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a b s t r a c t

Objectives: To understand the pathology of the ultrastructure of enamel affected by systemic

disorders which disrupt enamel tissue formation in order to give insight into the precise

mechanisms of matrix-mediated biomineralization in dental enamel in health and disease.

Methods: Two-dimensional synchrotron X-ray diffraction has been utilized as a sophisti-

cated and useful technique to spatially quantify preferred orientation in mineralized

healthy deciduous dental enamel, and the disrupted crystallite organization in enamel

affected by a systemic disease affecting bone and dental mineralization (mucopolysacchar-

idosis Type IVA and Type II are used as examples). The lattice spacing of the hydroxyapatite

phase, the crystallite size and aspect ratio, and the quantified preferred orientation of

crystallites across whole intact tooth sections, have been determined using synchrotron

microdiffraction.

Results: Significant differences in mineral crystallite orientation distribution of affected

enamel have been observed compared to healthy mineralized tissue. The gradation of

enamel crystal orientation seen in healthy tissue is absent in the affected enamel, indicating

a continual disruption in the crystallite alignment during mineral formation.

Conclusions: This state of the art technique has the potential to provide a unique insight into

the mechanisms leading to deranged enamel formation in a wide range of disease states.

Clinical relevance: Characterising crystal orientation patterns and geometry in health and

following disruption can be a powerful tool in advancing our overall understanding of

mechanisms leading to the tissue phenotypes seen clinically. Findings can be used to inform

the appropriate dental management of these tissues and/or to investigate the influence of

therapeutic interventions or external stressors which may impact on amelogenesis.
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1. Introduction

Diseases associated with mineralization defects are frequent-

ly investigated using structural characterisation of affected
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hard tissues to complement an existing understanding of

disease pathogenesis informed by cellular and molecular

studies. A wide variety of techniques used to study bone and

dental hard tissues include light and electron microscopy1;
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atomic force microscopy2,3; X-ray microtomography4,5; X-ray

diffractometry6–8; and increasingly synchrotron X-ray scatter-

ing.9–11 In particular electron microscopy studies can show

qualitatively hierarchical features on the microscopic length-

scale such as prismatic and interprismatic structures of

enamel revealing the variation in prismatic structure between

species showing that enamel ultrastructure and function are

closely linked to evolutionary development.12 In particular,

recent evaluation of Hunter–Schreger bands in human enamel

reveal that these specific prismatic orientations have evolved

to optimise resistance to fracture and wear over the lifetime of

an individual.13,14

Uniquely, synchrotron X-ray microdiffraction can deter-

mine spatial distributions of basic crystallographic param-

eters of the hydroxyapatite (HA) phase within mineralized

tissues. Characterising crystal orientation patterns and geom-

etry in health and following disruption can therefore become a

powerful tool advancing our overall understanding of mecha-

nisms leading to phenotypic expression. Dental hard tissues

are unique in terms of their accessibility for such analyses.

Deciduous teeth exfoliate naturally and permanent teeth are

frequently available following routine extraction. More im-

portantly dental enamel is highly mineralized and it’s unique

hierarchical structure forms incrementally over extended

time periods with individual teeth mineralizing in 4–5 years.

Accordingly disruption in crystallographic features of dental

enamel due to disease progression or therapeutic intervention

can be closely correlated with event time points.

The spectrum metabolic disorders known as mucopoly-

saccharidosis (MPS) diseases have incidences reported to

range from 1:50,000 to 1:250,000 births15 and will be used as a

case study to highlight the capabilities of the technique. In

particular mucopolysaccharidosis Type IVA (MPS IVA), or

Morquio Syndrome, has manifestations in primary and

secondary dentition. MPS IVA, an autosomal recessive

lysosomal storage disease,16,17 is characterised by reduced

activity of enzyme N-acetylgalactosamine 6-sulphatase

(GALNS) encoded by a gene on human chromosome

16q24.318,19 which leads to intracellular accumulation of

partially degraded glycosaminoglycans (GAGs) keratan sul-

phate and chondroitin 6-sulphate in connective tissue, the

skeletal system and teeth.20,21 Clinically it manifests after

infancy and is associated with severe skeletal abnormalities,

restrictive lung disease, impaired endurance, hearing im-

pairment, and aortic valvular disease.22 Enzyme therapies

developed for MPS IVA are currently being investigated

through clinical trials (NCT ID: NCT01242111 and

NCT01275066), with the potential to revolutionise treatment

for patients.

