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INTRODUCTION

Separably closed fields, Henselian fields, PAC fields, PRC fields, and
PpC fields enjoy a common feature: each of them is existentially closed in
the corresponding field of formal power series. We have called a field K
with this property ample. (Pop, who introduces this type of field in [Po1],
calls them *large.” Since this name has been used earlier with a different
meaning, we have modified it to “ample” [HJ, Definition 6.3 and the
attached footnote].) Alternatively, a field K is ample if each absolutely
irreducible curve C over K with a simple K-rational point has infinitely
many K-rational points. The main result of [HJ] reveals a remarkable
property of K: each finite constant split embedding problem over K(x) has
a rational solution. More precisely, [HJ] gives an alternative proof to a
result of Pop [Pol, Main Theorem Al

THEOREM 1.  Let K be an ample field and let L be a finite Galois extension
of K. Suppose that £(L /K) acts on a finite group G. Then there is a field F
with the following properties:

(@) F is a Galois extension of K(x) that contains L.

(b) There is an isomorphism o: G X Z(L/K) - Z(F/K(x)) such
that res; o a = pr.

(¢) F has an L-rational place ¢: F — L U {}.
Among others, this result settled Problem 24.41 of [FrJ]: every PAC
Hilbertian field is w-free.
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Previous proofs of this result used analytical methods (complex analyti-
cal methods in characteristic 0 [FrJ] and rigid analytical methods in the
general case [Pol]). In contrast, our approach in [HJ] was elementary,
algebraic, and, together with [HV], self-contained. Indeed, we took an
axiomatic approach: Let F/E be a Galois extension of arbitrary fields.
Suppose that £(F/E) acts on a finite group G. Suppose that this action
extends to a ‘“proper action” on appropriate ‘“patching data”
(E,F,Q;,Q;G;,G);; Then the split embedding problem G X £(F/E)
— Z(F/E) has a solution.

In this note we use our approach via algebraic patching to give an
elementary proof of a generalization of Theorem 1, due to Pop [Po2,
Theorem 2.7]:

THEOREM 2. Let E be a function field of one variable over an ample field
K. Suppose that E /K is separable. Let F be a finite Galois extension of E.
Denote the algebraic closure of K in F by L. Suppose that £(F /E) acts on a

finite group G. Then there exists a finite field F with the following properties:

(@ F is a Galois extension of E that contains F.

(b) There is an isomorphism a: G X Z(F/E) — Z(F /E) such that
res, o a = pr.

(©) F is a regular extension of L.

Group theoretic and Galois theoretic manipulations reduce the proof of
Theorem 2 to the case where E = K(x) and x is, as always, transcendental
over K (Proposition 1.4). Moreover, we may extend L if necessary, so that
F has an L-rational place ¢: F —» L U {»} and ¢(x) € K. As usual, we
replace K at this point by K((¢)), if necessary, to assume that K is
complete under an ultrametric absolute value, its residue field is infinite,
and L/K is an unramified extension. Let I' = £(L(x)/E) and G, =
Z(F /L(x)). The existence of ¢ implies that the extension £(F/E) —» T
splits. As in [HJ], we then construct patching data (L(x), F;, Q;, Q; G;,G X
Gy, on which T' acts properly such that 1 €7 and F, = F. The
“‘compound” F of this patching data is a Galois extension of E, and there
exists an isomorphism «: (G X G,) X T' - Z(F/E) such that resz ,; ,°
@ = pry.. Moreover, let «, be the restriction of « to G X G,. Based on an
observation of [HV], we find that F contains F, a,(G X G,) = £(F/L(x)),
and resg,peag =prg. As (GXG) XD =G X(G XT) =G~
Z(F/E), the field F is a solution to the original embedding problem pr:
G X 2(F/E) - Z(F /E).
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1. GENERALITIES ON SPLIT EMBEDDING PROBLEMS

Let K, be afield. Let x be a transcendental element over K, let E, be
a finite extension of K(x), and let E be a finite Galois extension of E,.
Assume that £(E /E,) acts on a finite group G; let G X £(E /E,) be the
semidirect product and let pr: G X £(E/E,) - £(E/E,) be the corre-
sponding projection. We call

G X Z(E/E,) > #(E/E,) (1.1)

a split K -embedding problem. A solution field to problem (1.1) is a finite
Galois extension F of E, containing E, for which there exists an isomor-
phism a: G X Z(E/E,) - Z(F/E,) such that res; o « = pr.

Let K be the algebraic closure of K, in E. We say that (1.1) is regular if
E/K is regular, that is, E/K is separable. For instance, if E,/K, is
separable, then (1.1) is regular. We say that the solution is regular if F is
regular over K.

