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A permutation sequence (σn)n∈N is said to be convergent if,
for every fixed permutation τ , the density of occurrences of
τ in the elements of the sequence converges. We prove that
such a convergent sequence has a natural limit object, namely
a Lebesgue measurable function Z : [0,1]2 → [0,1] with the
additional properties that, for every fixed x ∈ [0,1], the restriction
Z(x, ·) is a cumulative distribution function and, for every y ∈ [0,1],
the restriction Z(·, y) satisfies a “mass” condition. This limit
process is well-behaved: every function in the class of limit
objects is a limit of some permutation sequence, and two of these
functions are limits of the same sequence if and only if they are
equal almost everywhere. An ingredient in the proofs is a new
model of random permutations, which generalizes previous models
and might be interesting for its own sake.
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1. Introduction

As usual, a permutation of a finite set X is a bijective function of X into itself. We shall focus on
permutations σ on the set X = {1, . . . ,n} = [n], where n is a positive integer, called the length of σ ,
and is denoted by |σ |. In this work, a permutation σ on [n] is represented by σ = (σ (1), . . . , σ (n)),
and the set of all permutations on [n] is denoted by Sn . We denote by S =⋃∞

i=1 Sn the set of all finite
permutations. A graph G = (V , E) is given by its vertex set V and its edge set E ⊆ {{u, v} ⊂ V : u �= v}.

The main goal of this paper is to introduce a notion of convergence of a permutation sequence
(σn)n∈N and to identify a natural limit object for such a convergent sequence whose associated se-
quence of lengths (|σn|)n∈N tends to infinity. Lovász and Szegedy [21] were concerned with these
questions in the case of graph sequences (Gn)n∈N . This has been further investigated by Borgs et al.
in [5] and [6], where, among other things, limits of graph sequences were used to characterize the
testability of graph parameters. The convergence of sequences of combinatorial objects has also been
addressed in other structures. For instance, graphs with degrees bounded by a constant have been
addressed in recent work of Benjamini and Schramm [2] and of Elek [10,11]. Elek and Szegedy [12]
studied this problem for hypergraphs. See Lovász [19] for a comprehensive survey of this area.

Currently, the main application of our results in this paper is in property testing of permutations.
Roughly speaking, the objective of testing is to decide whether a combinatorial structure satisfies
some property, or to estimate the value of some numerical function associated with this combinatorial
structure, by considering only a randomly chosen substructure of sufficiently large, but constant size.
These problems are called property testing and parameter testing, respectively; a property or parameter
is said to be testable if it can be estimated accurately in this way. The algorithmic appeal of testability
is evident, as, conditional on sampling, this leads to reliable constant-time randomized estimators for
the said properties or parameters. In [15] four of the present authors address these questions through
the prism of subpermutations. Among their main results are a permutation result in the direction
of Alon and Shapira’s [1] work on the testability of hereditary graph properties, and a permutation
counterpart of the characterization of testable parameters by Borgs et al. [4].

Given the similarity of our results with the ones obtained in [21], we briefly describe that work.
Central in the arguments is the notion of a homomorphism of a graph F into a graph G , a function
φ : V (F ) → V (G) that maps the vertex set V (F ) of F into the vertex set V (G) of G with the property
that, for every edge {u, v} in F , the pair {φ(u), φ(v)} is an edge in G . The number of homomorphisms
of F into G is denoted by hom(F , G), while the homomorphism density of F into G is given by the
probability that a uniformly chosen φ is a homomorphism:

t(F , G) = hom(F , G)

|V (G)||V (F )| . (1)

It is natural to measure the similarity between two graphs G and G ′ by comparing the homomor-
phism density of different graphs F into them. This suggests defining a graph sequence (Gn)n∈N as
being convergent if, for every (simple) graph F , the sequence of real numbers (t(F , Gn))n∈N converges.
Lovász and Szegedy identify a class of natural limit objects for such convergent sequences, which
they call graphons, in the form of symmetric Lebesgue measurable functions W : [0,1]2 → [0,1]. One
might heuristically imagine the adjacency matrix of a simple graph as a black-and-white television
screen (a white pixel at position (i, j) represents an edge between vertices i and j), a graph se-
quence as a sequence of TV sets with higher and higher resolution, and the limiting graphon W as
the “perfect TV” where each point (x, y) ∈ [0,1]2 is a “pixel of infinitesimal size” and the color of
each infinitesimal pixel can be any shade of grey between black and white.

