Theoretical Computer Science 6 (1978)41-67.
© North-Holland Publishing Company

TOWARDS A THEORY OF LOCAL AND GLORAL
IN COMPUTATION

Harold ABELSON

Departinent of Electrical Engineerir..;; and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, U.S.A.

Communicated by Albert Meyer
Received February 1977
Revised July 1977

Abstract. We formulate the rudiments of a method for assessing the difficulty of dividing a
computational problem into “independent simpler parts”. This work illustrates measures of
complexity which attempt to capture the distinction between “local’” and “global’”” computational
problems. One such measure is the covering multiplicity, or average number of partial compu-
tations which take account of a given piece of data. Another ineasurz reflects the intuitive notion
of a “highly interconnected” computational problem, for which subsets of the data cannot be
processed ““in isolation”. These ideas are applied in the setting of computational geometry to
show that the connectivity predicate has unbounded covering multiplicity and is highly inter-
connected; and in the setting of numerical computations to measure the complexity of evaluating
polynomials and solving systems of linear equations.

1. Introduction

Many approaches to computational complexity focus on issues concerning the
speed of computation: How many basic operations are required to compute a given
function? How can computation time be decreased by performing operations in
parallel rather than serially? What are the time-space tradeofs for a given class of
algorithms? There is, however, another kind of complexity. This is the organiza-
tional or structural complexity cf processes realized by large numbers of inter-
connected elements. Structural complexity is an important concern in many of the
difficult areas to which computational methods are just beginning to be applied. For
example, in exploring computational models for vision [6], one is struck by the fact
that for a contemporary digital computer, the ratio of connections to components is
about three, whereas for the mammalian cortex it lies between 10 and 10 000. A
comparison such as this raises a challenge for theoretical computer science: Is it
possible to characterize those computational problems whose solution is inherentl:
better suited to a highly interconnected structure than to a weakly interconnected
structure?

A similar issue arises in the study of distributed computation and computer
networks. In this setting, an entity such as a data base might be widely distributed
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among the nodes of a network. Analyses of sorting or searching the data base must
be concetned not only with elementary optrations but also with internodal com-
munication. Consider, for example, solving a large system of linear equations,
where each column of the matrix resides at a different node. If the network is
far-flung, the time and cost of communication could dommate the solutlon process,
and arithmetic operations performed at individual nodes might be viewed simply as
overhead. In a case like this, one would be concerned with minimizing, not
necessarily the number of operations, but rather the total amount of information
which must be stipped across the network. What complexity measure is ap-
propriate to this problem?

Manv of the issues in structural complexity revolve around the notion of ! -2’
and global” or “parts and wholes”. Loosely speaking, a computational problem is
inherently local if it can be divided into small, weakly interacting modules. A
computational problem is inherently global if any way of dividing it into pieces must
entail substantial interaction arnong the pieces. Creating a useful theory of loca!l
and global is of course a formidable task, and this paper can be no more than an
iniiial attempt. I introduce a measure, called the covering multiplicity, which reflects
the organizational complexity of a problem in the sense hinted at above. Covering
multiplicity is, roughly, the number of independent parts of a process which must
take account of a given piece of data. In visual processing this might be, for
example, the average number of “low level” elements influenced by a given patch
of the retina. The concept of covering multiplicity surely does not capture all of
what might be meant by “local and global in computation’; but it is at least a
start.

This introduction continues with a review of the setting established by Minsky
and Papert [7] in their analysis of the perceptron. We will make use of the same
basic framework, aithough many of Minsky and Papert’s techniques, relying
fundamentally on the linearity of the perceptron’s decision element, are unsuitable
in the present, more general setting. Section 2 of the paper begins the formal
presentation, providing definitions both of covering multiplicity and also another
complexity measure based on the idea of a “highly interconnected” computation.
We find that computations which determine whether or not a geometric figure is
connected must exhibit arbitrarily high covering multiplicity, and must be highly
interconnected, thus providing a justification of Minsky aad Papert’s intuitive guess
{7]: “We chose [in studying perceptrons] to investigate connectedness because of a
beiief that this predicate is nonlocal in some very deep sense.” Section 3 turns from
geometry to the computation of real-valued functions and gives a necessary and
sufficient condition for ‘““‘comp:iational decomposability” which is used to identify
multivariate polynomials whose evaluation requires arbitrarily high covering
multiplicity. We also discuss the matrix problem cited above. The conclusion notes
some of the many quesiions which are left untouched in this initial treatment of
local and global complexity.
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Local and giobal in compuration

Minsky and Papert’s theory begins with an idealized retina R, which is simply a
collection of n poin‘s. Figures on the retina are subsets X < R. We can think of R
as the squares in a two-dimensional plane grid and “arbitrary geometric figures’ as
approximated by some collection of squares. A predicate on R is a function f from
ngures on R to iu, i}. me support of ] is the set of au pomts of R wmch artect the
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fX)= [T afi(X)> 01,

where f,~ are predicates and 6, a,, a,, . . . are real numbers. (We follow Minsky and
Papert in using the notation [some condition] to signify the predicate whose value
is 1 if the condition is true and 0 if the condition is false.) The order of the perceptron
t i oider of any of the f. Minsky and Papert characterize the
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, this characterization fails when we consider structures more
Eeneral than the Dercentron

A perceptrcn can be viewed as a composition of functions f=g(fi, f2, ..., f)
wheve g is a predicate on Boolean r-tuples. In a perceptron, g must be a lmear
thre<hold function. We would like to consider more general computational schemes
in which there are no restrictions on g. Extendinig Minsky and Papert’s results to
this more general setting, however, raises many probiems. Consider their paradigm
result: Collectivity is not of finite order. This foliows from an analysis whose main
step is: Parity, that is, the predicate

[X contains ¢

2]

n even num

is not of finite order. But this can be true only in the linear threshold context. If we
omit this restriction, "en the determination of parity can be as “local™ as we
please: For any arbitrasy division of the retina into disjoint sets §; let

Fi(X)=[X NS, has even parity].