Clearly, only a regular embedding problem may have a regular solution.

LEMMA 1.1. In the above notation, let (1.1) be a split K,-embedding
problem. Let E' be a finite Galois extension of E, that contains E, let res:
Z(E'/E,) —» Z(E/E,) be the restriction map, and let h: G — G be an
epimorphism of finite groups. Assume that Z(E' /E,) acts on G' such that

h(o?) =h(a)®™  foreachy € Z(E /E,) and o € G'. (1.2)

Consider the corresponding split K -embedding problem:
pr’
G XNZ(E'/E,) » Z(E'/E,). (1.1)

(@ If (1) has a solution, then (1.1) has a solution.
(b) If (1) has a regular solution and E, /K, is separable, then (1.1) has
a regular solution.

Proof. Let F' be a solution of (1.1) and let o': G' X Z(E'/E,) —
Z(F'/E,) be an isomorphism such that res, - «’ = pr'.
By (1.2) there is a commutative diagram of group epimorphisms:

G X Z(E JEy) 2 9(E'JE,)
l(h, res) ll’es 1.3
G X Z(E/E,) ~> #(E JE,).

Let C be the kernel of the map (4, res): G' X Z(E'/E,) - G X Z(E/E,)
and let F be the fixed field of «’'(C) in F’, that is, a'(C) = E(F'/F). As
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C < G' X Z(E'/E,), the extension F/E, is Galois. We have
resp & (F'/F) = resg poresp e a'(C) =resp popr'(C).

Hence by (1.3), res,£(F'/F) = 1. Therefore, E C F. The isomorphism o’
induces an isomorphism «: G X Z(E/E,) —» Z(F /E,) such that res o «
= pr.

1 1 1
F—F c o G(F'/F) —=, G(E'/E)
Eo E——FE  G'%\G(E'/E)) =%+ G(F'/Ey) 2+ G(E'/E,) (1.4)
’ ’ ‘ (h,res) res res
Ky K—K' GX]g(E/Eo) —a—’g(F/Eo) in(E/EQ)
1 1 1

This proves (a).
Let K be the algebraic closure of K, in E and let K’ be the algebraic

closure of K, in E'. Assume that E,/K, is separable. Then so is F/K,,
and hence so is F/K.

By diagram (1.4), res, Z(F'/F) = £(E'/E). Hence F N E' = E. It fol-
lowsthat FNK'=FNE NK' =ENK' =K. Thus, if F'/K’ is regular,
sois F/K. 1

LEMMA 1.2. Let F be a (regular) solution of a split K,embedding
problem,

pr
G X Z(E/E,) > 2(E/E,).
Let Ej be an intermediate field of E /E,, and let K, be the algebraic closure of

K, in Ej. Then the subgroup Z(E /E}) of £(E/E,) defines a split K-em-
bedding problem,

G X Z(E/Ey) S 9(E/E)),

and F is its (regular) solution.
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Proof. If a: G XZ(E/E,) — Z(F/E,) is an isomorphism such that
resp o a = pr, then a(G X Z(E/Ep) = £(F/Ep). 1

LEmMMA 1.3.  Let I be a subgroup of a finite group A. Suppose that T acts
on a finite group G. Then there exist a finite group G' and an epimorphism h:
G' - G such that A acts on G' and W(c?) = h(o)? for each v € T and
ce d.

Proof. Part A: A free group. We first omit the requirement that G’ be
finite; in fact, we now require that it be a finitely generated free group.
Choose a set X of generators of G. Let Y = X X A and let G be the free
group on Y. The group A acts on the set Y by multiplication from the
right on the second factor. This action extends to an action of A on the
group G. Choose a system of representatives A, for the left cosets of I' in
A, thatis, A = Useca, 6. Defineamap h: Y — G by

ﬁ(x,éy)=xy forxeX, € A,,andyeTl.

This map extends to an eplmorphlsm h: G - G. For all y,y" €I' we have
h((x, B'y )) = h(x, 8y'y) = x'7 = h(x, 8y')". Hence h(o’)y = W(5”) for
each & € G and each v €T, as required.

Part B: A finite group. As G is finitely generated, the collection 7 of
all epimorphisms of G_onto G is finite. Therefore N = N,.Kerf is a
normal subgroup of G of finite index. As h € 7, we have N < Ker .
Hence G’ = G/N is a finite group and 7 induces an epimorphism #:
G - G.