Basic dental histological investigations have demonstrated

that MPS IVA enamel is abnormally thin and pitted23 with

increased porosity correlating to the striae of Retzius.24

Electron microscopy has revealed an interstitial layer of

amorphous material 3–4 mm thick at the amelodentinal

junction (ADJ).25 In MPS IVA it has been suggested that

pathological accumulation of GAGs occurs in the lysosomes of

secretory stage ameloblasts.21 However, there is no consensus

on whether the effects of impaired lysosomal pathway

function result in disturbances in protein secretion; matrix

mineralization; degradation processes of amelogenins; or a
combination which lead to the enamel structural changes. 2D

synchrotron X-ray diffraction across whole intact sections of

dental enamel can provide important insights into the spatial

distribution of HA crystallite orientation.9,26 The aim of this

study was to ally detailed analysis of physical characteristics

of affected enamel in a system with a known, precise,

underlying genetic lesion. We aim to demonstrate that the

technique can not only give novel insight into the mechanistic

understanding of the disease pathogenesis (in MPS), but also

provide better understanding of basic processes of enamel

biomineralization in health by relating known genetic defects

to measured changes in crystallographic parameters.

2. Materials and methods

2.1. Specimen preparation

Tooth specimens were collected following ethical approval

(UK National Research Ethics Service Reference 08/H1202/119)

and consent at Birmingham Children’s Hospital NHS Founda-

tion Trust. Two deciduous maxillary incisors from different

patients affected by MPS IVA; one affected by MPS II (with no

previous reported effect on enamel formation); and one

healthy control deciduous maxillary incisor were used. Each

extracted tooth, stored in thymol-saline solution, was serially

sectioned bucco-lingually using a 0.3 mm diamond blade

cutter (Met Prep, Coventry, United Kingdom) then polished to

100 mm thick. A spatially equivalent 0.4 mm � 0.2 mm area,

located 1 mm superior to the enamel–cementum junction was

identified as a representative and comparable region of

interest on each tooth section. An illustration highlighting

the equivalent region of interest on each tooth section is given

in Fig. 1. For synchrotron studies tooth sections were kept

hydrated during measurement using a reservoir of thymol-

saline solution. For scanning electron microscopy the sections

were dehydrated in ethanol, etched with 35% orthophosphoric

acid for 15 s, and stored in a desiccator prior to use.

2.2. Experimental procedure

Synchrotron X-ray diffraction was used to explore the texture

(or preferred orientation) of enamel crystallites in intact tooth

sections. Preferred orientation refers to the degree of crystal-

lite alignment. For a polycrystalline, isotropic material, there is

random orientation of crystallites averaging the Bragg

scattering intensity uniformly around the Debye rings of 2D

X-ray diffraction patterns. However, a high degree of crystal-

line anisotropy, such as in dental enamel, produces a change

in intensity around the Debye ring of Bragg reflections in two-

dimensions correlating to the degree of crystallite alignment

or ordering (Fig. 2, inset A). This change in intensity around

Debye rings from different regions of enamel was measured to

quantify the spatial texture distribution, and therefore the

enamel crystallite organisation as a function of position.

2D synchrotron X-ray diffraction experiments were carried

out on the XMaS beamline (BM28) at the European Synchro-

tron Radiation Facility (ESRF). Performing experiments at

central synchrotron radiation facilities through a peer-

reviewed beamtime application process, means there are



Fig. 1 – Illustration representing a typical section of

deciduous incisor studied. The boxed region indicates the

equivalence of the area of interest which was measured

for each specimen.
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strict time constraints such that carrying out repeatability

studies is not straight forward. For this study (the first of its

kind to explore texture variation in MPS affected tissue) it was

decided to prioritise the collection of high quality, high

resolution images instead of sampling many repeated speci-

mens. Therefore the X-ray beamspot was defined as

20 � 20 mm using vacuum tube slits, and diffraction images

were collected every 20 s. An X-ray energy of 15.0 keV was

used – corresponding to a wavelength of 0.82 Å. Each specimen

was mounted onto a goniometer on an XY-motorized

travelling sample platform and aligned to the centre of

rotation. A co-ordinate system for the region of interest on
Fig. 2 – 1D diffraction pattern of healthy deciduous surface ena