Tham ¥V hae avan na
LECHL £ 11ad CVUT pa



4“4 ‘ ~__ H. Abelson

To obtam a hold on what makes the above panty compuiation “local” and why
we dspect that any connectlvxty computation must be “global” notice that for
“parity the supports are dts;omt—-each pomt of the retina is examined by only one
parttal predicate. Moreover, any division of the retina into dns;omt sets can serve as
the partial predlcate supports for computmg parlty Let’s examine in this light a
preducate which we might agree is “local”, the property of being locally convex,
whithi can be determmed by checking ihat X has non-regative curvature at eack of
its boundary points. Even though this determination is “local”, it cannot be easily
realized with disjoint supports. Suppose, for example, that we divide the retina in
two disjoint halves and attempt to compute local convexity. Consider the shape in
Fig. 1. Although it is not convex, the point of negative curvature will be undetected
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Fig. 1. With disjoint supports, the point of negative curvature is missed.

ia either support. But this is hardly a fundamental problem. We merely need to
allow a bit of overlap as in Fig. 2, so that a few points of the retina lie in more than
one support, and our local computation can proceed without problem. We suspect,
though, that no such simple scherae can work for conmectivity. In deter:nining
connectivity, we would guess, points must in general be accessed by many partial
predicates, This provides motivation for our definition of covering multiplicity: The

covering multiplicity w is the average number of partial predicates which examine a
given point on the retina.
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Fig. 2. Curvature is detected using overlapping supports.

2. Support structures for geometric predicates

2.1. Basic definitions

Definition 2.1.1. For any function of n variables f(xi,...,x,) the set R=

{1, ..., n}is called the retina of f. The support of f is the smallest set S = R such
that

.f(xlv---,xn)zf(yl’---syn),

whenever x; =y; forallie S.

Throughout Section 2, we shall assume that the functions concerned are Boolcan
functions of Boolean variables, although later on we shall also consider real-valued
functions of real variables. Note that if R is finite, then any function has a unique
supoort.

Definition 2.1.2. A support structure ou a retina R is a sequence of the form

H={S1’-- -,Sr},

where S; < R. Note that the S; need not be distinct. The number r is called the rank
of H. The order of H is the maximum over j of |S;|. For any A = R define covy(A)
tc be the number of supports of the structure which intersect A:

covg(A)=|{j: AnS;#0}.

The covering multiplicity of H is the average over R of the number of supports
containing a given point:

u(H)=(1/n) _GZR cov({i}).
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Note that the sum over R of cov({z}) is. preusely the number of pairs (i, S;) where
ieS; Therefore, if all. the S; have the same size k, then the covering multiplicity, the
order, the rank and the size of the retina are related by u(H)r = kr.

f‘ib admzt a function

f= g(fl, AN
where support. (-j}) =;S;'for'i = '1_,, e r.

If f is a function from {0, 1} to {0, 1}, i.e., a “predicate on R”, we might try to
define the covering multiplicity of f to be the minimum covering multiplicity of any
support structure which admits f. But this will not work, since any predicate is
admitted by the multiplicity 1 structure ({1}, {2},..., {n}). Covering multipl "ty
therefore, is not a useful measure of complexity when considering structure:
consisting of many small supports. We will concentrate or thz opposite situation, in
which we attempt to keep the ranks of the structures bounded for large retinas by
using larger and larger supports. One example of this kind of structure is the
fractional support structure, in which each support is some fixed fraction of the entire
retina:

Definition 2.1.4. Let M be a positive integer. A support structure H on a retina R
is said to be a 1/M-fractional support structure if each support in H has size n/M.

(If M does not divide n evenly we suppose each support to have size within +1 o
*this value.)

Strictly speaking, of course; a predicate f is defined only for a particular retina, so
it makes no formal sense to speak of “computing f on large retinas”. On the other
hand, we can think of properties like “parity” and ‘“connectedness” as defining
entire families of predicates, one predicate for each retina. We can now define the

covering multiplicity of such a predicate {family) in the context of fractional
supports.

Definition 2.1.5. For any predicate f on R and positive integer M we define
u(f, M, R), the covering multiplicity of f for 1/M-fractional supports to be the
minimum g of any 1/M-fractional support structure which admits f.

Definifion 2.1.6. A predicate family f is said to have covering multiplicity at most B
for all fractional supports, u(f;frac)<B, if, for all M, u(f, M, R) is uniformly
bounded by B on large retinas. That is, for any M there should exist a bound 7,
such that u(f, M, R)<B for any retina R with |R|> na.. If such a finite value B
exists, we say that f has finite covering multiplicity for fracticnal supports.
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2.2, Examples

To illustrate the above definitions, we compute the covering multiplicitv for
1/M -fractional supports for the locai convexity predicate, using the computation
outlined in Section 1.2. We noted that local convexity can be determined by
examining each boundary point of the figure in question, and that this can be done
with supports that do not overlap, except for small “interfaces” along the edges.

Suppose that the retina is a square A units on a side, n = h?. Using supports of
order n/M we divide R into M strips, each strip a rectangle of size & by h/M. We
must also assign additional partial functions to examine the interfaces between the
strips. (See Fig. 3.) Each interface is itself a strip of width 2, and thus one additional
support (of order i’ /M) can contair 4/2M interfaces (each of size 24). Since there
are M —1 interfaces in all, we need 2M (M — 1)/h additional ‘“‘interface supports”.

N

INTERFACES

Fig. 3. Retina divided into strips.



L'~4S,o=xtheq.:e_ntuy'ef‘-‘ék'tfn-l‘:étﬁréy for local cbhiiexity has

= : e r =rank = # (strips)+ # (interface supports)=M +2M(M —1)/h;
k'=order =h*/M; -

; An=142M—-)h=1+20MM-1)/Vn.

e shown

Example Onasq are retma R, predicate f = [X is locally convex] has

MM RYS1H2M-1)/n.