If 5 < Aut(G), then {f- 8|f € ¥} =, and hence 8(N) = N. There-
fore each 8 € A induces a unique automorphlsm 6 of G’ such that
(oN)® = o°N for each o € G. It follows that A acts on the group G
Moreover, for each y € T,

h((oN)") =h(o'N) =h(a”) =h(a)" =h(aN)".

Hence h(o?) = h(o)? for each y €T and each o € G'. 1

PROPOSITION 1.4.  Suppose that every (regular) split K,-embedding prob-
lem,

pr’
G' X Z(E'/Ky(x)) = Z(E'/Ko(x)), (1.5)
has a (regular) solution. Then every (regular) split K ,-embedding problem,
G X F(E/Ey) > % (E/Ey), (L5)

has a (regular) solution.
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Proof. There are two cases to consider:

Case A. E,/K, is separable. Replace x with another transcendental
element (separating transcendence basis) of E,/K, to assume that
E,/K,(x) is separable. Let E' be the Galois closure of E over K(x).
Then £(E'/E,) acts on G via the restriction map Z(E'/E,) — Z(E /E,).
Lemma 1.3 gives a finite group G’, an epimorphism A: G' — G, and an
action of Z(E'/K,(x)) on G’ such that h(c?) = h(o)” for each y e
Z(E'/Ey) and o € G'. This action defines a split K,-embedding problem
(1.5). As E'/K, is separable, (1.5') is regular. By assumption, it has a
regular solution. By Lemma 1.2, this solution is also a regular solution of

G N 9(E JE,)) > 9(E JE,).

By Lemma 1.1, (1.5) has a regular solution.

Case B. E,/K, is not separable. In this case char(K) =p > 0. Let
K, = K}/, where g is a power of p, and put E, = EK, and E' = EK|. if
q is sufficiently large then Ej/Kj is a separable extension; assume this is
the case.

As Ej/E, is purely inseparable, E'/E; is a Galois extension and the
restriction res: £(E'/E,) - Z(E/E,) is an isomorphism. Thus (1.5) in-
duces a split Kj-embedding problem,

G X Z(E'/Ey) - Z(E'/E}). (1.6)

The map y — y? gives an isomorphism of K; onto K,, and hence the
assumptions of our proposition are satisfied with Kj instead of K.
Therefore, by Case A, (1.6) has a regular solution F'. Again, as Ey/E, is
linearly disjoint from the separable closure of E, over E,, there exists a
unique Galois extension F/E, such that F' = FEj. In particular, the
restriction Z(F'/Ey) = £ (F/E,) is an isomorphism, and hence F is a
solution of (1.5).

Suppose now that (1.5) is regular; that is, E is regular over K = E N fo
Let K' = KK;. Then K'/K is a purely inseparable extension and EK' =
EK, = E'. Hence E'/K’ is regular; that is, (1.6) is regular. By our con-
struction, F'/K' is regular.

As both F/E and E/K are separable, so is F/K. Therefore the
algebraic closure M of K in F is separable over K and F/M is separable.
But F C F', and K' is algebraically closed in F’; hence M Cc K'. As K'/K
is purely inseparable, we have M = K. Conclude that F is a regular
extension of K. |§
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2. EMBEDDING PROBLEMS UNDER EXISTENTIALLY
CLOSED EXTENSIONS

__Consider a field extension I’<\0/K0 such that K, is existentially closed in
K,. That is, each algebraic subset 4 of A" that has a K, -rational point
also has a K,-rational point.

In particular, K,/K, is regular. Furthermore, if K is a finite extension
of K, and K = KK,, then K is existentially closed in K. Indeed, let
w4, ..., w; be a linear basis of K/K,. So if f & K[Xl,.. X,], there are
unique f,... fd € Ko[X;,..., X,]such that f= X lwf As K,/K, is
regular w,..., w,; is also a ba5|s of K/KO It foIIows that the equation
(X, ..., X, ) — 0 has a solution in K" (resp., K") if and only if

d d
Z Zlei""’Zwani =

has a solution in K" (resp., K"d). The latter equation can be written as a
system of equations over K, (resp., over K,). Thus f(X,,..., X,) = 0 has
a solution in K" if and only if it has a solution in K"

Consider a regular split K,-embedding problem,

H X Z(E/Ky(x)) > Z(E/Ko(x)). (2.1)

Assume that x is transcendental over Ko and put £ = EKO Then E is
linearly disjoint from K over K, [FrJ, Lemma 9.9], and therefore resz .
?(E/K (%) - ?(E/K (x)) is an isomorphism. Thus ?(E/K (x)) acts on
H via resg ;. This gives rise to a regular split KO embedding problem,

H % g(ERy(x)) > #(E/Ry(x)). (2.2)

Let K be the algebraic closure of K, in E. Then K= KK0 is the
algebraic closure of K, in E [Fr), Lemma 9.3]. Furthermore, let ¢:
E — K U {=} be a K-place unramified over K(x). As K and E are Imearly
disjoint over K, the place ¢ extends to a K-rational place ¢ of E,
unramified over K(x).