An important feature of this limit object is that it may be used to generate random graphs: given
a graphon W : [0,1]2 → [0,1] and a positive integer n, a W -random graph G(n, W ) with vertex set [n]
is generated as follows. First, n real numbers X1, . . . , Xn are generated independently according to the
uniform probability distribution on the interval [0,1]. Then, for every pair of distinct vertices i and j
in [n], the pair {i, j} is added to the edge set of the graph independently with probability W (Xi, X j).
Heuristically, the adjacency matrix of G(n, W ) looks like the graphon W if 1 	 n: we approximate
the perfect TV screen by choosing the coordinates of infinitesimal pixels of W at random and declar-
ing a pixel of G(n, W ) white with a probability proportional to the greyness of the corresponding
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infinitesimal pixel of W . It is important to point out that this model of random graphs generalizes
the random graph model G(n, H) (see Lovász and Sós [20]), further generalizing the classical model
Gn,p due to Erdős and Rényi [13] and Gilbert [14].

With this, Lovász and Szegedy define the homomorphism density of a k-vertex graph F into
a graphon W as the probability t(F , W ) that F is a subgraph of the W -random graph G(k, W ),
which can be calculated as follows given the above definition of G(k, W ):

t(F , W ) =
1∫

0

. . .

1∫
0

∏
{i, j}∈E(F )

W (xi, x j)dx1 . . .dxk. (2)

They use this to prove that, with each convergent graph sequence (Gn)n∈N , one may associate
a graphon W such that, for every fixed F ,

lim
n→∞ t(F , Gn) = t(F , W ).

The graphon W is said to be a limit to (Gn)n∈N . Conversely, Lovász and Szegedy show that, for
any fixed graphon W , the randomized sequence (G(n, W ))n∈N converges to W with probability one.
Hence, given a graphon W , there exists a graph sequence (Gn(W ))n∈N converging to W .

In our paper, a similar path is traced for permutation sequences (σn)n∈N . The rôle of the homo-
morphism density t(F , Gn) of a fixed graph F into Gn is played here by the subpermutation density
t(τ ,σn) of a fixed permutation τ into σn , which we now define. By [n]m

< we mean the set of m-tuples
in [n] whose elements are in strictly increasing order.

Definition 1.1 (Subpermutation density). For positive integers k,n ∈N, let τ ∈ Sk and π ∈ Sn . The num-
ber of occurrences Λ(τ ,π) of the permutation τ in π is the number of k-tuples (x1, x2, . . . , xk) ∈ [n]k

<

such that π(xi) < π(x j) if and only if τ (i) < τ( j). The density of the permutation τ as a subpermuta-
tion of π is given by

t(τ ,π) =
{(n

k

)−1
Λ(τ ,σ ) if k � n,

0 if k > n.
(3)

As an illustration, the permutation τ = (3,1,4,2) occurs in π = (5,6,2,4,7,1,3), since π maps
the index set (1,3,5,7) onto (5,2,7,3), which appears in the relative order given by τ . This concept
may be used to define a convergent permutation sequence in a natural way.

Definition 1.2 (Convergence of a permutation sequence). A permutation sequence (σn)n∈N is convergent
if, for every fixed permutation τ , the sequence of real numbers (t(τ ,σn))n∈N converges.

