression.

5.5. Parametricity

f : comm → comm � newint v in f(v :=!v+ 1) ≡comm f(skip):
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This example seems similar to the locality or representation-independence examples.
However, the fact that the expression on the left-hand side changes the state each time
f calls its argument, whereas the expression on the right-hand side has no eLect on the
state, leads to technical problems in models with explicit store. Several such examples
are given by O’Hearn and Tennent [21], who deal with them using a model constructed
using a relation-preserving functor category.

Proof. Let us assume that we deal with overKow using special values or “wrap-around”
arithmetic.
We will impose the local-variable constraint on

<f : comm → comm � f(v :=!v+ 1) : comm=

= run · run〈f〉 ·
(∑

'∈Z

run〈1f〉 · read〈v〉 · '〈v〉write('+ 1)〈v〉 · ok〈v〉 · done〈1f〉
)∗

·done〈f〉 · done:
After imposing the local variable constraint, the result would become a set of traces
of the form:

run · run〈f〉 · run〈1f〉 · read〈v〉 · 0〈v〉 · write(1)〈v〉 · ok〈v〉 · done〈1f〉
·run〈1f〉 · read〈v〉 · 1〈v〉 · write(2)〈v〉 · ok〈v〉 · done〈1f〉
·run〈1f〉 · read〈v〉 · 2〈v〉 · write(3)〈v〉 · ok〈v〉 · done〈1f〉 · · · · done〈f〉
·done:

After restriction to A Rv:

<LHS= = run · run〈f〉 · (run〈1f〉 · done〈1f〉)∗ · done〈f〉 · done = <RHS=;

so the equivalence stands.

Note that here the result depends on how addition is implemented over a Fnite set!
If overKow is interpreted as divergence then the meaning of the LHS is

run · run〈f〉 ·
( ∑

k6Nmax

run〈1f〉 · done〈1f〉 · · · run〈1f〉 · done〈1f〉︸ ︷︷ ︸
k times

)
· done〈f〉 · done;

which is not the same as <RHS=. So if overKow leads to abortion then the equivalence
actually fails!

5.6. Mechanical veri;cation

As one can see in Example 5.4, proofs using regular expressions can be quite com-
plex. We have implemented a prototype tool based on the model presented here which
compiles IA terms into their regular-language interpretations, represented as Fnite-state
machines. For both terms in Example 5.4, the tool generates the Fnite-state machine
displayed in Fig. 5.
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Fig. 5. Example 5.4.

Fig. 6. An on–oL switch.

A variant of Example 5.4 is a switch with both on and oA capabilities, as pre-
sented in [5]. We want to see that two alternative implementations of the switch are
equivalent:

f : comm → expbool → comm �
newint v in

v := 1;
f(v := −!v)(!v ¿ 0)

≡comm

newbool v in
v := true;
f(v := not !v)(!v):

Our tool does indeed show that both implementations have the same regular language
interpretations. The corresponding Fnite-state machine is shown in Fig. 6.

6. Correctness of the regular-language semantics

In this section and the next we will show that the regular-language semantics is
a fully abstract model for second-order IA. This is the case because our model is
isomorphic to the fully abstract Abramsky–McCusker game model.
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The material in this section necessarily refers to technical details of the games model,
which we do not reproduce here. The reader unfamiliar with these details should refer
to the original papers. (loc. cit.)
We begin by observing that, for the types we are considering, the justiFcation point-

ers in the game semantics are redundant.

Lemma 28. Let A be a game interpreting a second-order type of IA, and s be any
legal play of A, in which both players are subject to the bracketing and visibility
conditions. If s has only one initial move, then it is completely determined by its
underlying sequence of moves.

Proof. The game A can be written as

(B0;0 → · · · → B0;l0 → B0) → · · · → (Bi;0 → · · · → Bi;li → Bi) → B;

where the Bi; j; Bi and B are base-type games. We shall show that any move either
player can make is either initial, so requires no justiFer, or has exactly one possible
justifying move.
For answer-moves, this is immediate from the bracketing condition, so we need only

consider question-moves. For initial moves, there is nothing to prove. There are two
kinds of non-initial question-moves
• P-moves in one of the Bj,
• O-moves in one of the Bj; k .
P-moves in the Bj are justiFed by the unique initial move. For an O-move in Bj; k , the
justiFer is a P-question in Bj. Any such move is itself justiFed by the unique initial
move, so in the O-view of the position, the most recent P-question in Bj is also the
only P-question in Bj, and by the visibility condition, this must be the justiFer of the
O-move we are considering.

