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Monotonicity of CF-coefficients in Gauss-fractions
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Abstract

Monotonicity properties of coefficients in S-fraction expansions are often very useful in the computation of
truncation error bounds for approximate function values. For hypergeometric functions2F1 with parameters such
that the C-fraction expansion is an S-fraction, it turns out that the CF-coefficients essentially always have those
properties. This is proved in the present paper.
© 2004 Elsevier B.V. All rights reserved.
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Let Z be the set of integers, and

Z+ = {x ∈ Z; x >0}, Z
+
0 = {x ∈ Z; x�0},

Z− = {x ∈ Z; x <0}, Z
−
0 = {x ∈ Z; x�0}.

The Gauss hypergeometric series2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k! , a, b ∈ C, c /∈ Z
−
0 .
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It converges in the open unit disk|z| <1 to an analytic function. The sum is also denoted2F1(a, b; c; z)

and is called the Gauss hypergeometric function. This also extends to possible analytic continuations.
In the following, we leave out the subscripts.
Let a, b, c ∈ R. Moreover, we assume thata, c, c − b /∈ Z

−
0 and b, c − a /∈ Z−. Then we have the

S-fraction expansion

z · F(a, b + 1; c + 1; −z)

F (a, b; c; −z)
= ∞
K

�=1

(c�z

1

)
, (0)

wherec1 = 1 and

c2m+2 = (a + m)(c − b + m)

(c + 2m)(c + 2m + 1)
, m ∈ Z

+
0 , (1)

c2m+1 = (b + m)(c − a + m)

(c + 2m − 1)(c + 2m)
, m ∈ Z+. (2)

The equality in (0) means on the one hand, correspondence between the Taylor series expansion at
z = 0 of the left-hand side and the C-fraction on the right-hand side. On the other hand, it means
equality in a disk aroundz =0 where both converge. Since the left-hand side is meromorphic and has a
derivative=1 at the origin, the series must converge in a disk centered atz = 0. The continued fraction
is known to converge inC\(−∞,1].
The variablez is generally complex. In view of themost frequent application we shall heremostly think

of z as being real,z = x. We recall thatcn → 1
4 whenn → ∞. For simplicity we shall here in addition

assumec >0.
The background and motivation for this article is the question about the best possible upper bounds

for truncation errors of S-fraction approximantsgenerally. A strong tool in this is the oval sequence
theorem by Lisa Lorentzen[1,2], also in the complex case. In the real case, ovals and disks are replaced
by intervals. Possible monotonicity properties of the sequences of coefficients may enhance the method
substantially by leading to very good (small) upper truncation error bounds. S-fractions of ln(1+ z) and
arctanz are examples with such monotonicity properties.
In this article observationsonmonotonicity propertiesof thesequences{c2m}and{c2m+1}arepresented.

These observations extend substantially the range of applicability of the combination real oval sequence
theorem/monotonicity properties of coefficients.

Theorem 1. Let the sequences{c2m+2}∞0 and{c2m+1}∞1 be as above with the given conditions ona, b, c.
If a = b + 1

2, then the two sequences merge by interlacing to one sequence{ck}∞k=2, where

ck = (2b − 1+ k)(2c − 2b − 2+ k)

4(c + k − 2)(c + k − 1)
, k�2 (3)

and the following holds: If (2b − c + 1)(2b − c) �=0, then the sequence is monotone. The sequence is
increasing if(2b − c + 1)(2b − c) >0 and decreasing if(2b − c + 1)(2b − c) <0. If a �= b + 1

2 and
(2b − c + 1)(2b − c)(2a − c)(2a − c − 1)�0,both sequences are monotone. Ifa < b + 1

2 the sequence
{c2m} is increasing, the sequence{c2m+1} is decreasing. Ifa > b + 1

2 the sequence{c2m} is decreasing,
the sequence{c2m+1} is increasing.
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Proof. Using the fact that bothc2m+2 andc2m+1 tend to14 whenm → ∞ we find, when we pretend that
m is a positive real number:

[(c + 2m)(c + 2m + 1)]2 d
dm

(c2m+2) =: Tev(m),

whereTev(m) is the following polynomial:

Tev(m) = Pevm
2 + Qevm + Rev,

where

Pev= (−4a + 4b + 2), Qev= (2c2 − 8ac + 8ab + 2c),

Rev= (c3 + 4abc − 3ac2 + c2 − bc2 − bc − ac + 2ab).

Fora = b + 1
2 the polynomialTev(m) reduces to the linear expression

(1
2

)
((2c + 1)(2b − c + 1)(2b − c) + 4(2b − c + 1)(2b − c)m), (4)

which is 0 form = −(12)(c + 1
2) <0.

Doing the same for theoddordered sequence we find, with self-explaining notations

Tod(m) = Podm
2 + Qodm + Rod.

Here

Pod= (4a − 4b − 2), Qod= (2c2 − 8bc + 8ab − 2c),

Rod= (c3 + 4abc − ac2 − c2 − 3bc2 + bc + ac − 2ab).