The interesting case occurs when the sequence of lengths (|σn|)n∈N tends to infinity, since, as we
shall see, every convergent permutation sequence (σn)n∈N is otherwise eventually constant. We prove
that, when |σn| → ∞, any convergent permutation sequence has a natural limit object, called a limit
permutation (all asymptotics in this paper are with respect to n → ∞). This limit object consists of a
family of cumulative distribution functions, or cdf for short. We say that a function F : [0,1] → [0,1] is
a cdf if

F is a non-decreasing and right-continuous function with F (0)� 0 and F (1) = 1. (4)

Note that F is a cdf if and only if there is a [0,1]-valued random variable Y such that, for every
y ∈ [0,1], we have F (y) = P(Y � y).

Definition 1.3 (Limit permutation). A limit permutation is a Lebesgue measurable function Z : [0,1]2 →
[0,1] satisfying the following conditions:
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(a) for every x ∈ [0,1], the function Z(x, ·) is a cdf, i.e., (4) holds;
(b) for every y ∈ [0,1], the function Z(·, y) satisfies

∫ 1
0 Z(x, y)dx = y.

We denote the set of limit permutations by Z .

In fact, limit permutations are in one-to-one correspondence with probability measures on the unit
square whose marginals are uniformly distributed in [0,1], as discussed below. The heuristic picture
can again be imagined using TV screens: a permutation n ∈ Sn might be represented by the square
matrix Aσ = (δσ (i), j)

n
i, j=1, where δi, j denotes Dirac’s delta function. Again, if A(i, j) = 1, we say that

the corresponding pixel is white. A TV screen obtained from a permutation has the property that
the brightness of each row and each column is the same, since each row and column has a unique
white pixel in it. Now imagine a convergent sequence of permutations as a sequence of TV screens
showing the same image with higher and higher resolution, and the limit permutation as the “perfect
TV”. The brightness distribution of the limit object can be represented by a probability measure μ
on [0,1]2 and inherits the property that the total brightness of each “row” and each “column” is the
same, i.e., the marginal distributions of μ are uniform on [0,1]. Consider the [0,1]2-valued random
variable (X, Y ) with distribution μ. Denote by Z : [0,1]2 → [0,1] the regular conditional distribution
function of Y given X (for a formal definition of this concept, see Shiryaev [23] and Lemma 2.2 below;
heuristically, we may think of Z(x, ·) as the cdf of Y under the condition X = x). The function Z
will satisfy Definition 1.3(b) because X and Y are uniformly distributed on [0,1]. The fact that we
may think of limit permutations as regular conditional distribution functions Z , or as probability
distributions μ, or as random variables (X, Y ) as above will be useful in what follows.

As with graphs, limit permutations may be used to define a model of random permutations.

Definition 1.4 (Z -random permutation). Given a limit permutation Z we generate the Z -random per-
mutation σ(n, Z) using the following. A sequence of n real numbers X1, . . . , Xn is generated indepen-
dently and uniformly on [0,1]. Conditional on (X1, . . . , Xn), we generate n real numbers Y1, . . . , Yn ,
with each Yi generated independently according to the cdf Z(Xi, ·). Let (X∗

1, . . . X∗
k ) and (Y ∗

1 , . . . Y ∗
k )

denote the values X1, . . . , Xk and Y1, . . . , Yk , respectively, rearranged in increasing order. The Z -
random permutation σ = σ(n, Z) is given by σ(i) = j if and only if X∗

i = X� and Y ∗
j = Y� for some

� ∈ [n].

In other words, the Z -random permutation σ = σ(n, Z) is given by the relative order of the ver-
tical coordinates of the points (X1, Y1), . . . , (Xn, Yn) with respect to their horizontal coordinates (we
shall see later that, with probability one, Xi �= X j and Yi �= Y j if i �= j ∈ [n]).

This new model of random permutation generalizes the classical random permutation model, in
which a permutation is selected uniformly at random from all permutations on [n]. Indeed, a classical
random permutation may be obtained as a Z -random permutation for the uniform limit permuta-
tion Zu , where Zu(x, y) = y for all (x, y) ∈ [0,1]2. The distribution of the corresponding (X, Y ) is
uniform on [0,1]2, i.e., X and Y are independent and uniform on [0,1].