Cohséqﬁen_tly, for é;rzy e :#-Q, we have u(f; frac)<1+e.

As a second example, consider the predicate [X is a single, solid rectangle]. “hi<
can be computed by partial functions which “count the corners of X”*. That is, a
figure X is a single solid rectangle if and only if its boundary contains precisely four
“convex corners” (Fig. 4a), no “concave corners” (Fig. 4b) and no ‘“doubl
corners” (Fig. 4c). This cqmputaﬁbii can be performed with almost the same
support structure as used above, i.e., by dividing the retina into disjoint strips
together with “interface” strips of width 2. This time, however, we assign three

(a) CONVEX (b) CONCAVE

{c) DOUBLE

Fig. 4. Corner clusters for detecting rectangles.
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partial functions, hence three supports, to each of the strips. In each support A, the
three corresponding partial functions fi, f>, f3 output g or 1 as follows:

(1) If X n A contains concave corners, double corners, Or more than four convex
corners, then all f; output 1.

(2) Otherwise the three functions output the number (from 0 to 4, counting in
binary) of convex corners of X n A.

Using this information, the function g can determin¢ whether or not X is a
rectangle. The covering multiplicity bere is threz times 28 great s for local con-
vexity:

Example 2.2.2. If f is the predicate [X is a single solid rectangle] then for any
e>0, u(f; frac)<3+e.

These examples illustrate predicates that can be computed with sinall covering
multiplicity. On the other hand, we find that no fixed bOund on covering multi-
plicity can suffice for computing arbitrary predicates op large retipas:

Proposition 2.2.3. Lzt M be a positive integer, and ¢ a pogitive real nymber. Ther: any
1/M-fractional support structure H which admits all predicates on a retina R must
have

pH)>(n—e)/M
rouvided r is sufficiently large with respect to M.
Proof. There are 2 predicates on a retina of size n. Consider, on the other hand,
the number of predicates admitted by support structyres Of rank r and order k. For
each of the r partial predicates f; there are (Z) ways of Choosing support(f;); and

having selected a support, there are then 2" functjons f; with that support. In
addition, there arc 2% possibilities for g. So if the strycture admits any function of n
variables, we must have

e (7)o

Using the fact that (Z) <2 and taking logarithms, gives

2" <<m 2" +r2k
ov,since k =n/M and r=nu/k = Mu

"< 2ME L Mu(n +2MM)). O
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2.3. Highly interconnected computations

Covering multiplicity is a measure of the ‘“‘globalness” of a computation, which
can provide meaningful results about families of supports in which the order grows
large along with the size of the retina. For arbitrary supports we can consider
instead the question of how much “interconnection” among elements of the retina
is required for a given computation.

- Definition 2.3.1. If H=(S1,...,S,) is a support structure and A< R define
Cong(A)< R to be the set

CODH(A) = U{Si: SinA# ﬂ}

Intuitively, imagine that H is “wired” by connecting together all pairs of elemens
in each support. Then Con(A) consists of all those points of R with ‘“direct
connections” to points of A. By way of analogy with 2.2.3, we will show that any
computational scheme which can compute arbitrary Boolean functions must be
“highlyinterconnected” in the sense that, forany A < R, either A mustintersect many
supports or else Con(A) must contain essentially all of R.

Definition 2.3.2. A family of support structures H on retinas R is said to be highly
interconnected if, given any positive integer B and positive real number &, one has
that if n is sufficiently large with respect to B, then for any subset A < R with
|A|> en, either covyg(A)> B or else |Cong(A)>(1—¢)n. A predicate f is said to
be highly interconnected if any family of support structures which admits f on large
retinas must be highiy interconnected.

Proposition 2.3.3. Any family of support structures which admits arbitrary predicates
must be highly interconnected. More precisely, if H is a support structure which admits
arbitrary predicates on a retina R, then, for any A < R, either covy(A)=|A| or eise

|Conz(A)|>n —loga(covy (A)).

This will follow from another simple counti:g argument:

Lemma 2.3.4. Given collections of Boolean variables X =(xy,...,x,) and Y =
(y1,..., ), let t be any integer such that t<a and log, t<b. Then there exist
functions f: X X Y >{0, 1} which cannot be represented in the form

f(X’ Y)=g(f1(X), s ’fl(X)! Y’)

Proef. Functions f: X XY »{0, 1} are equivalent to functions f* from X into
{C, 1}Y, the set of Boolean functions from Y into {0, 1}, via the correspondence
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[FAXDIY)=Ff(X, Y). Representing f in the required form is equivalent to finding

a factorization of f*:
N
/ \g#
X I \‘ {

— {0, 1}

where F is a set of ¢ Boolean wvariables; @(X)=(fi(X),...,f,(X)) and
[g*(F)(Y)=g(F, Y). To demonstrate that not all functions factor in this way. we
need only consider the sizes of the sets invelved: An element of X can take on 2°
possible values, and there are 2°° possible values for an element of {0, Y}". To
construct a function f* which does not factor, first enumerate the elements of X:

U1, D2, ..., 02"
and the elements of {0, 1}¥:

f], §2, ey §22”.

