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We give a sufficient condition for a normal projective variety X to be isomorphic
to Proj R for a normal Gorenstein graded ring R. based on a criterion of
K.-i. Watanabe. When X is a Gorenstein variety, this condition for X is necessary
and sufficient. € 1993 Academic Press. Inc

INTRODUCTION

Let X be a normal projective variety over an algebraically closed field &,
and D an ample Q-divisor on X, i.e., a rational coefficient Weil divisor
whose multiple rD for some re N is an ample Cartier divisor. We consider
a normal graded ring R(X, D) defined by

R(X, D)= 6—) HOX, (y(nD)) T",

n=0

where (,(nD) is the divisorial sheaf associated with a Q-divisor nD
(see (0.1)). We are interested in finding a criterion for a normal projective
variety X over k£ to have an ample Q-divisor D with R(X, D) Gorenstein.
Since X = Proj R(X, D), thanks to a theorem of Demazure [1], it is
equivalent to asking when a normal projective variety over & is the Proj
of a Gorenstein normal graded k-algebra. When D is an ample Cartier
divisor, Goto and Watanabe [2] obtained a criterion for R(X, D) to be
Gorenstein. Using this, our problem for ample Cartier divisors D is
answered satisfactorily. In the case of ample Q-divisors, Watanabe [7] has
established a criterion for R(X, D) to be Gorenstein, in terms of D and the
canonical divisor K, of X (see (0.3)). But from this, much was not known
about our problem for ample Q-divisors D.
The purpose here is to solve our problem, at least when X is Gorenstein,
based on the criterion of Watanabe [7].
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Our main result of this paper is the following:

THEOREM. Let X be a Gorenstein normal projective variety of dimension
N over an algebraically closed field k.

(a) Suppose that H'(X, (',)=0 for 0 <i< N. Then, for every positive
odd integer a, there exists an ample Q-divisor D on X such that R(X, D) is
a Gorenstein graded ring with a(R(X, D))= a. (See (0.3.2) for the definition
of a(R(X, D)).) In particular, X is the Proj of a Gorenstein normal graded
k-algebra.

(b) Suppose furthermore that there exists a Cartier divisor F, with
H(X, C,(F))=0 for 0<i<N, such that 2F is linearly equivalent to a
canonical divisor K. Then, for every positive even integer a, there exists an
ample Q-divisor D on X such that R(X, D) is a Gorenstein graded ring with
a(R(X, D))=a.

It is well-known that the vanishing of cohomology groups of the
structure sheaf, assumed in (a) of the Theorem, is necessary for the Cohen-
Macaulay property of R(X, D) (see (0.3.1)). On the other hand, the
existence of a Weil divisor F with the property above, assumed in (b) as
well as the Cartier property of F, is necessary for the Gorenstein property
of R(X, D) with even a(R(X, D)), as we show in the Lemma (Section 1).
Therefore, by the theorem of Demazure [1, (3.5)], the Theorem implies:

COROLLARY. Let X be a normal projective variety of dimension N over
an algebraically closed field k.

(a) Suppose that X is Gorenstein. Let a be a positive odd integer. Then
X is isomorphic to Proj(R) for a Gorenstein normal graded k-algebra R with
a(R)=a if and only if H(X, (,)=0 for 0 <i<dim X.

(b) Suppose that X is a Cohen—-Macaulay locally factorial scheme.
Let a be a positive even integer. Then X is isomorphic to Proj(R) for a
Gorenstein normal graded k-algebra R with a(R)=a if and only if

{(bl) HY{(X,C,)=0 for 0<i<dim X, and

(b2) there exists a divisor F on X, with H'(X, ((,(F))=0for0<i<
dim X, such that 2F is linearly equivalent to the canonical divisor K.

Our exposition proceeds as follows: First we make a remark on the
necessary condition for X to have an ample Q-divisor D such that R(X, D)
is a Gorenstein with even a{(R(X, D)) (Section 1). We next discuss the con-
dition for a Q-Gorenstein projective variety X to have an ample Q-divisor
D with R(X, D) quasi-Gorenstein (Section 2). Using this, we prove the
Theorem (Section 3). Although the Gorenstein property of X plays an
essential role in our proof, it scems likely that the assumption is somewhat
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redundant for our purpose. In Section 4, we give some examples of X, to
which we cannot apply our theorem, having an ample Q-divisor D with
R(X, D) Gorenstein.

I am grateful to Professors K.-i. Watanabe and M. Tomari for valuable
discussions and encouragement.