In light of this lemma, we will ignore justiFcation pointers in all games from now
on.
In the following, we will use <M = to denote the regular-language interpretation of a

term M and <M =comp to denote the set of complete plays in the strategy interpreting
M in the games model, with justiFcation pointers deleted.
For any type �= �1 → · · · → �k → � of second-order IA, the set of legal plays of

its game representation is isomorphic to a regular language. Let us call this regular
language R<�=. The isomorphism 90 consists of the tagging of all moves in the game
model of �j with j.

Lemma 29 (Type representation). Pcomp�

90∼=R<�=, where by Pcomp� we denote the set of
complete plays in the game interpreting �.

Proof (by induction on the structure of �).
Ground types are interpreted by Fnite sets of complete plays, which are by deFnition

regular. Let R<�== Pcomp� .
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First-order types of the form �1 → · · · → �k → � have sets of complete plays iso-
morphic to the regular language

R<�1 → · · · → �k → �= =
∑
q;a

q ·
( ∑

16j6k
R <�j=〈j〉

)∗
· a; (1)

where q; a∈M�, such that q is a question and a is an answer. This is because the
opening question must be in �, followed by an arbitrary number of repetitions of a
complete set of plays in any �j. Moves of �j are tagged with j as part of the disjoint
summing of the moves of the games; this is consistent with the deFnition of 90.

For any term x0 : �0; : : : ; xk : �k �M : �1 → · · · → �l → �, let isomorphism 91, from
sets of moves to alphabets, be:
• the unique tagging of the moves in �j with xj and, additionally, the tagging with i
of all moves in �(j; i), where �j = �( j;0) → · · · → �( j; kj) → �′

j
• the unique tagging with j of all moves in �j.

Lemma 30 (Term representation). For any second-order IA term:

<� � M : �=
91∼= <� � M : �=comp:

Proof (by induction on the derivation of � � M : �).
Language constants: The sets of complete plays for

k ::= n | true | false | skip | diverge
are Fnite and we can see by inspection that <k== <k=comp in each case.
Identi#ers: Consider the set of plays of the copy-cat strategy for the projection :x :
<�=→ <�=:

;:x = {s ∈ P<�=1(<�=2 | if s′ � s; even(length(s′)); then s′ � <�=1 = s′ � <�=2}:
Its subset of complete plays, ;comp:x

, is a regular language isomorphic to

Kx
� = R<�=[mo=mo · m〈x〉

o ][mp=m〈x〉
p · mp]

for all moves mo;mp ∈M�, such that mo is any opponent move and mp any player
move. It is easy to check that the isomorphism between these sets is 91 as required.
Abstraction: The semantic interpretation of abstraction has the property that

<� � �x:�:P : � → �=comp = <(<�; x : � � P : �=comp) ∼= <�; x : � � P : �=comp;

where <(−) is an isomorphism. Therefore, using the induction hypothesis,

<�; x : � � P : �=comp
91∼= <�; x : � � P : �=:

Also,

<�; x : � � P : �= ∼= <�; x : � � P : �= ↑ ['〈x〉='〈1〉] = <� � �x:�:P : � → �=
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<�= 〈<P=;<M =〉−−−−→ (<�=〈1〉 ⇒ <�=〈1〉) × <�=〈2〉 ev→ <�=〈2〉
q〈2〉� O

q〈1〉� P

like <P=
...

q〈1〉� O
q〈2〉� P

like <M =
...

a〈2〉� O
a〈1〉� P

<P= resumes
...