In this setup we prove the following.

LEMMA 2.1.  Assume that (2.2) has a solution field F such that § extends
to a K-rational place of F unramified over K(x). Then (2.1) has a solution
field F such that ¢ extends to a K-rational place of F unramified over K(x).

Proof. 'We may assume that ¢(x) = «; otherwise replace x by another
generator of K(x) over K.
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By assumption there exists an isomorphism «: H X ?(EA/I?O(x)) -
?(F/Ko(x)) such that reszo o = pr,_

So, there exist polynomials f € K[ X, Z], g € K[X,Y], and elements
z,y € F such that the following conditions hold:

(Ba) F= Eo(x, 2), f(x, Z) = irr(z, K,(x)); we may therefore iden-
tify Z(f(x, Z), Ko(x)) with £(F /Ky(x)).

(3b) F = K(x, ), g(x,Y) = irr(y, K(x)); therefore, g(X,Y) is abso-
lutely irreducible. By Lemma 2.2 we may assume that g(X,Y) = 4+
a(X)y"" ' + - +a,(X) with a, € K[X] and deg a,(X) < det al(X) > 1,
fori=1,...,d.

All of these objects depend on only finitely many parameters from Ifo.
So, let u,,...,u, be elements of K, such that the following conditions
hold:

(4a) F = Ky(u, x, z) is a Galois extension of K,(u, x), the coeffi-
cients of f(X, Z) lie in_K[u], f(x, Z) = irr(z, K,(u, x)), and Z(f(x, Z),
Ky(u, x)) = £(f(x, Z), Ky(x)).

(4b) F = K(u,x,y) and the coefficients of g lie in K[u]; hence
g(x,Y) =irr(y, K(u, x)).

As I'{\O/K0 is regular over K,, so is Ky(u). Thus, u generates an
absolutely irreducible variety U = Spec(K,[u]) over K,. The variety U has
a nonempty Zariski open subset U’ such that for each u € U’ the
K,-specialization (u, x) — (U, x) extends to an E-homomorphism '
Elu, x, z,y] - E[U, x, Z/,y'] such that the following conditions hold:

(5a) f'(x,Zz') =0, the discriminant of f'(x,Z) is not zero, and
F' = KU, x, 2') is the splitting field of f'(x, Z) over K,(U', x); in particu-
lar, F'/K,(U', x) is Galois.

(5b) g'(X,Y) is absolutely irreducible and g'(x,y’) = 0; so g'(x,Y)
= irr(y', K(U, x)). Furthermore, g (X,Y) =Y’ + a(X)Y' "' + - +
d,(X) with d; € K[X] and deg ¢)(X) < degdy(X) > 1,for i = 1,...,d.

To achieve the absolute irreducibility of g', we have used the
Bertini—Noether theorem [FrJ, Proposition 8.8]. Since K, is existentially
closed in K, and since u € U'(K,), we can choose u' € U'(K,). By (5a),
the homomorphism induces an embedding

o Z(f(x,Z), Ko(x)) > Z(f(x, Z), Ko(u, %)),

which commutes with the restriction to Z(K(x)/K,(x)) [La, p. 248].
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Observe that K(x) is linearly disjoint from K,(u) over K,:

F F— F
E E(u) E
K(z) K(u,z) K(z)
Ko(x) Ko(u,x) Ko(x)
K Ko(u) K

Hence, by (5b),

|Z(f'(x,Z),Ko(x))| = [F': Ko(x)] = deg(g'(x,2Z))[K(x):Ko(x)]
= deg(g(x,Z))[K(u, x): Ko(u, x)]
= [F:Ko(u, )] =|£(f(x,Z), Ko(u, ).

It follows that ¢* is an isomorphism. Hence (¢*)~! o o solves embedding
problem (2.1).

Extend ¢ to a place ¢’ of F'. Then ¢’ extends the specialization x — .
By Lemma 2.2 and (5b), ¢’ totally decomposes in F'/K(x), that is, ¢’ is
unramified and K-rational. [

LEMMA 2.2 ([GeJ, Lemma 9.2 and Lemma 9.3])). Let K be an arbitrary
field and consider a Galois extension F of K(x) of degree d that is regular over
K. Then the K-place x — « of K(x) totally decomposes in F if and only if
there exists y € F such that irr(y, K(x)) = Y9 + a,(x)Y4 "1 + -+ +a,(x)
with a; € K[x] such that deg a(X) <dega,(X) > 1, fori =1,...,d.

