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a b s t r a c t

In this note, we investigate some properties of local Kneser graphs defined in [János
Körner, Concetta Pilotto, Gábor Simonyi, Local chromatic number and sperner capacity, J.
Combin. Theory Ser. B 95 (1) (2005) 101–117]. In this regard, as a generalization of the
Erdös–Ko–Rado theorem, we characterize the maximum independent sets of local Kneser
graphs. Next, we provide an upper bound for their chromatic number.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this section, we elaborate on some basic definitions and facts that will be used later. Throughout the paper the word
graph is used for a finite simple graph with a prescribed set of vertices. A homomorphism σ : G −→ H from a graph G to a
graph H is a map σ : V (G) −→ V (H) such that uv ∈ E(G) implies σ(u)σ (v) ∈ E(H). The existence of a homomorphism is
indicated by the symbol G −→ H . Two graphs G and H are homomorphically equivalent if G −→ H and H −→ G (for more
on graph homomorphisms see [6]).
In [3] Bondy and Hell define ν(G, K), for two graphs G and K , as themaximumnumber of vertices in an induced subgraph

of G that admits a homomorphism to K , and using this they introduce the following generalization of a result from Albertson
and Collins [1].

Theorem A ([3]). Let G,H and K be graphs where H is a vertex-transitive graph. If there exists a homomorphism σ : G −→ H
then |V (G)|

ν(G,K) ≤
|V (H)|
ν(H,K) .

Hereafter, we denote by [m] the set {1, 2, . . . ,m}, and denote by
(
[m]
n

)
the collection of all n-subsets of [m]. Suppose

m ≥ 2n are positive integers. The Kneser graph KG(m, n) has the vertex set
(
[m]
n

)
, in which A ∼ B if and only if A∩ B = ∅. It

was conjectured by Kneser [7] in 1955 and proved by Lovász [9] in 1978 that χ(KG(m, n)) = m− 2n+ 2.
The local chromatic number of a graph was defined in [4] as the minimum number of colors that must appear within

distance 1 of a vertex. Here is the formal definition.

Definition 1 ([4]). Let G be a graph. Define the local chromatic number of G as follows.

ψ(G) def= min
c
max
v∈V (G)

|{c(u) : u ∈ V (G), dG(u, v) ≤ 1}|,

where the minimum is taken over all proper colorings c of G and dG(u, v) denotes the distance between u and v in G. �

I This paper is partially supported by Shahid Beheshti University.
∗ Corresponding author.
E-mail addresses:m_alishahi@sbu.ac.ir (M. Alishahi), hhaji@sbu.ac.ir (H. Hajiabolhassan), a_taherkhani@sbu.ac.ir (A. Taherkhani).

0012-365X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2009.07.020

http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:m_alishahi@sbu.ac.ir
mailto:hhaji@sbu.ac.ir
mailto:a_taherkhani@sbu.ac.ir
http://dx.doi.org/10.1016/j.disc.2009.07.020


M. Alishahi et al. / Discrete Mathematics 310 (2010) 188–191 189

The local chromatic number of graphs has received attention in recent years [2,8,10–12]. Clearly,ψ(G) is always bounded
from above by the chromatic number, χ(G). It is much less obvious that ψ(G) can be strictly less than χ(G). In fact, it was
proved in [4] that there exist graphs with ψ(G) = 3 and χ(G) being arbitrarily large.
One can define ψ(G) via graph homomorphism. In this regard, local complete graphs were defined in [4]. We consider

the following definition for local complete graphs.

Definition 2 ([4,8]). Let n and r be positive integers where n ≥ r . Define the local complete graph U(n, r) as follows.

V (U(n, r)) = {(a, A)| a ∈ [n], A ⊆ [n], |A| = r − 1, a 6∈ A}

and

E(U(n, r)) = {{(a, A), (b, B)}| a ∈ B, b ∈ A}. �

The following simple lemma reveals the connection between local complete graphs and local chromatic number. Note
that a restatement of the next lemma is proved in the course of proving Lemma 1.1 of [4].