Fora = b + 1
2 the polynomialTod(m) reduces to the linear expression

(1
2

)
((2c − 1)(2b − c + 1)(2b − c) + 4(2b − c + 1)(2b − c)m), (5)

which is 0 form = −(12)(c − 1
2) < 1

4.
From the two linear expressions, (4), (5), both with the same coefficient form, follows immediately

the monotonicity statement for the casea = b + 1
2 in the theorem. Moreover, whena = b + 1

2 is inserted
into (1) and (2) we immediately get (3). The first part of the theorem is thus proved.
For a �= b + 1

2 the polynomialsTev(m) andTod are of degree 2, and the zeros are determined in the
standard elementary way. The discriminants in both cases are equal and equal to

4(2b − c + 1)(2b − c)(2a − c)(2a − c − 1). (6)

If the discriminant is�0, the polynomialsTev(m) andTod do not change sign. This implies monotonicity
of the sequences of even order and of odd order coefficients. Thetypesof monotonicity are determined
from the coefficient ofm2, which is−4a + 4b + 2 in the even case and 4a − 4b − 2 in the odd case.
From this the rest of the theorem follows immediately.
The remaining case is when discriminant (6) is positive,

4(2b − c + 1)(2b − c)(2a − c)(2a − c − 1) >0,
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in which case the quadratic equation has two distinct real roots. Letm� andmr be the roots,m� < mr.
Usually they are different in the even and odd cases. Then the corresponding sequence of elements (even
order sequence or odd order sequence) is monoton for all integerm > mr, increasing if the coefficient of
m2 is positive, decreasing if it is negative. Expressed in terms of the parameters this is as follows:

The case of real roots. In both cases we find

m�, mr = −Q ± √
Q2 − 4PR

2P
. (7)

By inserting the even and odd values forP, Q, R in (7) this leads to the following results:
Fora < b + 1

2 and

m�
−c2 + 4ac − 4ab − c + √

(2b − c + 1)(2b − c)(2a − c)(2a − c − 1)

−4a + 4b + 2
, (8a)

the sequence{c2m+2}∞m=0 is increasing.
Fora > b + 1

2 and

m�
−c2 + 4ac − 4ab − c − √

(2b − c + 1)(2b − c)(2a − c)(2a − c − 1)

−4a + 4b + 2
, (8b)

the sequence{c2m+2}∞m=0 is decreasing.
Fora > b + 1

2 and

m�
−c2 + 4bc − 4ab + c + √

(2b − c + 1)(2b − c)(2a − c)(2a − c − 1)

4a − 4b − 2
, (8c)

the sequence{c2m+1}∞m=1 is increasing.
Fora < b + 1

2 and

m�
−c2 + 4bc − 4ab + c − √

(2b − c + 1)(2b − c)(2a − c)(2a − c − 1)

4a − 4b − 2
, (8d)

the sequence{c2m+1}∞m=1 is decreasing. �

Example 1. Takea = 1, b = 2, c = 3. Herea < b + 1
2. Moreover, we find that the value of the root

expression in (8a) is−1. In (8d) it is−2. This leads to the following:
Form > − 1, i.e. for allm-values�0, the sequence{c2m+2} is increasing.
Form > − 2, i.e. for allm-values>0, the sequence{c2m+1} is decreasing.
In this example

c2m+2 = (1+ m)2

(3+ 2m)(4+ 2m)
, z ∈ Z

+
0 ,

c2m+1 = (2+ m)2

(2+ 2m)(3+ 2m)
, z ∈ Z+.

The established monotonicity properties here are easily verified.
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In some cases the monotonicity can be seen in a simpler way. One such example is when the roots
of T (m) = 0 in even or odd case are negative. In such a case we have monotonicity of the even or odd
coefficient sequence. Necessary and sufficient condition for the largest root to be negative and hence
both roots to be negative is that their product is positive and their sum is negative. Stated in terms of the
coefficients, this is

R

P
>0,

Q

P
>0.

Expressed by the parameters, and with the convenient change from quotients to products, this takes
the form

(c3 + 4abc − 3ac2 + c2 − bc2 − bc − ac + 2ab)(−4a + 4b + 2) >0, (9a)

(2c2 − 8ac + 8ab + 2c)(−4a + 4b + 2) >0 (9b)

in the even order case. The sequence{c2m+2} is increasing fora < b + 1
2 and decreasing fora > b + 1

2.
In the odd order case we get the condition for two negative roots as follows:

(c3 + 4abc − ac2 − c2 − 3bc2 + bc + ac − 2ab)(4a − 4b − 2) >0, (10a)

(2c2 − 8bc + 8ab − 2c)(4a − 4b − 2) >0. (10b)

The sequence{c2m+1} is increasing fora > b + 1
2 and decreasing fora < b + 1

2.
In Example 1 we had this situation, as we already have seen, since the two larger roots are−1 and−2

in even and odd case, respectively. We have in this example in the even case

P = 6, Q = 16, R = 10

and thusR/P >0, Q/P >0 andP >0.
In the odd case we have

P = −6, Q = −20, R = −16
and thusR/P >0, Q/P >0 andP <0.

Example 2. Takea = 1, b = 2, c = 1
2. Herea < b + 1

2. Moreover, the value of the root expression in
(8a), i.e. the larger root in the even case is−0.552. . . , whereas in (8d) the root, the larger root in the odd
case is 0.052. . . . From this follows that the even order sequence and the odd order sequence both are
monotone. The sequence{c2m+2}∞0 is increasing, whereas{c2m+1}∞1 is decreasing. In this example,

c2m+2 = (m + 1)
(
m − 3

2

)
(
2m + 1

2

) (
2m + 3

2

) , z ∈ Z
+
0

and

c2m+1 = (m + 2)
(
m − 1

2

)
(
2m − 1

2

) (
2m + 1

2

) z ∈ Z+.

The stated monotonicity properties are easily established.
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In Example 2 the remarks after Example 1 were not applicable, since in the odd case, i.e. in (8d), the
largest root was positive.

Remark. Related results, even simpler, may be obtained in the same way forconfluenthypergeometric
functions.
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