0. NOTATION AND PRELIMINARIES

(0.1) Let k& be an algebraically closed field. Let X be a normal projec-
tive variety over k, where a variety over a field F means an integral
separated scheme of finite type over F. A Q-divisor on X is a Q-linear
combination of prime divisors on X. The Q-divisors D,, D, are linearly
equivalent, denoted by D, ~ D,, if D, — D, is a principal divisor on X.
A Q-divisor D is a Q-Cartier divisor if some positive multiple rD is a
Cartier divisor. A Q-divisor D is ample if some positive multiple rD of D
1s an ample Cartier divisor in the usual sense. For a Q-divisor D=
Y ,ay- Y with Y running through the set of prime divisors on X, we define
a divisorial sheaf ¢, (D) by (U, €, (D)) :={fe K(X); ¥ (f)+a,=0 for
all prime divisors Y on X with Y U= gf} for each open set U of X.
Here K(X) is the rational function field of X and ¥.(f) is the value of f
along Y. Hence (,(D)=C(,([D]), where [D]:=%,[ay] Y, ie, the
integral part of D.

(0.2) A canonical divisor K, on X is a Weil divisor such that
Cr (Kxly,) =050 %, where X, is the nonsingular locus of X and K|y,
is the restriction of K, onto X, . The divisorial sheaf (K ) is called the
canonical sheaf and is denoted by w,. Recall that X is a Gorenstein scheme
if X is Cohen—Macaulay and if the canonical sheaf w, is locally free.
Similarly, we say that X is a Q-Gorenstein scheme if the canonical divisor
K, is a Q-Cartier divisor.

reg

(0.3) Given a normal projective variety X over k and an ample
Q-divisor D on X, we define a graded k-algebra R(X, D) to be

R(X, D)= @ HO(X.(,(nD)) T"< K(X)[T],

n=4

where T is an indeterminate. Hence, 1t is easy to check that R(X, D) is
integrally closed in K(X)(T). Since rD is an ample Cartier divisor for some
re N, X is isomorphic to Proj R(X, D). Concerning the Cohen—Macaulay
property and the Gorenstein property of the graded ring R(X, D), we refer
the reader to [7]. (See also [2].) The facts we need are the following:
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(0.3.1) (See [7, (24)].) R(X, D) is Cohen-Macaulay if and only if
H'(X, Cy(nD))=0 for 0 <i<dim X and for every ne Z.

(0.3.2) (See [7, (2.9) and (2.10)].) Recall that a Noetherian ring R
with the canonical module Ky is quasi-Gorenstein if the canonical module
Kx is a locally free R-module. Suppose that D=3 ,(p,/q,)- Y with ¥
running through the set of prime divisors on X, where p,,g,€7, g, >0,
and (py,qy)=1 for each Y. Then R(X, D) is a quasi-Gorenstein ring if
and only if there exist an integer ¢ and a rational function / on X such that
Ky+D —aD=divy(f), where D' :=3 ,{(¢y—1)/gy] Y and div,(f) is
the divisor of /. Then the integer a coincides with the integer a(R(X, D)) =
—min{me Z: (Kgx p,)m #0}. By definition, R(X, D) is Gorenstein if and
only if R(X, D) is Cohen-Macaulay and quasi-Gorenstein.

1. A REMARK ON THE NECESSARY CONDITION FOR X TO HAVE D
SucH THAT R(X, D) Is A GORENSTEIN RING WITH EVEN a(R(X, D))

In the following lemma, we do not assume that & is algebraically closed,
since (0.3.1) and (0.3.2) are valid over a field k (see [7]).

LEMMA.  Let X be « normal projective variety over a field k, and D an
ample Q-divisor on X. Suppose thar R(X, D) is a quusi-Gorenstein ring with
even a(R(X, D)). Then there exists a Weil divisor F on X such that 2F is
linearly equivalent to the canonical divisor K. Furthermore, if R(X. D) is
Gorenstein, the Weil divisor F satisfies the condition that H(X, ( ((F))=0
for 0 <i<dim X.