Lemma A ([4]). Let G be a graph. The graph G admits a proper coloring c with n colors andmaxv∈V (G) |{c(u)| u ∈ N[v]}| ≤ r
if and only if there exists a homomorphism from G to U(n, r). In particular ψ(G) ≤ r if and only if there exists an n such that G
admits a homomorphism to U(n, r).

In [8] the local complete graphs have been generalized as follows.

Definition 3 ([8]). Let n, r and t be positive integers where n ≥ r ≥ 2t . Let Ut(n, r) be a graph whose vertex set contains all
ordered pairs (A, B) such that |A| = t, |B| = r − t, A, B ⊆ [n] and A ∩ B = ∅. Also, two vertices (A, B) and (C,D) of Ut(n, r)
are adjacent if A ⊆ D and C ⊆ B. �

Remark. Note that U1(n, r) = U(n, r), while Ut(r, r) = KG(r, t). Hence the graph Ut(n, r) provides a common
generalization of Kneser graphs and local complete graphs U(n, r) in [8]. In this paper, the graph Ut(n, r) is termed local
Kneser graph.

In the next section, some results concerning the local Kneser graphs are presented. In this regard, as a generalization of
the Erdös–Ko–Rado theorem, we characterize the maximum independent sets of local Kneser graphs. Next, we introduce
some upper bounds for their chromatic number and local chromatic number.

2. Local Kneser graphs

In this section, we study some properties of the graph Ut(n, r). First, we characterize the maximum independent sets of
Ut(n, r). To begin we compute the independence number of Ut(n, r). Now, we introduce some notations which will be used
throughout the paper.
Assume that σ is a permutation of [n], R ⊆ [n] and |R| = r . It should be noted that σ provides an ordering for [n],

i.e., σ(1) < σ(2) < · · · < σ(n). Define minσ R as being the minimum member of R according to the ordering σ , i.e.,
minσ R

def
= σ(min{σ−1(r)|r ∈ R}).

Define

VR
def
= {(A, B) | A ∪ B = R, |A| = t and A ∩ B = ∅}

and set

Iσ ,R
def
=

{
(A, B) ∈ VR|min

σ
R ∈ A

}
.

Also, define

Sσ
def
=

⋃
R⊆[n],|R|=r

Iσ ,R.

The independence number ofUt(n, r) has been computed in [8] as follows. It is clear that the induced subgraph ofUt(n, r)
obtained by the vertices in VR is isomorphic to the Kneser graph KG(r, t) and it is denoted by KGR(r, t). That is the reason
that the graphUt(n, r) is called the local Kneser graph. It is straightforward to check that for every σ ∈ Sn, Iσ ,R is amaximum

independent set of KGR(r, t). Also, one can easily see that Sσ is an independent set in Ut(n, r) of order
( n
r

) ( r−1
t−1

)
. Hence,

α(Ut(n, r)) ≥
( n
r

) ( r−1
t−1

)
. The reverse inequality α(Ut(n, r)) ≤

( n
r

) ( r−1
t−1

)
follows from the Erdös–Ko–Rado theorem. In

fact, once the chosen r-set is fixed, such as R, the induced subgraph KGR(r, t) has the independence number
(
r−1
t−1

)
. Thus,

we know α(Ut(n, r)) =
( n
r

) ( r−1
t−1

)
.
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Also, in view of Bondy and Hell’s theorem [3], one can obtain the inequality α(Ut(n, r)) ≤
( n
r

) ( r−1
t−1

)
. Indeed, KG(r, t) is

a subgraph of Ut(n, r). Hence, we have KG(r, t)→ Ut(n, r). If we set K
def
= K1 in the Bondy and Hell theorem, then we have( r

t

)(
r−1
t−1

) ≤ ( n
r

) ( r
t

)
α(Ut(n, r))

.

Hence, α(Ut(n, r)) ≤
( n
r

) ( r−1
t−1

)
. Consequently, α(Ut(n, r)) =

( n
r

) ( r−1
t−1

)
and Sσ is a maximum independent set of Ut(n, r).