There are two cases, depending on the relative sizes ¢f a and b:

(1) 2°>a>rlet f*(v;)=¢& fori=1,...,2° Then the image of f~ contains 2¢
distinct element:, so that f* cannot factor through F, which has size 2° <2°

() If a>2">1 let f*(v;)=¢ for i=1,...,2°" Then the image of f* contains
2?* distinct elements, so that f* cannot factor through F, which has size 2'<2"". (]

Proof of 2 3.3. For any A c R define R(A)< R tobe the set (R —Con(A))u A, ie..
delete from R all variables which 11 in Con(A) but notin A. The inclusion of R(A)
in R induces a surjection {0, 1} - {0, 1)?*. Set r = cov(A). X to be the variables in
A, and Y to be the n —|Con(A)| variables in R(A)-- A. Then any predicate on K
which is admitted by H induces a predicate on R{A) of the form
g(f1{X), fo(X),...,fi(X), Y). Now apply 2.3.4. ]

In the case of 1/M-fractional supports. the following combinatorial argument
shows that interconnectedness implies high covering multiplicity:

Lemma 2.3.5. If H is any family of highly interconnected 1/M -fractional support
structures then lim, .« p(H)= M. Consequently, a highly interconnected predicare
can~ot have finite multiplicity for all fractional supports

Proof. First note that if A< R with cov(A)=M —1 then [Con(A = n(M--1)/A
So if the family of support structures is hizhly interconnected, we can sclect any
number ¢ and be sure that, for R large erough, we have cov(A )= M — . mplics
|Al<en.
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For any of the retiras R in the family. let Ry, be the subset of R consisting of
points lying in fewer than M supports:

Ry ={ieR:vov({i})<M}.
Note, in particular, that R, consists of all points with covering multiplicity 0. Then

un= Y cov{ih+ ¥ cov({i}).

ieRnm ieR—Rp

But
z.;% cov({i})=|Rar| =Ry

and

Y cov({iD=M(n—|Ru).

icR—-Rpy
Therefore, we have
un=Mn —(M —1)|Ry|—|R,|
or
u=M—(M--1)Ry|/n—(Ri|/n). ey

If o < {S;} is some collection of the supports in &, define R,, to be the subset of R
consisting of those points which are contained in only those supports which lie in o

R, ={ieR: i¢5;for S;¢ o}.

Consider now the union of the R,, over all sets o of M — 1 partial predicates. This
union is precisely the subset of R consisting of points i for which cov({i})<M —1.
That is,

Ru= U R, ' 2)

loj=M-1
If r is the rank of H then the number of sets o containing precisely M — 1 supports

is equal to the binomial coefficient ( ) Notice that for a given o, cov(R,)

r
M-1
cannot be greater than |o7|. Thus, according to the remark noted at the beginning of
the proof, we have |R,|<en on large retinas whenever |o| == M ~ 1. Eq. (2) there-
fore implies that

r
Rul<(, " )en
| M' ( M1 &n
Combining this with |R;}<en and Eq. (1) yields:

weM-oi-1e(, " )-e
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Since the order of H is equal to n/M, we have that r = uM. Substituting this into

M
]J{i— l) <2*M gives

u>M—e[(M-1)2"" +1]. (3)

the above inequality and using the fact that (

Now, given any § >0, whoose ¢ small er.ough so that e[(M —1)2"*+1]< § and
consider retinas with n large enough so that (3) holds. Suppose, for n this large, we
had u <M —8. Then 2*M < 2™’ so e[(M ~1)2*™ +1]< 6, and

whe[(M=-12"M +1l1<pu+8<sM-8§+6<M,
which would contradict (3). Therefore we must have u >M—68. O

2.4. Interconnectedness of the connectivity predicate

Theorem 2.4.1. The predicate [ X is connected] is highly interconnected.

The proof arises as a generalization of the simple observation that connectivity
cannot be admitted by a support structure of rank 2 in which the retina is parti-
tioned into disjoint halves, as can be seen immediately by considering the connec-
tivity of the figures formed by the various combinations S; u T; shown in Fig. 5. This
construction has been generalized by Papert [9] to show that, if we allow only those
stri ctures in which no support intersects both the left and right halves of the retina,
then the rank required for determining connectivity must grow arbitrarily large on
large retinas:

Propeositior. 2.4.2. Suppsse H is u family of sppport structures which admits [X is
connected . and that no support in H intersects both the left and right halves of the
retinc. Then, as n increases, the rank ¢f H must grow at least as rapidly as v n.

Proof. Consider the family of figures illustrated in Fig. 6, each consisting of a
square, with m horizontal lines meeting the sides of the square at contact points
X1y« .vsXms Y15+« -5 Ym ach pair of Boolean m-tuples X =(x,...,x»)and Y =
(v1,..., y~) gives a figure F(X, Y); and it is easy to see that orie of these figures is
connected if and only if each horizontal line is connected to the square, either on
the left or on the right. In other words, F(X, Y) is connected if and only if X v Y.
(Recall that X v Y, “X or Y”, means that for each i we have x; v y..)

Let fi, ..., f. be those partial predicates whose support lies in the left half of the
retina. Then, for any figure F=F(X, Y), the a-tuple [ (F)=(fulFL. ..., [ (F))
depends only on the m-tuple X, i.e., fi(F(X, Y))= f.(X). We claim, therefore, that
a = .. For, if not, than there are two distinct m-tuples X, and X- with f{» 1=
fr(X3). But then, for any m-tuple Y, we have F(X,. Y) i connected it and only if
F(X,,Y) is connected. On the other hand, taking Y =~X, and noting that
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Fig. 5. A simple rank 2 structure cannot detect connectivity for the figures S; U T;.

F(X,, ~X;) is connected, shows that we must have X,v ~X;. Similarly, taking
Y = ~X, gives X, v ~X,. Therefore X; = X,, and 50 a = m. Finally, observe that
on a retina of size n, we can choose the number of horizontal strips to be pro-
portional to Va. [

The next step in the proof of 2.4.1 is tc extend the above consiruction so that the
*‘contact points* x; and y; can be distributed throughout the retina:

Lemma 2.4.3. For any integer m there is a constant X (m) such that if H admits
connectivity on a retina R, and A < R with |A| > K n, then either cov(A)> m or else
iCon(A)}>R -KVn.