...
...

a〈1〉� a〈2〉� P

Fig. 7. Plays of function application.

for all '∈ <�=; this is because the increment (−) ↑ is an isomorphism and the substitu-
tion ['〈x〉='〈1〉] also an isomorphism. The composition of these two isomorphisms can
be easily seen to be 9−1

1 .
Application: We need to prove that for any � �P : �→ �;M : �,

<PM : �=comp
91∼=(<� � P : � → �=[.]) ↓;

where .(q〈1〉 · a〈1〉)= {w | q · w · a∈ <M : �=}, for any q∈Q<�=; a∈AQ<�=. The game
semantic interpretation of application of P : �→ � to M : � is

<�= 〈<P=;<M =〉−−−−→ <�=⇒ <�= × <�= ev→ <�=;

where ev is the evaluation strategy. In general, this strategy does not have a regular
set of complete plays, so the proof will be made directly at the level of the game
semantics, by analysing all the possible plays (Fig. 7).
The opening question (q〈2〉� ) always occurs in <�=〈2〉, then is copied to <�=〈1〉 by ev

(as q〈1〉� ). Subsequently, the strategy for <P= takes control of the play and it holds

control of the play until a move (q〈1〉� ) occurs in <�=〈1〉. This move transfers control
back to ev, which copies it to <�=〈2〉 (as q〈1〉� ). Subsequent play is then controlled by
<M =.
This is where the restriction to Frst order for P (ground type for M) ensures

that application is correctly represented by regular-language homomorphism (substi-
tution). Two observations are essential:
(1) a next move to <�=〈1〉 is not possible because the play is governed by <M =, which

cannot use that type component;
(2) since � is a ground type, <M = must complete its play after moves in <�= only.

A higher-order strategy would be able to ask a question in <�=〈2〉, which ev
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would copy back to <�=〈1〉, and give control back to <P=. This would cause a
“nesting” of plays, and hence non-regularity, rather than the simple interleaving
of Frst-order application.

Once <M = completes, the answer a〈2〉� is copied by ev from <�=〈2〉 to <�=〈1〉 and
control switches back to <P=, which resumes play from where it left oL.
Finally, once <P= produces an answer a〈1〉� , it is relayed by ev to <�=〈2〉, closing the

entire play.
We can see how the moves from the two � components function as switches

between the strategies of <P= and <M =, inserting complete plays of <M = bracketed by
q〈2〉� and a〈2〉� in the plays of <P=, whenever moves q〈1〉� · a〈1〉� occur.

Finally, all the moves from components <�=〈1〉 ⇒ <�=〈1〉 × <�=〈2〉 are hidden, resulting
in the same regular language as the one deFned by substitution.

From the induction hypothesis, <P=comp
91∼= <P=, <M =comp

91∼= <M =. Decrement (−) ↓
is also an isomorphism, necessary in order to re-associate moves with the proper
components after the elimination of �.

Term-forming expressions: For sequential composition of commands, we need to prove

that <� �C;C′=
91∼= <� � seqCC′=comp, where

seq
def= �c: comm:�c′: comm:c; c′:

The regular-language interpretation of seq is

<seq : comm → comm → comm=
= run · run〈1〉 · done〈1〉 · run〈2〉 · done〈2〉 · done:

It is easy to see that <seqCC′== <C;C′= and that <seq=
91∼= <seq=comp. Applying the

induction hypothesis, <C=
91∼= <C=comp and <C′=

91∼= <C′=comp, together with the correctness
of our semantics of application completes the proof.
The other term-forming expressions have similar proofs.

Iteration: The game-semantics model of iteration is in terms of recursion, which our
language fragment lacks. However, it is easy to show that

<while B do C=comp =
⋃
i∈N

<Wi=comp;

where W =� � �c0: comm:if B then C; c0 else skip, W0 = diverge and Wi+1 =W (Wi)
where c0 is not free in B or C.
A straightforward induction using the correctness of application and branching

shows that <Wi=
91∼= <Wi=comp.