Now, we are ready to show that for every maximum independent set S in Ut(n, r) there exists a permutation σ ∈ Sn such
that S = Sσ .
Consider a maximum independent set S in Ut(n, r). Note that |S| =

( n
r

) ( r−1
t−1

)
. One can easily see that for every R ⊆ [n]

(|R| = r), VR ∩ S is a maximum independent set in KGR(r, t). By the Erdös-Ko-Rado theorem [5], if r > 2t , then there is an
x(S, R) ∈ R such that x(S, R) ∈

⋂
(A,B)∈VR∩S

A.

Lemma 1. Let S be a maximum independent set in Ut(n, r)where n ≥ r > 2t. Also, assume that R, R′ are two distinct r-subsets
of [n]. If x(S, R) = x ∈ R ∩ R′, then x(S, R′) 6∈ R ∩ R′ \ {x}.

Proof. Assume that x(S, R) = x and x(S, R′) = z. We prove this lemma by induction on |R \ R′|.
Let |R \ R′| = 1. Then there are u ∈ R and v ∈ R′ such that R = (R′ \ {v})∪ {u}. If x(S, R′) = z ∈ R∩ R′ \ {x}, then there exist
(A, B) ∈ S and (A′, B′) ∈ S such that A, B ⊂ R, x ∈ A, u, z ∈ B and A′, B′ ⊂ R′, z ∈ A′, x, v ∈ B′, A′ ⊂ B, A ⊂ B′. Hence, (A, B)
and (A′, B′) are adjacent, which is a contradiction.
Suppose that k > 1 and the lemma holds for |R\R′| < k. Now, let |R\R′| = k. On the contrary, assume that z ∈ R∩R′\{x}.

Choose y ∈ R \ R′ and y′ ∈ R′ \ R and set R′′ = (R′ \ {y′}) ∪ {y}. Since |R′ \ R′′| = 1 < k, we have x(S, R′′) 6∈ R′ ∩ R′′ \ {z},
consequently, x(S, R′′) ∈ {y, z}. On the other hand, |R \ R′′| = k − 1 < k, hence, x(S, R′′) 6∈ R ∩ R′′ \ {x}. However,
{y, z} ⊂ R ∩ R′′ \ {x}which is a contradiction. �

Now, we characterize the maximum independent sets of local Kneser graphs.

Theorem 1. Let S be a maximum independent set in Ut(n, r). Then there exists a permutation σ ∈ Sn such that S = Sσ .

Proof. Suppose that S is a maximum independent set in Ut(n, r). We define a directed graph DS whose vertex set and edge
set are

V (DS) = {1, 2, . . . , n}

and

E(DS)
def
= {(i, j) | ∃ R ⊆ [n], |R| = r, i 6= j, {i, j} ⊆ R, i = x(S, R)}, respectively.

Assume that d1 ≥ d2 ≥ · · · ≥ dn is the out degree sequence of DS where di is the out degree of vi for i = 1, 2, . . . , n.
In view of Lemma 1, one can see that DS is a directed graph whose underlying graph is a simple graph. Consequently,
|S| =

(
d1
r−1

) (
r−1
t−1

)
+

(
d2
r−1

) (
r−1
t−1

)
+ · · · +

(
dn
r−1

) (
r−1
t−1

)
. However,

(
d1
r−1

)
+

(
d2
r−1

)
+ · · · +

(
dn
r−1

)
is maximized when

d1 = n− 1, d2 = n− 2, . . . , dn−r+1 = r − 1. Moreover,
(
n−1
r−1

)
+

(
n−2
r−1

)
+ · · · +

(
r−1
r−1

)
=
( n
r

)
. Now choose a permutation

σ ∈ Sn such that σ(i) = vi for i = 1, 2, . . . , n− r + 1. Obviously, S = Sσ . �

From the above discussion, the directed graph DS is related to the independent set S of Ut(n, r). Conversely, suppose that
D is a directed graph on [n] such that its underlying graph is a simple graph. Now, we want to construct an independent set
ID which is related to D. Set

ID = {(A, B) | ∃ i ∈ [n]; A, B ⊆ N+(i) ∪ {i}, i ∈ A, A ∩ B = ∅, |A| = t |B| = r − t},

where N+(i) = {j | (i, j) ∈ E(D)}. As the underlying graph of D is a simple graph, one can see that ID is an independent set
in Ut(n, r). It is easy to see that for any maximum independent set S in Ut(n, r)we have IDS = S.