(open circles), the calculated diffraction pattern (black solid line),

the 2u peak positions for the calculated diffraction pattern of HA

pattern.
the tooth was established using a calibrated telescope. 2D X-

ray diffraction images were collected using a 2048 � 2048 pixel

CCD camera mounted perpendicular to the X-ray beam

170 mm from the sample. 2D maps were collected by

translating the specimen relative to the beam in horizontal

and vertical directions. Subsequently, scanning electron

microscopy was used to image the same regions of interest

on the enamel.

2.3. Data analysis

A total of eight hundred 2D diffraction images of enamel were

processed with the Fit2d software.27 Intensity patterns around

the Debye ring of the (0 0 2) Bragg reflection were used to

quantify the texture parameter (or preferred orientation) since

this reflection is normal to the c-axis of enamel HA crystallites.

The intensity was integrated over 3608 in a narrow band

containing the (0 0 2) reflection and plotted versus the

azimuthal angle. The peaks were fitted to a Gaussian peak-

shape and the full width half maximum (FWHM) value

determined. By applying this procedure to each of the

diffraction images, a spatial map of texture distribution in

the (0 0 2) direction in the enamel was constructed.

The diffraction data of ten patterns close to the surface of the

healthy enamel, and MPS IVA affected enamel respectively

were summed and analysed by Rietveld refinement28 using

GSAS software.29 The instrument parameters were calibrated

using a LaB6 standard sample. The two summed patterns were

fitted with a HA phase with hexagonal space group P63/m.

Lattice parameters, Lorentzian line broadening and spherical

harmonic texture parameters were refined. Microstrain, al-

though a refinable parameter within GSAS, was found to be

negligible in these enamel specimens therefore was kept fixed.

3. Results

A typical diffraction pattern fitted to the calculated HA phase

using Rietveld refinement is demonstrated in Fig. 2 together
mel with Rietveld refinement including the observed data

 the difference curve (grey solid line) and the tick marks for

. The inset shows the summed 2D X-ray image for this



Table 1 – Refined structural parameters for surface
enamel diffraction patterns fitted with HA phase. The
low x2 value (<1.0) is likely due to low-noise summed
area detector data which has been converted into 1D
underestimating the collection statistics.

Parameter Healthy enamel MPS IVA affected enamel

Space group P63/m P63/m

a (Å) 9.2514(3) 9.2655(3)

c (Å) 6.7347(2) 6.7402(2)

pjj (nm) 109.16(7) 86.7(6)

p? (nm) 43.86(3) 49.84(3)

pjj/p? 2.49(3) 1.74(2)

0 0 2(SH) 5.6(1) 4.9(1)

x2 0.4 0.2
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with its 2D X-ray diffraction image (Fig. 2. inset). The tabled

results of the refinement are given in Table 1. Lattice

parameters (a and c), Lorentzian line broadening ( pjj and p?),

and spherical harmonic texture parameters (0 0 2(SH)) were

refined producing a good fit to the HA phase. Lorentzian line

broadening was refined to find the anisotropic particle sizes

from the Scherrer equation. The parallel ( pk) and perpendicu-

lar ( p?) components to the anisotropic particle size effects

were given by:

pk ¼
1620l

pðX þ XeÞ
and p? ¼

1620l

pX

where l is the X-ray wavelength; X is Lorentzian particle size

broadening; and Xe is the anisotropic coefficient of Lorentzian

broadening.29

An example of the typical variations in Intensity around the

(0 0 2) Debye ring for healthy and MPS IVA affected enamel are

plotted in Fig. 3 with a Gaussian peak shape fitted to determine

the FWHM. It was observed that the FWHM of affected enamel

is over double that of healthy enamel, indicating less

orientation of crystallites in affected enamel.