Proof. By (0.3.2), we have K, + D' —aD =div,(f) for some fe K(X)
and a=da(R(X, D)). Suppose that K, —div, (/)= , b, Y with Y run-
ning through the prime divisors. Note that every b, 1s an integer. Looking
at each coefficient of Y in {K,—div,(f)}+ D =aD, we have b, +
gy —Digyt=alp,/g,) and, therefore, (b, +1)g, —1=uap,. Since « is
even, b, is even. Set ¢, :=(h,/2)eZ, and F:=Y ,¢, Y. Then 2F=
K,—div(f)and 2F+ D'=uD. Since [D'] =0 and F is a Weil divisor, we
have [(4/2) D] =F. Hence, if R(X, D) is Gorenstein and « i1s even, then
H(X, Cy(F))=H'(X, C,((¢/2) D))=0for 0<i<dim X, by (0.3.1). Q.E.D.

Exampies. (1) Let X=P" be an even-dimensional projective space
over a field k. Then there exists no ample Q-divisor D on X such that
R(X, D) is a quasi-Gorenstein ring with even a(R(X, D)).

(2) Let X be a smooth projective variety. Let n: ¥ — X be the
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blowing-up of X along a smooth subvariety of even-codimension r > 2.
Then there exists no ample Q-divisor D on X such that R(X, D) is a quasi-
Gorenstein ring with even a(R(X, D)).

2. A SUFFICIENT CONDITION FOR X TO HAVE D
WITH R(X, D) QUASI-GORENSTEIN

PROPOSITION.  Let X be a Q-Gorenstein normal projective variety of
dimension N over an algebraically closed field k.

(a) For every positive odd integer a, there exists an ample Q-divisor D
on X such that R(X,D) is a quasi-Gorenstein graded ring with
a(R(X, D))=a.

(b) Let a be a positive even integer. Then there exists an ample
Q-divisor D on X such that R(X, D) is a quasi-Gorenstein graded ring with
a(R(X, D))y=a if and only if there exists a Weil divisor F such that 2F is
linearly equivalent to the canonical divisor K .

Proof. (a) Thanks to (0.3.2), we have only to find out an ample
Q-divisor D such that K, + D’ — aD is linearly equivalent to 0. Let L be a
very ample Cartier divisor on X such that K, + L is an ample Q-divisor
and that ¢ (K, + L)|, is a very ample invertible sheaf on U, where U is
the open subset of X on which K, is a Cartier divisor. Since U2 X, , and
X is normal, by Bertini’s theorem [8, p. 30, Theorem 1.6.37], there exist
prime divisors Y, # Y, on X such that ¥, ~ K, +2L and Y, ~ L. In fact,
let us define the prime divisor Y, as follows. By Bertini’s theorem, there
exist prime divisor Z, ~ (K, +2L)|, on U. Define Y, to be the closure of
Z,on X. Then Y, ~ K, +2L. (Note that the Weil divisors E, and E, on
a normal variety X are linearly equivalent, if E, n U~ E, ~ U as divisors
on U=2X,,.) Fix integers p,>0, ¢,>4 (i=1, 2) such that 2¢, — 1 = ap,,
g, +1=ap, Set D:=(p,/q,) Y,—(ps/q.) Y,. Then D satisfies the required
condition. Indeed, D is Q-Cartier, since Y, and Y, are Q-Cartier divisors.
Since D is numerically equivalent to (p,/¢, (Ky+ LY+ {(p./q,)—
{(p+/q.)} L and since Ky + L and L are ample, if (p,/q,)>0 and (p,/q,) —
(p2/g.)>0, then D is ample. But we have (p,/q,)=(2/a)— (ljugq,)>
7/4a>0, and (p,/q,)— (py/q,)=(1/a)—(l/ag,)—(1/ag,) > 1/2a>0, as
required. On the other hand, we note that D'={(¢q,—1l)q,} ¥V, +
‘(42— 1)q¢,} Y, and that Ky~ Y, —2Y,. Hence we have K, + D" —aD ~
(/g M2q, — 1 —ap) Y, +(1/g;)(—g>— 1 +ap,) Y>=0.