Clearly, f : Ut(n, r) −→ KG(n, t) is a homomorphism where f ((A, B)) def= A. Therefore, χ(Ut(n, r)) ≤ n − 2t + 2. The
chromatic number of local complete graphs has been investigated in [4].

Theorem B ([4]). Let n and r be positive integers where n ≥ r. We have χ(U(n, r)) ≤ r2r log2 log2 n.

Here we introduce an upper bound for the chromatic number of local Kneser graphs.

Theorem 2. If n, r and t are positive integers where n ≥ r ≥ 2t, then

χ(Ut(n, r)) ≤
⌈
r2

t
ln
( en
r

)
+ r ln

( er
t

)⌉
.
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Proof. If r = 2t , then Ut(n, r) is a matching which implies that χ(Ut(n, r)) = 2 and the assertion follows. Thus, suppose
that r ≥ 2t+1. Assume that σ1, σ2, . . . , σl are l random permutations of Sn such that they have been chosen independently
and uniformly. For each vertex (A, B) ∈ V (Ut(n, r)), define E(A,B) to be the event that (A, B) 6∈

⋃
Sσi . Obviously, (A, B) ∈ Sσ

if and only if there exists a ∈ A such that a precedes all elements of A ∪ B \ {a} in σ . Clearly, Pr(E(A,B)) = (1− t
r )
l. Consider

a random variable X where X(σ1, . . . , σl)
def
= |V (Ut(n, r)) \

⋃
Sσi |. Clearly, E(X) =

( r
t

) ( n
r

)
(1 − t

r )
l. It is well-known that

1+ x ≤ ex and
(
p
q

)
≤ (

ep
q )
q, consequently,

E(X) =
( r
t

) (n
r

)(
1−

t
r

)l
≤

( er
t

)t ( en
r

)r
e−

tl
r .

If l def= d r
2

t ln(en) −
r2
t ln r + r ln(er) − r ln te, then one can check that E(X) < 1. Hence, χ(Ut(n, r)) ≤ d r

2

t ln(
en
r ) +

r ln( ert )e. �

Theorem 2 immediately yields the following corollary.

Corollary 1. Let n and r be positive integers where n ≥ r. We have

χ(U(n, r)) ≤
⌈
r2 ln

( en
r

)
+ r ln(er)

⌉
.

In other words, the previous corollary shows if we have a proper coloring for a graph Gwith n colors which assigns at most r
colors in the closed neighborhood of every vertex, then χ(G) ≤ dr2 ln( enr )+ r ln(er)e. The two upper bounds in Theorem B
and Corollary 1 are complementary.
Note that KG(r, t) is a subgraph ofUt(n, r), consequently, r−2t+2 is a lower bound for the chromatic number ofUt(n, r)

while here we show that r − 2t + 2 is an upper bound for the local chromatic number of Ut(n, r).

Lemma 2. Assume that n, r and t are positive integers where n ≥ r ≥ 2t. Then ψ(Ut(n, r)) ≤ r − 2t + 2.

Proof. Let (A, B) ∈ V (Ut(n, r)), A = {a1, a2, . . . , at} and B = {b1, b2, . . . , br−t} such that a1 < a2 < · · · < at and
b1 < b2 < · · · < br−t . Now, we show that there exists a graph homomorphism from Ut(n, r) to U(n− t + 1, r − 2t + 2). To
see this, define f ((A, B)) def= (min A, B∗)wheremin A = a1 and B∗

def
= {b1, b2, . . . , br−2t+1}. If (A, B) and (C,D) are adjacent in

Ut(n, r), then obviously min A ∈ D∗, min C ∈ B∗ andmin A 6= min C . Therefore, f is a graph homomorphism, as desired. �

The aforementioned lemma motivates us to propose the following question.

Question 1. Assume that n, r and t are positive integers where n ≥ r ≥ 2t. Is it true that ψ(Ut(n, r)) = r − 2t + 2?
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