Proof. Let R, < R be the subset of R ccusisting of all points which do not lie within
distance 2m of the boundarv >f R. Choose points x1, ..., X, lying in A s..ch that
(1) each x; is contained in 2; (2) for i #j, x; and x; do not lie within the same
korizontal row of R, and, moreover, the horizontal rows containing x; and x; are at
least six squares apart. (See Fig. 7.) Notice that we can do this so long as |A] is
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Fig. 6. Connectivity figures for Proposition 2.4.2.
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Fig. 7. Selccting the points x, in Lemma 2.4.3.
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greater than |Ry| plus the size of 6m horizontal strips, i.e., |A| > 14v/n. Next, choose
points y1, ..., ym in R —Con(A) such that (1) each y; lies in R;; (2) the horizontal
row containing any y; lies at least 6 units from the row containing any yx (j # k) or
any x. We can do this so long as |R —Con(A)| > 18m+/n. To prove the Lemma we
show that these x’s and y’s can be used as “contacts” in a family of figures
equivalent to the figures of 2.4.2. This will imply at once that cov(A)=m.

We const uci the figures as follows: Begin by renumbering the x’s from top to
bottom, i.e., so that x; is above x; for i <j. Next arrange each x; to be a contact
point for three horizontal “wires” as shown in Fig. 8. Extend each of these wires on
the left to meet the boundary of R;. Now do the same thing for the y’s, only ihis
time working to the right. Next, in the boundary of R;, connect the bottom wire of
each x; to the top wire of x;.1, and similarly for the y’s. Connect the top wires{ - x,
and y,, and the bottom wires for x, and y.. Finally, make a connection *‘arounc
tiie bottom of R to join the middle wire of x; to the middie of the corresponding y;,
as follows: for (x,, y;) work in the boundary of R; for (xz, y,), in the strip 3 units ir
from the boundary; and so on. These latter connections all lie in R — R;, and so d<
not interfere with the previous wires. (The final figure is illustrated in Fig. 9 for the
case m =3.) Asin 2.4.2, these are connected if andonlyif X vY. O

Proof of 2.4.1. Given M and ¢, let K be the constant K(M +1) given by Lemma
2.4.3, and choose R large enough so that K+vn<en. Then, if |A|>en and
|Con(A)| < (1~ ¢)n, we have that |A| and |R —Con(A) are both greater than Kvn.
Hence cov(A)=M +1 by 2.4.3, which shows that the computation is highly inter-
connected. [

2.5. Covering multiplicity of the connectivity predicate

Applying Lemma 2.3.5 to Theorem 2.4.1, we see immediately that connectivity.
unlike the “local” predicates for local convexity and [X is a single solid rectangle]

Fig. 8. Details of the contact x; in Lemma 2.4.3.
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Fig. 9. Cennectivity figure for Lemma 2.4.3.

discussed in Section 2.2, does not have finite covering multiplicity over all fractional
supports. In particular, 1/M -fractional support schemes which compute connec-
tivity on large retinas must have lim. .« ;: = M. But connectivity, we expect, shouid
be “even more global” than that—more like computing arbitrary Boolean
functions, where, for any fixed M, we have lim, .. g =20 by 2.2.3. Indeed, the same
reasoning as in 2.4.2. shows that this must be true in connectivity computations,
and that 4 must grow as rapicly as Vn, so long as we assume that the supports of the
partial predicates are disjoint. In this section we show that connectivity has un-
bounded covering multiplicity for 1/M -fractional supports. even if the supports are
allowed to overlap. We shall not, however, consider the case of arbitrary overlap.
Reiher, we restrict attention to schemes in which the supports overlap “‘regularly”™
according to the following prescription:

Definition 2.5.1. Let R be a square retina which is partitioned into I3 square blocks
of equal size. Then a /D-reg.lar support structure is a structure in wvhich each
support consists of some fixed number d <D of these blocks.

Vote that this is a special case of d/ D - fractional supports. Supports may overiay-.
bu* they must overlap “‘regularly”—two intersecting supports must necessarily have
an entire block in common. We remark also that, although we phrase our resulis
here only for square retinas, the same sort of thing will be true for all familics of
revinas with a sufficiently large “interior’, i.e., for sequences of retinas R in which
the perimeter of R grows no faster than V|R)|.
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Theorem 2.5.2. For any family of d/D-regular support structures which computes
connectivity, the covering multiplicity must satisfy lim, . u = cC.

The proof uses the switching network construction to translate the problem of
determining connectivity into that of computing an arbitrary Boolzan function.
Recall [7] that if X = (xy, . . ., X,) is a set of Boolean variables, and f: X >{0, 1}is a
predicate, then a switching network for f is given by a function F which associates to
each Boolean a-tuple a figure on a retina R such that F(x,, ..., x,) is connected if
and only if f(x1,...,x,)=1. We can construct such a network by writing f in
conjunctive normal form and translating the Boolean expression into a network,
interpreting conjunction as series coupling and disjunction as parallel coupling. For
example, the predicate

f(x1, x2, x5} = [at least 2 of the variables are equal to 1}

has conjunctive normal form

(ivxaVvIA(~X1 VX2V XA (X1 V~X2VX3)A (X1 VX2V ~X3)

and the corresponding network is shown in Fig. 10. The figure is interpreted as
follows: when the variable x; is equal to 1, the squares marked “x;” are filled in anc
the squares marked“~x;” are left empty. Conversely, when x; =0, the squares
marked “~x;” are filled in and the squares marked “x;” are left empty. These
squares are then called the contacts of the network.

Notice that a function of a variables can have at most 22” terms in its con-
junctive normal form, and hence a network with this many contacts can realize any
Boolean function of a variables. This is the sense in which computations for
determining connectivity must also be able to compute arbitrary Boolean functions.

X| ~X, X1 :lég

Fig. 10. Switching network for the function
(61 VX2V E3)A (~X1 VX2V X3)A (X1 V ~X3 v X3)A (X v X3V ~Xx3).
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The proof of 2.5.2 now rests on the following:

Lemma 2.5.3. Suppcse we have D sets of Boolean variables
X1=(X11, [ xl,,,), - ,XD =(.'C131, - ,xpm).