3. SPLIT EMBEDDING PROBLEMS AND PATCHING DATA

In this section we fix a finite Galois extension E /E, with Galois group
I'. Assume that I" properly acts on patching data,

gz(EaF‘ilQilQ;GﬂG)iE]' (31)
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We explain these notions [HJ, Definitions 1.1 and 1.4]:

DerINITION 3.1, Patching data with a proper action. Let I be a finite set
with || > 2. Patching data (3.1) consists of fields £ c F,, Q; € Q and finite
groups G; < G, i € I, such that

(a) F,/E is a Galois extension with group G;, i € I

(b) F cQ;where Qi=nN;,; 0 i€l

() N, 0 =E.

(d) G=(Gliel).

(e) Letn =|Gl| Forall B€ GL,(Q) and i € I there exist
B, € GL,(Q;) and B; € GL,(Q;) such that B = B;B;.

A proper action of I' on & is a triple that consists of an action of I" on
the group G, an action of I" on the field Q, and an action of I" on the set 1
such that the following conditions hold:

(3.2)

(a) The action of I" on Q extends the action of I" on E.
(b) FY=F, Q=0 and G} =G, forallielandye . (3.3)
(c) (a’)'=(a”)" forallacF,reG, icl,andyeTl.

The action of I' on G defines a semidirect product G X I" such that
=y yforalreGand yeI. 1

For each i €I let P, = F,Q, be the compositum of F;, and Q, in Q.

Remark 3.2. Identifications. (a) ldentify T' with a subgroup of
Aut(Q/E,) by (3.3a). Furthermore, if L /E, is a Galois extension such that
E C L c Q, then the restriction res,, ,,: Aut(Q/E,) - £(L/E,) maps I
onto a subgroup I of £(L /E,). Moreover, res, ,.: £(L/E,) - Z(E/E,)
maps T onto I'. Hence T is isomorphic to I'. Again, identify T with T.
Thus both restrictions res, ,.: £(L/E,) > Z(E/E,) and res, ,;: I' >
Z(L/E) map T identically onto itself. In particular, £(L /E,) = (L /E)
X T.

(b) Conditions (3.2b) and (3.2c) imply that F, N Q; = E. Hence
P./Q; is a Galois extension with Galois group isomorphic (via the restric-
tion of automorphisms) to G, = £(F,/E). Identify £(P,/Q,) with G; via
this isomorphism. If L /E is a Galois extension such that LQ; = P, then
the restriction of G; to L is isomorphic to G;: again, identify this group
with G,. 1l

Consider the Q-algebra
= Ind{Q = { Y a,0la, € Q},

0eG
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where addition and multiplication are defined componentwise. Thus Q
embeds diagonally in N. For each i € I, consider the Q-subalgebra

N; = Ind¢ P, = { Y. a,0 ENla,€P,,a5=a, forall0€G,re Gi}.
0 G

Let F = N, N,

We know [HJ, Proposition 1.5] that F/E, is a Galois extension of fields
and there is an isomorphism : G X T' = £(F/E,). In fact, the proof of
[HJ, Proposition 1.5] explicitly describes this isomorphism, or, equivalently,
the action of G X T on F. Indeed, G acts on N by

( ) a90)u= Y ayjoc"= ) a,0, o€G, (3.4)

0eG 0eG 0eG

and I acts on N by

Y
( ) a(,B) = ) a)l0", a,€Q,y€eT; (3.5)
0eG 0eG
these two actions combine to an action of G X I" on N. The restriction of
this action to F is the required action.

The homomorphism 7: N — Q given by (X, ;a,0)™ = a, fixes E and
hence also E,. Therefore F’' = F™ (the compound of &) is a Galois
extension of E, with &(F'/E,) = £(F/E,) = G X T, and 7 defines an
action of G X T on F’ by

(a™)® = (a®)", acF,geGXT.

Let us describe this action, using (3.4) and (3.5). Let a = ¥,_;a,0 € F.
For each v € I we have

Furthermore, for each i € I and each o € G, = £(P,/Q,) we have F' C P,
and

a’" = ( Z ageﬂ) =a,=a; =a"’.
0eG
This gives the following result (in which F stands for F’; the original F

will not be used henceforth):

ProposITION 3.3.  Let F be the compound of &. Then F/E, is Galois
and there is an isomorphism . G X T" - Z(F /E,) that maps T and the G,
identically onto themselves (under the identification of Remark 3.2).
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COROLLARY 3.4. Assume that 1 € I and the following condition holds:
(a) 1"=1forallyeT;and

(b) G=HXG, whereH=(Gliel,i+1) <G, (3.6)
let p: G — G, be the canonical projection.