(b) The “only if” part was already shown in the Lemma. To prove
the “if” part, as in the proof of (a), we have only to find out an ample
Q-divisor D such that K, + D' —aD~0. Let L be a very ample Cartier
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divisor on X such that F+ L is an ample Q-divisor and that ¢y (F+ L)|,-
is a very ample invertible sheaf on V, where V' is the open subset of X on
which Fis Cartier divisor. Let ¥, Y,, and Y, be mutually distinct prime
divisors such that Y,, Y~ F+ 2L and Y;~2L. Fix integers s >0, p,> 0,
g, >4 (i=1,2,3) such that 2s+3)¢g,— l=ap,, (2s—1)g¢-+ 1 =ap,, and
g+ 1=ap;. (Since « is even, it is easily seen that such integers actually
exist.) Set D :=(p,/q,) Y~ (p+/q>:) Y>—(p+/q:) Y5. Then D is Q-Cartier.
Since D is numerically equivalent to the Q-divisor {(p,/q,)—{(p./q.)]
(F+ L)+ {(p\/q,)—(Pp2/q2) — 2(ps/q3)} L and since F+L and L are
ample, if (p,/q,)—(p2/q:)>0 and (p/q,)— (p2/g2) —2(p3/q:) >0, then
D is ample. But we have (p,/q,)—(p2/q,)=1{(2s+3)a—ljaq,} —
H2s— 1)a+ Vag,} >72a, and, (p/g,)— (p/q:)—2(palgs)>T/2a —
2{lja+ 1/aq;} > l/a, as required. On the other hand, since D’'=
g —D/g,} Yi+ (g2 1g2] Yot {{gs—1)gs) Yyand Ky~(25+2) Y, —
2sY,—2Y;, we have K, +D —aD~(l/g){(25s+3)q, —1—uq,} Y, +
(1g){(=2s+ 1) g —V+apy} Yot (1/gs){ —¢s—1+aqs) Ys=0. QED.

3. PROOF OF THE THEOREM

(a) We proceed in two steps. Note that the assumption, that K, is
Cartier and that X is Cohen—Macaulay, is required in Step .

STEP 1. There exists a very ample Cartier divisor L on X such that
L+ K, is very ample and that H(X, (., (xL + yK,))=0 for 0<i< N and
for (x, y)eS:={(x,y)eZ% 2x= =20} Ul(x, y)eZ 1232 2x+1}.

Proof. Since X is projective, there exists a very ample invertible sheaf
# such that .# ® w, is very ample (e.g., [4, p. 169, Exercise 7.5]). Let &
be the vector bundle (.# @ w )@ .# of rank 2 over X. Since .# ® w, and
.# are ample, the tautological line bundle ¢, , (1) on P(#£) is ample [3,
Proposition 2.27]. Here, by P(&), we mean the projective space bundle
defined by Proj(Symm(&)). Then it follows from Serre’s vanishing theorem
(e.g., [4, p. 229, Proposition 5.3]) that there exists an integer =2 such
that H'(P(&), (4 ,(1x))=0 for all integers i>0 and x>0. On the other
hand, by well-known facts about the projective space bundles (e.g., [4,
p. 253, Exercise 8.4]), we have

T (Copp(d)) = Symm“(&) for every integer d > 0, and
R'T (Cooi(d))=0 for every integer d = —1,

where 7 is the structure morphism P(6)— X and Symm¥“(&’) denotes the
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dth symmetric product of &. Therefore, by a degenerate case of the Leray
spectral sequence, we have

H(P(&), Cop)(d)) = H(X, Symm¥(&))

d
=@ H(X, #°‘Quw®") forall d>0andi=0.

=0

Thus, for all integers x>0, O0<y<xt, and i>0, we have
Hi(X, #® Y®w®*)=0. For our purpose, let L be a Cartier divisor with
((L)~.#%®"' Then L satisfies the required condition, since H(X, (})=0
for 0<i<N by the assumption and since H'(X, Cy(xL + yK,))~
HY (X, (,(—xL—(v—1)K,))* for each i>0 and any integers x, y by
Serre duality (e.g., [4, p. 244, Corollary 7.7]). Q.E.D.

Step II.  Let L be the very ample Cartier divisor in Step 1. Hence K, + L
is a very ample Cartier divisor on X. Set D as in the proof of Proposition (a).
Then D is an ample Q-divisor such that R(X, D) is a Gorenstein ring with
alr(X,D))=a.

Proof. 1t is shown that in the proof of Proposition (a) that D is an
ample Q-divisor on X such that R(X, D) is a quasi-Gorenstein with
a(R(X, D))=a. Now we show that R(X, D) is a Cohen-Macaulay ring. By
(0.3.1), we have to show that, for all ne Z,

H'(X, 6,(nD))=0 for O0<i<AN. (*)

(Hence, if N <1, then there is nothing to prove.) For n =0, () is included
in our assumption.