Consider support structures of order dm in which each suppcrt consists of some
collcction of d < D of the Xi. Then for any fixed values of d and D, and any bound B,
we can choose m large enough so that there are Boolean junctions of the X's which
cannot be computed by structures of this type having covering multipliciry u < B.

This lemma follows at once from 2.2.3. Moreover. by examininz the proof of
2.2.3, we see that u would have to grow large with the same order as m.

Proof ef 2.5.2. Construct in R a switching network that can realize any ‘unction of
Dm variables, such that the contacts corresponding to the variabies i the i set X;
all lie within the /™ block. Then any regular support structure which admits
connectivity on R must aiso admit arbitrary Boolean functions as in 2.5.3. As R
becomes large we can choose larger and larger values for m. Thereforz u must also
increase without bound. O

Reinark 2.5.4. The above proof shows that .« must grow at least as rapidly as log .
This logarithmic factor arises from the use of the general switching network t
re lize arbitrary Boolean functions. It is natural to ask if there is & bound more © :
keeping with the Va growth observed for disjoint supports. Also, is there some way
to eliminate the ‘‘reguiarity” assumption, and so establish 2.5.2 ror arbitrary
1/M -fractional supports? What is the order of growth in thic case?”

3. Locai and global in real-valued computations

The techniques presented above for analyzing Boolean functions ire also ap-
plicable to the study of real-valued functions. The “‘retina’ i.: this setting i~ an index
set for n real variables (xy, . . ., X,.}, and the support of a fuaction f :R" >R consists
of all indices i such that f depends on x;. This extension to the real-valued comain is
analogous to Uesaka’s extension of Minsky and Papert’'s work on the theory of
“analog perceptrons” [10, 11]. The anaiog perceptron formulation, hov/ever. deals
only with functions of the form f(x,, ..., x,)=23f wherc each f is a function of
(hopefully) fewer than n of the x’s. In keeping with the comments in Section 1.2,
we dind that this linearity requirement is too restrictive to serve as a basis for
general study of structural complexity. For example, the function

mult:(xy, ..., Xp)—r X1 X,

caniot be written as a sum of functions f, of fewer than a of the x's (10} and &
therefore “global” from the perceptron point of view; but allowing muitiplication.
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v
rather than merely summation, at the “output stage” would enable us to compute
mult using any partition of the (x1, ..., %,) as supports for the f;. (This is exactly

,anvalogous to the comments on the parity predicate in Section 1.2.)

In the sections below we shall work in the rategory of real-valued differentiable
- functions. From this point of view we analyze, in Section 3.2, the covering multi-
pllcxty necessary compute arbitrary polynomials. Section 3.3 applies the same ideas
to computing the determinant of a matrix and solving systems of linear equations.
All of these results are based on a theorem on functional decomposition proved in
Section 3.1.

3.1. The decomposition theorem

Following the framework of Section 2 we will say that a support structure
(S1,...,S) admits differentiably a function f:R" - R :f f can be represented in the
form f=g(fs,...,f,) where support{f;)= S; and g, f1, . . ., f, are differentiable. We
will also consider situations in which f is defined only locally in some neighborhood
U <R" in which case we require that g and the f; be locally defined. To investigate
conditions under which this can be done, consider first a simple kind of support
structure in which the variables x; are partitioned into two disjoint sets X =
(x1,...,%;)and Y = (Xq+1, . . . , X»). Let Diff (X) denote the algebra of real-valued
differentiable functions of the variables in X. For any f:R" >R let 4(X, f) denote
the module generated over Diff(X) by the a functions af/ax;, ..., 3f/dx..

Tkeorem 3.1.1 (The decomposition theorem). If f:UcR*XR" >R is a
differentiable fu:iction which can be represented as

f(X9 Y):'g(fl(X)s e 5fr(X)? Y),

where g:R"™"" " P 5>Rand f;:R* >R, i =1, ..., r are differentiable, then the module
A(X, f) has rank at most r throughout U. Conversely, if f is continuously differenti-
able, and A(X, f) has rank at most r, then there is an open subset V < U on which f
can be so represented.

Proof. Differentiating the equation f=g(f1,...,f, Y) with respect to any x;€ X
gives

offax; = g(ag/ 3f;)(0fi/ 9x:).

Each f;, and therefore each df;/ox;, lies in Diff(X). Hence 5f/dx; lies in the module
generated over Diff(X) by the r functions ag/éx;. Since this i< true for all i, we have
that il of 4(X, f) is contained within this module and is therefore of rank at most .

To shkow that the condition is also sufficient, begin by choosing any p = (px, p.-) €
U and r +1 sets of particular values Y, ..., Y,+; for the variables Y such that the
pairs (px, py) all lie in U, and consider the functions f;(X) = f(X, Y;). We claim that
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for any values Y; the matrix
lofi/oxll, i=1,....r+1, j=1,. .,a

has rank at most r.
To urove this, pick any r+1 columns, say, for notational simplicity. columns 1

through r+ 1. According to the hypothesis on 4(X, f) we have
f(X, Y)/oxr1= X @1 i(X)Of(X, Y)/6x)),

i=1..., r

where the ¢,+1,;(X) are functions of X alone. Thus we can substitute any Y; for Y
in the above equaticn to get

ofif 0%rs1 = Z ©r+1,i(X)(fi/ 0x;)).

Since the ¢,+;,;(X) are independent of i this shows that
((r+1)st column of matrix) =} ¢,+1 ;(X)(jth column of matrix)
i

which proves the claim.

Now to complete the proof of the theorem, choose Y1, . ... Y,.| to maximize the
rank of ||6f;/dx;|. Denoting this maximum rank by m, m <r by the claim. Without
loss of generality we may assume that the first m rows of the matrix are linearly
independent. Consider now the function

F:U->R™!'xR"¢,
where
FX,Y)=(f(X, Y), fu(X),..., fu(X), Y).