Then

(@ F,, O, and G, are T-invariant; put A = G, X T.

(b) F,/E, is a Galois extension.

(o) Z(F,/E,) = A, that is, the action of T on G, =%(F,/E) by
conjugation in Z(F,/E,) coincides with the action induced from the given
action of T on G.

(d) F,cFandresp, ;. £(F/E) > Z(F/E) is p: G - G,.
(e) The following diagram is commutative:

GXT —>2(F/E,)

pxidrl resl

A = G, X T=—%(F,/E,).

Proof. (a) This follows from (3.3b) by (3.6a).
(b) By assumption, F,/E is Galois. By (a), F; is T-invariant, that is,
every element of Z(E /E,) extends to an automorphism of F;. Hence each
E,-isomorphism of F, into E, maps F; onto itself.

(c) Remark 3.2 asserts that Z(F,/E,) is a semidirect product of G,
with I. By 3.3¢c), a” ™ =a" foralla e F,and y T,

(d) We have F, € N,c; P, because P, = F,Q, and, by (3.2b), F, C
Q,C P, foreach 1 #i €l Hence, if 0 € G, and 1 # i € I, then, since
F, € Q;, we have p(o) =1=res, (o). If 0 € G, =Z(P,/0Q,), then
p(o) = o =res, (o), by our identifications. Hence, by [HV, Lemma
3.6(c)] we have F, C F and res; . = p.

(e) It suffices to verify the commutativity on the elements of T" and
the G,’s, since they generate G X T'. Therefore the result follows from (d)
and Proposition 3.3. |

4. SPLIT EMBEDDING PROBLEMS OVER FUNCTION
FIELDS OF ONE VARIABLE OVER AMPLE FIELDS

In this section we present the main result. We first consider the special
case of complete field and then deduce the general case from it.
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ProposiTiON 4.1. Let K/K, be a finite unramified Galois extension of
complete fields under a nontrivial ultrametric absolute value such that the
residue field K, is infinite. Let

.

H % 5 (F,/Ko(x)) > F(Fy /Kol %) (4.)
be a split K -embedding problem. Suppose that K C F,. Let ¢ be a K-rational
K-place of F,, unramified over K(x), such that ¢(x) € K, U {}. Then (4.1)
has a solution field F such that ¢ extends to a K-rational place of F
unramified over K(x).

Proof. Put E; = Ky(x), E = K(x), and let T = £(K/K,) = Z(E /E,).
We may assume that H # 1.

We break up the proof into several parts. The idea of the proof is to
extend (E, F,) to patching data & = (E, F;, Q;, Q; G;,G),.; with1 € I on
which T properly acts; its compound F will be the required solution field.

Part A: Completion of (E,|). Extend || to an absolute value on E by
the formula X a,x" = max{la,l,...,la,l}. Then, the residue x of x is
transcendental over K, and the residue fields satisfy E, = K,(x) and
E = K(x) [HJ, Remark 3.2(b)]. Since K/K, is unramified, [K: K] =
[K:K,]=[E: E,] Let (E,, ) be the completion of (E,, ). Then E = E,K
is the completion of E with respect to [ Moreover, [K : K,] = [E: E,] <
[E E]<[K K,1 Hence [E E] [K: K,], and therefore E NK=
K,. So we may identify ?(E/E )Wlth I via restrictions to E and K Since
the extension of || from E to E is unique, each y € I' preserves the
absolute value on E. In particular, each vy € T is a continuous automor-
phism of E.

Part B: Construction of the Q,’s. Write H as
H={7]jeJ}, (4.2)

with the index set J of the same cardinality as that of H. Put I, =J X I
and let T act on I, by (j,y)" = (j,y"y). ldentify (j,1) € I, with j, for
each j € J. Then

Every i € I, can be uniquely written as i = j”

with jeJand yeT. (4.3)

Let 7 = {1} U I, and extend the action of I" on I, to an action on I by
17 = 1 for each y € T.
By Claim A of the proof of [HJ, Proposition 5.2], K has a subset
{c,li € I,} such that
c=cy and |¢l=lc;—¢l=1 fori#j and yeTl. (44)

As K, is infinite, we may choose ¢, € K, such that ¢, # 0, and
& {c,li € L,}. It follows that (4.4) holds for all i,j € I.