The results of the texture distribution analysis are shown in

Fig. 4a–d. The x-axis represents distance from the surface

enamel towards the ADJ and the y-axis represents vertical
Fig. 3 – The variation in intensity around the Debye ring of the

enamel (open circles), and close to the surface of MPS IVA affecte

points. The solid line is a fit to a Gaussian peak shape from wh
distance. In healthy enamel (Fig. 4a) the FWHM values

decrease as a function of distance from the enamel surface.

In contrast the FWHM values of the MPS II and MPS IVA

affected enamel (Fig. 4b–d) do not vary significantly as a

function of distance.

Fig. 5 shows four typical scanning electron micrographs for

the healthy deciduous enamel section (Fig. 5a–d), and for MPS

IVA affected enamel (Fig. 5e–h). In Fig. 5d (healthy enamel

close to ADJ) clear scalloping (Fig. 5d, arrow 1) and close

integration of dentine and enamel can be seen with a small

region of closely packed enamel crystallites at the ADJ (Fig. 5d,

arrow 2), with prismatic order emerging �5 mm from the ADJ.

In contrast in Fig. 5h (MPS IVA affected enamel close to ADJ)

there is no evidence of scalloping, instead a microgap between

dentine and enamel is observed (Fig. 5h, arrow 3). Compared to

the healthy ADJ, there is a larger region of tightly packed

enamel crystallites (Fig. 5h, arrow 4), and a less well defined

prismatic order emerges. In the healthy enamel closer to the

surface (Fig. 5a–c) there is good differentiation between prisms

and interprismatic enamel (Fig. 5c, arrow 5); sharp, well

defined crystallite boundaries; and a uniform prismatic

structure. Whereas in the MPS IVA affected enamel (Fig. 5e–

g) a non-uniform prismatic structure emerges with atypical

prism shapes (Fig. 5f, arrow 6); larger regions of aprismatic

enamel; and the individual crystallites are less well defined.

4. Discussion

There is a 0.2% variation in lattice parameter between healthy

and affected enamel. Enamel is not pure hydroxyapatite,

rather a carbonate substitute apatite, with CO3
2� concentra-

tions ranging from 1–5% from surface to tissue interior.30 The

0.2% variation lies within the intratooth variations we have

reported previously of 0.1–0.6%9 therefore is likely to be

attributed to slight variations in chemical composition rather

than related to the metabolic disorder.

The anisotropic particle size broadening varies between

healthy and MPS IVA affected enamel, with the crystallite
 (0 0 2) Bragg reflection close to the surface of the healthy

d enamel (solid triangles). The error bars lie within the data

ich the FWHM values were determined.



Fig. 4 – Texture distribution maps showing the degree of crystallite alignment in (a) healthy deciduous incisor, (b) deciduous

incisor affected by MPS II, (c) and (d) deciduous incisor affected by MPS IVA. The x-axis represents distance from the surface

enamel (left-hand side) towards the ADJ (right-hand side) and the y-axis represents vertical distance at the same scale. The

colour scale is the FWHM (in degrees) of the azimuthal peaks fitted to a Gaussian peak-shape.
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aspect ratio ( pk/p?) 2.49(3) for healthy enamel and 1.74(2) for

the MPS IVA affected enamel. This indicates that for surface

enamel the HA crystallites are smaller and less anisotropic in

MPS IVA enamel as compared to healthy enamel. This

correlates with the statistically significant higher texture

parameter (0 0 2(SH)) of 5.6(1) for healthy enamel as compared

to that of MPS IVA enamel 4.9(1).
Fig. 5 – Scanning electron micrographs taken from the surface 

deciduous enamel and (e)–(h) enamel affected by MPS IVA. Feat

crystallite packing (2 and 4), microgap (3), prism/interprism bou

magnification is the same for each image and the scale bar is g
Results presented in Fig. 4 indicate that texture distribu-

tions in MPS II and IVA enamel are substantially different to

that of healthy enamel. In healthy deciduous enamel (Fig. 4a)

there is a steady decrease in ordering (crystallite alignment) as

a function of depth into the tooth. We have reported a similar

trend in the past in the permanent dentition, where we

observed that HA crystallites are most aligned in the cuspal
towards the ADJ going from left to right for (a)–(d) Healthy

ures are highlighted with arrows: scalloping (1), close

ndary (5), non-uniform prism structure (6). The

iven.
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regions, whilst along sides of the tooth away from the cusps

and deeper into the enamel, crystallites are less ordered, likely

due to the convolution of prism directions which occurs

towards the ADJ.9,26 In contrast, the plots shown in Fig. 4b–d

indicate that the texture in MPS II and IVA affected enamel

does not vary as a function of depth into the enamel. Instead

the degree of crystallite ordering remains constant throughout

the tooth thickness. This trend is seen also on the prismatic

length scale from the SEM images shown in Fig. 5.