We therefore only need to show that <while B do C==
⋃

i∈N <Wi=, i.e. that

(Wn ) =
n−1∑
i=0

(B )tt · (C ) · · · (B )tt · (C )︸ ︷︷ ︸
i times

·(B )A ;
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which we do by induction on n. The base case is trivial: (W0 )= ∅ by deFnition.
For the inductive step we calculate as follows:

(Wn+1 ) = (W (Wn) )

= (W )[run〈1〉 · done〈1〉=(Wn )] ↓
= ((B )tt · (C ) · run〈1〉 · done〈1〉 + (B )A )[run

〈1〉 · done〈1〉=(Wn )] ↓
= (B )tt · (C ) · (Wn ) + (B )A

from which the result follows.
Local variables: According to the game-semantic deFnition of new, a complete play of

the strategy interpreting it is

where s is a sequence of moves in which all occurrences of read and write globally
satisfy the constraints made formal by the stability regular expression 2var �. Using the
game-semantic deFnition of composition and an analysis of possible moves similar to

the one we did for application, it follows that <new�(�x: var �:M)=comp
91∼= <new � x in M =.

We can now give the proof of Theorem 27.

Proof of Theorem 27. The full abstraction result for the game model of IA states that
two IA terms are equivalent iL they have the same sets of complete plays (Theorem 2).
By our earlier result (Proposition 1) this immediately restricts to second-order IA. The
term representation lemma proves that the regular language semantics is a correct
representation of the game semantics, hence it establishes the full abstraction theorem
for the regular language semantics of second-order IA.

7. Semantics of full second-order IA

We now consider the semantics of the binding construct let. Without this construct
the language fragment cannot function as a stand-alone programming language: it con-
tains identiFers of function types but no way to bind them to actual functions. The
incorporation of let resolves this issue and turns our language fragment into a viable
stand-alone programming language.
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At ground types, the deFnition of let is redundant because it can be replaced by
abstraction and application: let x be P in P′ =(�x: �:P′)P. But this redundancy does
not create any technical diEculties.
Semantically, the most straightforward way to handle binding is extensionally, by

adding an environment u as a parameter to the semantic valuation function. The en-
vironment is a function mapping the free identiFers of the term to regular languages:

De#nition 31 (Binding).

<� � let x be P in P′ : �=u = <�; x : �′ � P′: �=(u | x �→ <� � P′: �′=u):

The interpretation of identiFers will be diLerent in the presence of the environment.

De#nition 32 (IdentiFers). <� � x : �=u = u(x).

All the other semantic deFnitions of the previous section stay the same, except that
all functions < − =; ( − ) now take the additional parameter u.
The following property is technically important:

Lemma 33 (Term substitution).

<� � let x be P in P′ : �=u = <� � P′[x=P]=u:

Proof (by structural induction on the syntax of P′).
Basis: If P′ = k is an IA constant, then k= k[x=P] and the property follows trivially.

If P′ = x′ is an identiFer then we have two cases:
either (x= x′), in which case x[x=P] =P and

<� � let x be P in x : �=u= <�; x : � � x : �=(u | x �→ <� � P : �=u)
= (u | x �→ <� � P : �=u)(x)
= <� � P : �=u = <� � x[x=P] : �=u

or (x �= x′), in which case x′[x=P] = x′ and

<� � let x be P in x′ : �=u= <�; x′ : � � x′ : �=(u | x �→ <� � P : �′=u)
= <�; x′ : � � x′ : �=u = <� � x′[x=P] : �=u:

Composite terms: For non-binding terms of IA (i.e. all except let and abstraction) the
proofs are similar. We present sequential composition in detail: <let x be P in C;C′=u
is equal to

<C;C′=(u | x �→ <P=u)
= run · (C )(u | x �→ <P=u) · (C′ )(u | x �→ <P=u) · done
= run · (C[x=P] )u · (C′[x=P] )u · done (by induction hyp:)

= run · (C[x=P];C′[x=P] )u · done
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= run · ( (C;C′)[x=P] )u · done
= <(C;C′)[x=P]=u:

For the two binding combinators we have two cases:
• x �= x′: similar to the one above, for non-binding combinators.
• x= x′: then <let x be P in let x be P′ in P′′=u= <let x be P′ in P′′=u.

It is intuitively clear that the deFnition of let is orthogonal to the purely regular-
language semantics of the previous section. This intuition is formalized by the following
property:

Lemma 34 (Reduction). For any term � �P : � of IA there exists a let-free term
� �P0 : � such that � �P≡� P0 and <� �P : �=u� = <� �P0 : �=, where u� is an en-
vironment mapping all identi;ers of � to copy-cat regular expressions: dom(u�)=
dom(�), and u�(x)=Kx

�(x).