Let us show (*) when n>0. Set &,(n):=[(py/g,)n] and k,(n):=
[(pa/g;)n7, where [z7]:= —[ —z], ie., the round up of a real number =.
Since (y(nD) = Cx([nD]) = Cy(k(n) Y, — ky(n) Yy) = C((2k((n) —
ko(n)) L +k,(n) Ky), thanks to the StepI, we have only to check that
(2k (n) — ky(n), k,(n))e S. First note that (p,/q,)n=k(n)>(p,/q,)n—1
and (p./g.)n<ky(n)<(py/g,)n+1, and therefore, (2/ayn>k (n)>
(7/4a)n—1 and (1/a) n <k,(n) < (5/4a)n+ 1. Hence we have 2{2k (n)—
ko(n)} — ky(n) = 3k (n)—2k,(n) > 3{(7/4a)n—1} —2{(5/4a)n+1} =
(11/4a)yn— 5. If n=2a, then 2{2k(n)—k,(n)} =2k (n)=0. For 0 <n<2a,
by the above inequalities on k,(n) and k,(n), we have 0 <k (n)<4 and
1 <k,(n)<(5/4a)2a+ 1 =7/2. Therefore (2k (n)—k,(n), k,(n))eS for
each 0 <n<2a.

Finally, let us show (*} when n= —m<0. Set h (m):=[(p,/q,)n]
and  h,(m) :=[(py/q;) m]. Since Cy(nD)=Cy((—2h,(m)+hy(m)) L —
h,(m)Ky) and Stepl, we have only to check that (—2h,(m)+ hy(m),
—h,(m))eS for each n=—m<0. Since (7/4a)m<h(m)<(2/a)m+ ]
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and (5/4a)m > h,y(m)>{1/uym—1, it is easily checked that —h (m)—
20 =2h(m)+ hy(m)} > (11/4a) m and that h (m)}>0. Hence 0= —h,(m) =
240 =2h(m)+ hy(m)} + 1 for each n = —m <0, as required. Q.E.D.

(b) As in (a), we proceed in two steps.

Step 1. There exists a verv ample Cartier divisor L on X such that F+ L
is very ample and that H'(X, Cy(xL+ yF))=0 for 0<i<N and for
(x, meT:={(x, eZ” 2xz2y=20lullx, y)eZ’ 2=2y>22x+2}u
0o, 1}

Y 1y

Proof. The assertion follows from the same proof as that in Step | of
(a), if we replace K, by F. Q.ED.

STep II.  Let L be the very ample Cartier divisor in Step 1. Hence F+ L
is a very ample Cartier divisor on X. Set D as in the proof of Proposition (b).
Then D is an ample Q-divisor such that R(X, D) is a Gorenstein ring with
al(R(X, D))=ua.

Proof. 1t is shown that in the proof of Proposition (b) that D is an
ample Q-divisor on X such that R(X, D) is a quasi-Gorenstein with
a{R(X, D))=a. Now we show that R(X, D) is a Cohen-Macaulay ring.
By (0.3.1), we have to show that, for all ne Z,

H(X,(¢,(nD))=0 for O<i<A. (%%)

(Hence, if N<1, then there is nothing to prove.) For n=0, (*x) is the
assumption.

Let us show (xx) when n>0. Set k,(n):=[(p/q,)n], kin):=
[(pa/g-)n)., and  ky(n) —r(pl/q;)ﬂ Since Stepl and (¢, (nD)=
Colky(n) Y, — ka(n) Yy — ki(n) Y3) = €20k (n) — kao(n) — ki(m)} L +
{k(n)—ks(n)} F), we have only to check that (2{k (n)—k,(n)—ki(n)},
ki(n)—k,(n))e T for each n>0. First note that {(2s+ 3)ja} n>k (n)>
{(8s + 11)4a}tn — 1, {(2s — 1)a} n < ky(n) < {(8s—3)/4a}n + 1, and
lia)yn <k(n)<(5/4a)n+ 1. It is easily checked that (4/a)n>k,(n)—
) > (T2a)yn—2, and, 4lk (n)—kyn)—ky(n)} — Lk (n)—kyn)} =
{k(n)—ky(n)) —dki(n)>(112a)yn—10. If n=2a, then 2{2(k,(n)—
Hn)—ka(n))) Z2kn)—ky(n)=0. For O<n<a we have —1<k (n)—
ko(n)<3 and 1 <k,(n)<2, and, therefore, (2]k,(n)—k.(n)—ki(n)},
kin)—k,y(n))eT. Siml]ar]y, for a <n<2a, we have 2<k (n)—k,(n)<7
and 2 <k (n)<3. But in this case, it does not occur that (2{k,(n)—
ko(n)—ky(m)}, k(n)—k, (n))—(O 3). In fact, if k,(n)—k,(n)=3, by the
above mequalmes on k,(n)—k,(n), we have (3/4)a<n<(10/7)a, and,

(
k
3
k
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therefore, k,(n)=2. This is a contradiction. Hence (2{k,(n)—k,(n)—
ki(n)}, k(n)—ky(n))e T for each a<n<2a.