160 HARAN AND JARDEN

Foreach i €I let w, = 1/(x — ¢;). Let R = K{w,|i € I} be the closure
of K[w,li € Ilin E and let Q = Quot(R). For each i € I let

Q; = Q. = Quot(K{w/lj #i}) and Q;=Q, = Quot(K{w}).

By [HJ, Proposition 3.10], Q; = N;,,;Q; and E = K(x) = N, Q;- By
(4), each y e T" satisfies wY = w;, and therefore maps K[w,|i € I] onto
itself. Since the action of y on E is continuous, v leaves R, and hence
also Q, invariant. We identify T with its image in Aut(Q). In addition,
Q7 = Qv and (Q))? = Q}, for each i € I.

Part C: Without loss of generality, F;, € Q) and ¢(w,) = 0. To show
this, it suffices to construct a K-embedding 6: F, — Q) such that 6(E,) =
E,, 0(E) =E, and ¢ 6 *(w,;) = 0. Indeed, the isomorphism 6: F, —
6(F,) ensures that the assumptions and the conclusions of our proposition
hold for (F,, ¢) if and only if they hold for (8(F,), ¢ > 671).

We construct 0 as above in two steps.

As ¢ maps w, into K, U {x}, there is a K,-automorphism o of
E, = K,(w,) such that ¢ ° o *(w,) = 0. Extend o to a K-automorphism
of E and then to an isomorphism of fields F; — F;. Apply it to assume
that ¢(w,) = 0.

Let F;* be the completion of F, at ¢, and let E* C Fj* be the
corresponding completion of E. Then [F; : E*] = e(F,/E)f(F,/E) = 1.
But E* = K((w;)). Hence F, C F;* = K((w))).

Let z € K((w,)) be a primitive element for F,/E. For ¢ # 0 in K,
let w. be the automorphism of K((w,)) mapping f(w,) = X7_, aw! to
flew)) = X7, (a;c)wi. Note that u, leaves E = K(w,) and E, = Ky(w,)
invariant, and ¢ o u; *(w,) = o(c"'w,) = 0. By [Ar, Theorem 2.14] there
is ¢ € K* such that z as a Laurent series in w, converges at ¢. Thus
u(z) € O} and hence u (F,) c Q). (Although Artin uses analysis to prove
that an algebraic power series converges, one can give an algebraic proof
of this result, in the style of the proof of Hensel’s lemma.)

Part D: Groups. As F, C Q is a Galois extension of E,, it is I'-
invariant. Let G, = Z(F,/E). Identify I" < Aut(Q/E,) with its image in
Z(F,/E,). Then Z(F,/E;) = G, X T', where T acts on G, by conjugation
in £(F,/E,). Thus

(a")’ = (a”)" forallyeTl, acF, and r€G,. (45)

The given action of £(F,/E,) on H induces an action of its subgroups
G, and I' on H. Let G = H X G, with respect to this action. Then

HXZ(F,/E)) =HX (G, XT)=(HXG,)XI'=GXxT.
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Let i € I,. Use (3) to write i = j*" with unique j € J and 7' € I'. Then

define 7, = 77 and observe that

77 =1, foralliel,and yeT. (4.6a)
By (2),
H=[(rliel,). (4.6b)
Foreach i € I, let G, = {r;) < H. Thus
G=(Gliel)and H=(GJliel,). (4.60)
GY =G, forallielandyeT. (4.6d)
1] = 2. (4.6e)

Part E: Paiching data. For each j € J [HJ, Proposition 5.1] gives a
cyclic extension F;/E with Galois group G; = <Tj> such that F; c Q;. For
an arbitrary i € I, there exist unique j € J and y € T such that i = j” (by
(4.3)). Let F; = F. As y acts on Q and leaves E invariant, F; is a Galois
extension of E and F; C Q..

The isomorphism y: F; — F, gives an isomorphism £(F,/E) = £(F,/E),
which maps each 7 € £(F,/E) onto y loroye Z(F,/E). We can there-
fore identify G, with Z(F,/E) such that 7, coincides with y~* o7, oy. This
means that (a™)” = (a”)” for all a € F; and 7 € G;.

It follows that for all i €1 and y < I' we have FY = F,,. Moreover,
(a”)” = (a”)" for all a € F, and 7 € G;; this extends (5).

By [HJ, Corollary 4.5], GL ,(Q) = GL ,(Q,)GL ,(Q}) for each n € N and
each i € I. Thus & = (E, F,, Q;; G;,G),., is patching data on which T
properly acts (Definition 3.1). By Corollary 3.4(e) the compound F of & is
a solution of (1).