By choice of the Yy,..., Y,.; we have that the rank of F is at most m +»n —a.
Therefore the functions describing the image of i+ are functionally dependent [1].
(This is where one needs that f is continuously differentiable.) Morrover, the set of
points at which the fy, . .., f., have maximal rank forms an open set V < U, and at
any such point p = (px, py)€ V we can apply the implicit function theorem to solve
the functional dependence relation for f(X, Y), i.e., there exists a continuously
differentiable function g defined in a neighborhood of px such that

X Y)=g(fi(X),....f(X), YV). O
Nete: [n the case r = 1 this theorem reduces to a result of Leontief [4].
To relate 3.1.1 to the framework of Section 2, we detine Diff(B) for any

Bc{l,...,n} to be the algebra of differentiable functions in all the variables
(xi)ica.
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Corollury 3.1.2. Suppose H is a support structure which admits differentiably the ‘
function f:R" >R, and A=(l, ..., n}. Then among the derivatives (3f/3x:)ic a, at
most cover(A) are linearly independent over Diff(Cong (A)).

Proof. Proceed just as above, noting that, for anyic A
df/ox: =X (38/8f;)(8fi/ ox:),
¥

where the summation ranges over j € cov({i}); and that for any such j
af;/ ox; € Diff(Con({i})) = Diff(Con(A)). OO

3.2. Polynomial evaluation

We now apply the results of 3.1 to prove that support structures whick: adn.at
arbitrary polynomials must be highly interconnected, and of infinite covering
multiplicity for fractional supports:

Proposition 3.2.1. If H is a support structure which admits differentiably the poly-
nomial P(x1, ..., Xm)=Y;%x! then for any Ac{l,..., n}, either cov(A)=|A| or
else Con(A) is the entire index set {1, ..., n}.

Proof. Suppose that there is some index i not contained in Con(A). By renumber-
ing the x’s we may assume that this index is n, and that A={1,...,|A[}. (This
renumbering does not change P, which is symmetric in the x;.) Then Diff(Con(A))<
Diff(xy, ..., Xn-1). Moreover
Py, ..., %)= xxl=Y xxi+ ¥ ¥ xx!
i i

i#n j
=xp+ ¥ xxl+ Y x.xl', mod Diff(xs,. .., Xe-1)
j#n i#n
aad so, taking the derivative with respect to x, (k # n) gives

aP/ax, =xX + nx.xl”!, mod Diff(xy, . .., Xn-1).

As the reader can verify, this equation implies that the module generated by
(8P/3x)kea contains the |A] elements x,, x%...,x, which are linearly in-
dependent over Diff(x,..., x,—1) and hence over Diff(Con(A)). Therefore, by

3.1.2 we have cov(4)=|A4|. O

Coroliary 3.2.2. Any family of support sructures which differentiably admits arbi-
trary polynomials must be highly interconnected. Consequently in any family of such

structures  with 1/M-fractional supports the convering multiplicity satisfies
lim, e p =M.

This follows at onte from 3.2.1 and 2.3.5. O
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3.3. Matrices and linear equations

We next turn from the computation of arbitrary polynomials to consider the
specific polynomial which expresses the determinant of a matrix in terms of the
matrix elements. The retina here is an index set of n° real variables (x,1, . . ., Xu.)
+hich we view as a matrix X =|x;|. The function det: (x;;) > det(X) is a polynomial
¢! devree n. Expanding det by the ith row shows that

(8/0x;)det=+X",

where X; is the cofactor of x;, itself a determinant of order n — 1.

Lemma 3.3.1. Let S = (s1, . . ., 5.) be any collection of n of the variables x;;. (That s,
each si represents some x;.) Let X* be the :ofactor of si.. Then the cofactors
X1, ..., X" are linearly independent over Diff(sy, .. ., s,).

Proof. By permuting the rows and coli:mns of X and reordering the s,’s we may
assume tnat s; = x;;. The cofactors X', ..., X* are sums of monomials of degree
n—1. The key to the lemma is the claim that, in the expansion of X'’ there is at
least one monomial which does not contain any of the x’s lying in S.

To prove this claim we note that, since X' is itself a deicrminant of order n — 1,
the monoinials a in the expansion for X' are the products @ =a; - - - @, where a,
lies in the jth column of X and no two «;’s lie in the same row. So we must show
tha: there is at least one such set of a;’s, none of which lie in §. Let ¢; be the number
of elements of S lying in the jth column of X. By permuting the columns, we may
assume that ¢;=c, =+ - =¢,. There are two cases to consider;

Case 1: ¢;>1. We want to choose a> frcm the second column. There are
n -1 ~¢, possible choices. Likewise, in choosing a3 from the third column, and not
lying in the same row as a», there are n —2—cx choices. In general, there are
n—(j— {y—c¢; choices for a, We need to know, then, that

n>c¢+(-1), j=2,...,n 4)

in oider to be sure that there are choices possible at each step. But X¢; = n and
c1=cy=- - ~=¢, s0 that ¢;<nfj. Also, if ¢,>1 we can be sure that ¢;=0 for
i>n/2. So we need only verify (4) for j <n:

¢ +(-D<@/N+G-D=[G-n)(j~D/jl+n<n

Therefore we can construct « as required.