Finally, let us show (*x) when n= —m<0. Set A(m):=[(p,/q,) m ],
ha(m) = [(ps/q)m). and  hy(m) := [(psfgs)m]. Then €y(nD) =
C (28 —h(m)+ hy(m)+ hy(m)} L+ 1 —h(m)+ h,(m)} F). On the other
hand, it is easily seen that h,(m)— h(m)—2h(m)>(1/a)m and that
hi(m) — ho(m) > (7/2a) m. Hence (24 —h,(m)+ hy(m)+ hy(m)}, —h(m)+
hy(m))e {(x, ¥)eZ% 0= y=x, xe2Z) c T, as required. Q.ED.

4. REMARK AND EXAMPLE

We want to determine the necessary and sufficient condition for a
normal projective variety X to have an ample Q-divisor D with R(X, D)
Gorenstein.

The most deficient aspect of our results is that the normal projective
variety X is required to be Gorenstein. It seems likely that this assumption
is somewhat redundant for our purpose. (Of course, we should assume that
X is Cohen-Macaulay, since the Cohen-Macaulay property of R(X, D)
implies that X is a Cohen—-Macaulay scheme.) In fact, the Gorenstein
property of R(X, D) does not necessarily imply that X is Gorenstein or
even Q-Gorenstein. For example, it is proved by the author [5. (2.6)] that
every projective torus embedding X has an ample Q-divisor D on X such
that R(X, D) is a Gorenstein ring with a(R(X, D))= —1. Note that a
projective torus embedding is not necessarily Gorenstein nor Q-Gorenstein.

On the other hand, it seems likely that the condition required in (b) of
the Theorem, that is, F is a Cartier divisor, i1s also unnecessary for our
purpose.

Indeed, we have:

ExampLE. Concerning the torus embeddings, we refer the reader to [6].
Let T be a 2-dimensional algebraic torus defined over an algebraically
closed field & and let N ~ 7* be the group of one-parameter subgroups of
T with {n,, n,} as a Z-basis. Let 4 be the complete fan generated by one-
dimensional cones p, =R _,n,, p1:=R_o(n,+2n,), py:=R o0, psi=
R.ol—n;), and, ps:=R_,(—n,), where R ,:={xeR; x>0} Let X be
the projective torus embedding 7, emb(4) associated with the complete
fan 4. Let V, (i=1,..,5) be the prime divisors, stable under the torus
action, associated with the one-dimensional cones p;. The canonical

divisor Ky = —(V,+V,+ Vs + V,+ V<) s linearly equivalent to
—~2V,+ Vi+Vy). Set F:= —(V,+V4y+ V,). Since H' (X, (¢,)=0 and
V,+ V,+ V,= —Fis connected and reduced as a subscheme of X, we have

H' (X, (,.(F))=0. Since F is a Q-Cartier divisor but is nor a Cartier
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divisor, we cannot apply our theorem to this case. Nevertheless, for a
positive even integer a, there exists an ample Q-divisor D such that
R(X, D) is a Gorenstein ring with a(R(X, D))=a.

Indeed, the assumption that F is a Cartier divisor is required only in
Step | of the proof of the Theorem. Thus, with notation as in (b) of the
Proposition and the Theorem, we have only to prove that there exists a
very ample Cartier divisor L such that ¢'.(F+ L)}{, is a very ample line
bundle on ¥V and that H'(X, ¢, (xL+ yF))=0 for (x, y)e T. Then the
same proof of Step Il is still valid in this case. Let L be a very ample
Cartier divisor such that F+(1/2) L is an ample Q-divisor and that
Cy(F+ L)|, is a very ample line bundle. Then, for each pair of integers
x, ¥y with x>0 and y <2x, yF+ xL is an ample Q-divisor stable under the
torus action. In fact, since vF+xL=p(F+(1/2) L)+ (x—(1/2)) L, it 1s
ample for x>0 and 0 < y < 2x. On the other hand, since —2F is generated
by its global sections and yF+ xL=xL+(—y)(—F), it is also ample for
x>0 and y<0. By [5, Corollary 1.6], we have H' (X, (', (xL+ vF))=0
and H'(X, ( y(—xL— yF))=0 for x>0 and y < 2x, as required.
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