Part F: Extension of ¢. Let b € K, such that |b| > 1 and put z = b /x.
Let K{z} be the ring of convergent power series in z over K with respect
to the absolute value ||, given by [X7_,a,z"], = max(la,]). Let R, =
K[w;li € Il. Observe that

1 z z 1
Wi_x—c,-_b—ciz_b 1-(c;/b)z

o

5 (5] e

foreach i € I.

Thus R, € K{z}. Moreover, |w,|, =1/|b| <1 = |w,|. By [HJ, Lemma
3.3l every f € R, is of the form f=a, + X, ,X._,a,,w]', where a,, € K
and almost all of them are 0. Hence, |f|, < |fl, and therefore |f], < |fI.
Therefore the inclusion R, C K{z} is a continuous R ,-homomorphism. As

R is the completion of R, with respect to ||, [HJ, Lemma 3.3], this
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inclusion induces a continuous R ,-homomorphism A: R — K{z}. By [HJ,
Proposition 3.9], there is p € R, such that Ker A = (p). It follows that
p = 0 and hence A is injective.

Identify R with its image under A to assume that R c K{z} c K[[z]].
The specialization z — 0 extends to a K-rational place of K((z)) unrami-
fied over E = K(z). Its restriction to F is a K-rational place ¢ of F
unramified over £ = K(z).

As ¢(w;) = 0 = ¢(w,), we have res, i = res; ¢. Replace ¢ by o o
for a suitable o € £(F/E,), if necessary, to assume that res, y = ¢. |

PROPOSITION 4.2. Let K, be an ample field. Consider a (regular) split
K,-embedding problem,

pr
H X Z(E/Ky(x)) > Z(E/Ky(x)). (4.7)
Let K be the algebraic closure of K, in E. Then

(@ (4.7) has a (regular) solution F.

(b) Suppose that E has a K-rational K-place ¢ unramified over K(x)
such that ¢(x) € K, U {}. Then F has a K-rational K-place ¢ unramified
over Ky(x).

Proof. We first prove (b) and then deduce (a) from (b).

Proof of (b). Let ¢ be transcendental over E. Let K, = K, (1), K =
K((1)), and E = EK. Then K/K, is a finite Galois extension of complete
fields under the z-adic absolute value, and the corresponding extension of
residue fields is K/K (these are infinite fields). In particular, K/K, is an
unramified extension. Since the extension K/K is regular and free from
E /K, the fields K and E are linearly disjoint over K. Hence ¢ extends to
a K-rational place ¢ of E, and therefore K Is the algebraic closure of K0
in E. Furthermore, ¢ is unramified over K(x). Finally, f(E/Ko(x)) is
isomorphic to £(E /K,(x)) and acts on H via the restriction map. Thus

H X g(E/Ry(x)) > (E/Ry(x)) (4.8)

is a split K0 embedding problem.

__By Proposition 4.1, (4.8) has a solution field F such that & extends to a
K-rational place of F unramified over E. Since K, is ample, it is existen-
tially closed in K,. Lemma 2.1 therefore asserts the existence of a solution
field F of (4.7) and of a K-rational K-place of F unramified over K(x).

Proof of (a). Only finitely many K,-places of E are ramified over
Ky(x). Thus, there is a K,-place ¢ of E unramified over K,(x) such that
¢(x) € K,. Composing ¢ with an automorphism of E over K,(x), we may
assume that the restriction of ¢ to K(x) is a K-place. However, ¢ need



SPLIT EMBEDDING PROBLEMS 163

not be K-rational. Nevertheless, the residue field K’ of ¢ is a finite Galois
extension of K, that contains K. Let E' = EK'. Then ¢ extends to a
K'-rational place ¢' of E’, unramified over K'(x). Furthermore, E'/K,(x)
is a Galois extension, and its Galois group £(E’/K,(x)) acts on H via the
restriction Z(E'/Ky(x)) = Z(E /Ky(x)):

E E'

Ky(x)—K(x)—K'(x)

The existence of ¢’ implies that E' /K’ is regular.
By (b), the split embedding problem,

H X 2(E /Ky(x)) > Z(E'/Ky(x)), (4.7)

has a regular solution. Conclude from Lemma 1.1 that (4.7) has a solution
that is regular, if (4.7) is regular. |1

Combine Proposition 4.2 with Proposition 1.4 to get the following:

THEOREM 4.3. Let K, be an ample field. Then every (regular) split
K ,-embedding problem,

HXZ(E/E) S #(E/E,),

has a (regular) solution.
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