In MPS IVA the deficiency of N-acetylgalactosamine

6-sulphatase (GALNS) manifests clinically and radiographically

in enamel which is hypoplastic and can detach easily from the

underlying dentine. Generally a thin enamel layer is indicative

of a developmental disturbance during the secretory stage of

amelogenesis. Through in situ hybridization of a day 1 mouse

incisor it has been shown that GALNS mRNA is most abundant

in secretory ameloblasts.21 Therefore it is likely that the

disruption in the texture gradation and reduced ordering in

the prismatic structure we observed in MPS IVA affected enamel

is likely to start in the secretory stage of amelogenesis. However,

although mineralization starts in the secretory stage, the

thickening of enamel crystallites, where the degree of preferred

orientation is defined continues through the maturation stage,

therefore it is likely that the texture distribution is determined

by disruption of cellular and matrix-mediated events at both

stages. At the earliest stages of amelogenesis, it has been

suggested that GAGs may serve as a matrix for anchoring

amelogenin at the ADJ so that a close bond is established

between enamel and dentine.31 The absence of good integration

between enamel and dentine at the ADJ of the MPS IVA enamel

(Fig. 5h) may be indicative of the lack of the specific sulphatase

which should remove the GAGs from the dentine tubule sites to

allow proper intergration at the ADJ.

In addition, normal enamel matrix mineralization has been

demonstrated to be disrupted in animal models by suppres-

sion of Ca2+ATPase activity and ATP-dependent calcium

pumps are observed ultracytochemically at specific regions

of the Tomes process of ameloblasts.32 Moreover, the potential

role of Ca2+ trafficking has been reported in many lysosomal

storage disorders including evidence for a potential link with

mitochondrial dysfunction.33 This was not predicted to be

present in patients affected by MPS IVA but these findings in

enamel may provide some evidence that other tissues like

bone and muscle should be investigated in this cohort.

To the authors’ knowledge there have been no reports of

enamel defects associated with Hunter syndrome (MPS II),

however in this study we clearly see disturbances in MPS II

enamel crystal organisation. In fact, disruption in enamel

texture appears more severe in MPS II than in MPS IVA.

Accumulation of GAGs in the dental follicle of developing teeth

in other MPS diseases, such as Hurler syndrome (MPS I) has

been reported in the past,23 but dental abnormalities are not

always clinically obvious. It may be in MPS II the disruption

affects the crystallography and nanostructure of enamel but

has not yet been detected clinically on the macroscale.

We have shown that the use of 2D synchrotron micro-

diffraction, a state of the art technique, has the potential to

provide unique insights into the mechanisms leading to

deranged enamel formation in a disease state. The detailed

characterisation of apatite crystallite orientation in dental
enamel can provide an accessible and minimally invasive

route to improve our understanding of the biomineralization

process in enamel and our understanding of pathogenesis of

systemic disturbances affecting mineralization. The structur-

al information provided may have direct relevance for

clinicians managing disease prevention or restoration of

these tissues. For example, in the scenario provided, the lack

of regular HA crystal orientation throughout the enamel

thickness in MPS II and IVA may explain the poor success of

adhesive restorations bonded to etched-enamel which is

observed clinically.15

5. Conclusions

We have used 2D synchrotron X-ray diffraction to study the

texture distribution in enamel affected by MPS IVA and II.

Significant differences were observed in the texture distribu-

tion of the MPS IVA and II affected enamel as compared to

healthy tissue, characterised by less gradation of enamel

crystal orientation in MPS-affected enamel compared to

healthy tissue. The use of this state of the art technique has

the potential to provide a unique insight into the mechanisms

leading to deranged enamel formation in a wide range of

disease states.
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