The overloaded notations <−=u and <−= should not create confusion: the former is the
environment-based semantics of this section, the latter is the purely regular-language
semantics of the previous section. First we prove the following ancillary result:

Proposition 35. If � �P : � of IA is let-free, then <� �P : �=u� = <� �P : �=.

Proof. The proof is by an easy induction on the syntax of P. The only interesting case
is the base case when P is an identiFer x. Then by deFnition of the semantics,

<x= = Kx
� = u�(x) = <x=u�:

The main proof of the Reduction Lemma is by induction on the number of occur-
rences of let in P:

Proof.
Basis: (n=0) By previous proposition.
Inductive step: We use an inner induction on the structure of P. Base cases are trivial
since they do not contain let. For composite terms other than let-terms, the induc-
tive hypothesis together with compositionality of both direct and environment-based
semantics give the result directly.
Finally, for terms of form let x be P′ in P′′ we argue as follows. By the inductive

hypothesis there is some let-free term P′
0 ≡P′ such that <P′=u� = <P′

0== <P′
0=u�, using

the previous proposition. The term reduces as follows:

<let x be P′ in P′′=u� = <P′′=(u� | x �→ <P′=u�)

= <P′′=(u� | x �→ <P′
0=u�)

= <let x be P′
0 in P′′=u�

= <P′′[x=P′
0]=u�
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by the substitution lemma. But P′′[x=P′
0] contains fewer occurrences of let than does

let x be P′ in P′′ and is clearly operationally equivalent to it. We can apply the
induction hypothesis to conclude.

We can now state the two principal properties of the regular-language semantics of
second-order IA.

Theorem 36 (Full abstraction).

� � P1 ≡� P2 if and only if <� � P1 : �=u� = <� � P2 : �=u�:

Proof. Given terms P1; P2, by the reduction Lemma 34, we can Fnd let-free terms
P′
1; P′

2, such that Pi ≡P′
i and <Pi=u� = <P′

i =u� = <P′
i =. Therefore, by the previous full-

abstraction result (Theorem 27):

P1 ≡ P2 ⇔ P′
1 ≡ P′

2 ⇔ <P′
1= = <P′

2= ⇔ <P1=u� = <P2=u�:

An immediate corollary of the full abstraction theorem is

Corollary 37 (Decidability). Equivalence of second-order Fnitary IA terms is decid-
able.

Proof. The fully abstract regular-language semantics interprets terms as regular lan-
guages, for which equivalence is decidable.

This result is related to much earlier results of Jones regarding decidability properties
of programs written in a similar programming language [14]. Our decidability result is
more general because it concerns program fragments rather than full programs.

The language described here supports some straightforward extensions such as arrays
or low-level data pointers (Ba la C) which can be introduced as syntactic sugar. A
simple semantic extension, which, for this second-order fragment is orthogonal to the
rest of the semantic model, is bounded non-determinism [12]. The only addition to the
language is a non-deterministic expression:

<random � : exp �=u =
∑

'∈A<�=
q · ':

A more substantial modiFcation of the language is the use of call-by-value instead
of call-by-name. The regular-language semantics of this language is presented in [6].
Other extensions, such as control or parallelism will require a much more substantial
revision of the semantic framework.

8. Related and further work

The research presented in this article, originally presented in [8], has since been
expanded in two directions.
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The Frst author has proved a similar decidability result for a call-by-value language,
showing that it has a regular-language model [6]. Ong has shown that observational
equivalence of the third-order fragment of IA without iteration is decidable [25] by
showing that its game model can be represented using deterministic context-free lan-
guages. Finally, Murawski has shown that higher-order fragments of imperative proce-
dural languages, call-by-name or call-by-value, are not decidable [17].
Another direction of research is the application of the regular-language semantics to

program veriFcation, and it was pursued by the Frst author in his doctoral thesis [7].
A model-checking tool, used to generate the models in Section 5.6, based on this work
is currently under development.
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