Case 2: ¢1=1. In this case each column of X contains one element of 5. Now, if
some row contains more than one element of § we can prove the result by applying
Case 1 o the transpose of X (which has the same determinant as X). Otherwise. if
each row and column contairs one element of S, we mav permute rows and
columns so that the s, are precisely the diagonal clements of ¥ If so we can toke
the monomial & to be, €.g., X23X34 * * * Xnn-1Xn-1.. Tuis proves the claim.
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Now to complete the proof of the lemma, let F = Diff(si, . .., s,), and suppose
that the X* were linearly dependent over F, i.e.,.

o };: fX*=0, where f.eF.
. ik
Now let & be the monomial in X' whose existence is assured by the above claim,
and set X' = a + B. We would then have

fias=~fiB~ ¥ fiX" (&)
k=2,....n

st b1, . . ., In2-, De those x; which do not lie in S and regard (5) as an equation in
the polynomial ring F[ty,.. ., t,2-,]. The construction of a guarantees that, as *n
element of this ring, « has degree n — 1. Also, the terms on the right side of (5) have
degree at most n—1. Moreover, none of these terms can be equal to «, since a
monomial in the expansion of the cofactor of an element of a matrix cannot also lie
in the expan: _. of a cofactor of a different element of the matrix. Therefore Eq.
(5)is impossible. O

As a ronsequence we deduce a theorem about the distributed computation of
determinants: Suppose we have an n X n matrix X, whose entries we partition into
n sets S; of order n. (The S; can be the rows, columns, vr x+vn submatrices or
whatever.) Consider computing det(X) by first evaluating separate “preprocessing”
functions f; of the S; and then combining the resuits of the f; by some function g.
We find that computing a determinant is a worst case for this kind of distributed
computation:

Theorem 3.3.2. Let H=(Sy,...,S,) be a support structure for functions of n’
variables where the S; are pairwise disjoint and of size n. If H differe_ntiably admits the
determinant function, then cov(S;)=n for all j.

Proof. Since the §; are disjoint, we have Con(S;)=S; anc the theorem follows
immediately from 3.3.1and 3.1.2. O

In other words, no matter what “local” computations we make based on the n
elements of each §;, we still must transmit » numbers to be combined by g. From
the communication point of vic w, there is no point in doing any local computations
at all. We may as well transmit the n elements of S; to g directly.

As a final application of thcse ideas, consider the problem of solving an n X n
system of linear equations Xy =b based on dividing the matrix X into columns.
That is to say, each of the elenients y; should be computea by a structure in which
each support can intersect at most one column of X (and we’ll also allow each
partial function to access any entry of b). As with deter:ninants, this turns out to be
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a worst case: the information needed from each column of X cannot be transmitted
by fewer than n differentiable functions:

Theorem 3.3.3. Le: b be a fixed non-zero n-vector, and let y;(X) be the jth entry of
the solution to the system of linear equations Xy =b. Suppose that H is a support
structure which differentiably admits y;, and that each support in H is contained
with:n a single column of X. Then, for the jth column X; of X, we have cov(X;)= n.

Proof. Let b'X denote the “augmented matrix” in which the jth column of X is
replaced by b. By Cramer’s rule, y; ~ 'b'X|/|X|. Hence, for any element x;,

ayi/axa = 1/IX P[(X[)0l6'X |/ 0xs ) — (6'X)(61X 1/ 9x:)].

For any j, if b is non-zero, there are matrices X for which | X|# 0 and |6'X] # 0. So
consider the clements in the jth column of X, i.e., take j = & in the above equation.
Since |b’X| does not involve the variable x;, 8|b’X|/dx; =0 and so

ayi/axy = —(|b'X|/| X ol X | /oxy = £(1b'X|/| X)X,

But, by Lemma 3.3.1 the X", X% ... X" are linearly independent over
Diff(x,, . .., x»;). Hence the multiples of these polynomials by |#’X1/|X|* are also
linezrly independent. Corollary 3.1.2 therefore implies that cov(X;)=n. ]

3.+. Relations with Hilbert’s 13th problem

The preceding perspective on the complexity of functions is related to in-
vestigations growing out of Hilbert’s 13th problem, which concerns the possibility
of representing functions of several variables as superpositions of functions of &
smaller number of variables. (For a survey see [5].) Notable among these is the
result due to Kolmogorov and Arnol’d [3] that any continuo.s function can alwave
be expressed as a superposition of continuous functions of two variables. On the
other hand, it is known that this cannot be done if the functions in the decom-
position are required o satisfy differentiability constraints. This qualitative
difference between differentiable and non-differentiable decompositions suggests
there is no straightforward extension of the techniques of the previous sections to
allow for non-dirierentiable partial functions.

4. Conclusion; Questions for further research

This paper has suggesied precise computational formulations which interpret
sucli vague notions as ‘‘global”, “‘gestalt” or “the difficulty of dividing a compu-
tation into independent simplier parts”. The goal is to develop meaningtul measures
of complexity which reflect only how the pieces ¢f a computation are interrelated.
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and are independent of the specific operations performed by each piece. Hopefully,
such an effort could lead to a unified perspective for discussing problems of “parts
and wholes” in computational geometry, in numerical computati~n, in distributed
data processing, and perhaps even in artificial intelligence and cognitive theory as
indicated in [8]. - -

The theory is still at an embryonic stage, and the reader will no doubt recognize
nuraerous ways in which the above results can be improved. What can one say
about the order of growth of covering multiplicity for connectivity or other
geometric predicates? Are there general techniques for establishing lower bounds
for the covering multiplicity. of specific Boolean functions? The decomposition
theorem of Section 3.1 is a differentiable analogue of results of Ashenhurst on
“disjoint decompositions’ in switching theory [2]. Can this be extended to more
general decompositions? We have only hinted at applications to the study
distributed data bases. Developing covering multiplicity criteria in this context is
surely a major area left untouched by the present investigation. Other extensions of
the theory could deal with ‘“‘continuous retinas”, in which the subsets § < R become
measures defined on the plane, and the predicates f become functions on the
Hilbert space of measures. It is also important to develop alternative measures of
“local and global” complexity and contrast these with covering multiplicity. For
example, there should be a whole spectrum of “interconnectedness” running from
non-overlapping support structures to the highly interconnected structures defined
in Section 2.3, and one should be able to measure precisely the ‘“intrinsic inter-
connectedness” required for computing a function. Certainly, much remains to be
done in this area.
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