Again inspired by the graph case, given a limit permutation Z , we may define the subpermutation
density t(τ , Z) of a permutation τ on [k] in Z as the probability that the Z -random permutation
σ(k, Z) is equal to τ .

Definition 1.5. Let (σn)n∈N be a sequence of permutations such that |σn| → ∞. Let Z ∈ Z . We say
that (σn)n∈N converges to Z , or briefly write σn → Z , if

∀τ ∈ S: lim
n→∞ t(τ ,σn) = t(τ , Z). (5)

Note that the assumption |σn| → ∞ is quite natural: we prove in Claim 2.4 that if (σn)n∈N con-
verges and (|σn|)n∈N has a bounded subsequence then the sequence (σn)n∈N is eventually constant.
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Theorem 1.6 (Main result).

(i) Given a convergent permutation sequence (σn)n∈N for which |σn| → ∞, there exists a limit permutation
Z such that σn → Z holds.

(ii) Conversely, every Z ∈ Z is a limit of a convergent permutation sequence, i.e., there is a sequence (σn)n∈N
such that σn → Z holds.

Theorem 1.6 naturally raises the question of characterizing the limit permutations that are limits
to the same given convergent permutation sequence (σn)n∈N . It is clear that this limit is not unique in
a strict sense, because, if σn → Z and A is a measurable subset of [0,1] with measure zero, then any
limit permutation obtained through the replacement of the cdf Z(x, ·) by a cdf Z∗(x, ·) for every x ∈ A
is also a limit of (σn)n∈N , as the value of the probabilities corresponding to t(τ , Z) and t(τ , Z∗) will be
identical. This question has also been raised in the case of graph limits in [5], where uniqueness was
captured by an equivalence relation induced by a pseudometric d� between graphons. Two graphons
W and W ∗ were proved to be limits of the same graph sequence if and only if d�(W , W ∗) = 0. The
case of permutations is simpler.

Theorem 1.7. Let Z1, Z2 ∈ Z . Let (σn)n∈N be a convergent permutation sequence. Then σn → Z1 and
σn → Z2 if and only if the set {x: Z1(x, ·) �≡ Z2(x, ·)} has Lebesgue measure zero.

Recall that limit permutations Z may be viewed as certain probability distributions μ or as certain
random variables (X, Y ) (see the discussion just after Definition 1.3). Theorem 1.7 implies that limit
permutations are unique when viewed as such probability distributions or random variables.

Based on a previous concept by Cooper [8], we may introduce a distance d� between permutations
(see (31)) and, more generally, between limit permutations, which is a permutation counterpart of
the graph pseudometric discussed in the previous paragraph. In particular, we may characterize our
notion of convergence of permutation sequences in terms of this metric. As usual, a sequence (σn)n∈N
is said to be a Cauchy sequence with respect to the metric d� if, for every ε > 0, there exits n0 = n0(ε)

such that d�(σn, σm) < ε for every n,m � n0.

Theorem 1.8. A permutation sequence (σn)n∈N converges if and only if it is a Cauchy sequence with respect to
the metric d� .

Also in analogy with the work for graphs by Lovász and Szegedy, the theory in this paper can be
considered in terms of the discrete metric space (S,d�), where S = ⋃∞

i=1 Sn is the set of all finite
permutations and d� is the metric of the previous paragraph. By a standard diagonalization argu-
ment, every permutation sequence can be shown to have a convergent subsequence (see Lemma 2.5).
As a consequence, the metric space (S,d�) can be enlarged to a compact metric space (Z/∼,d�)

by adding limit permutations, where we identify limit permutations that are equal almost every-
where. By Theorem 1.6 the subspace of permutations is dense in Z/∼; moreover, it is discrete, since
a sequence cannot converge to a permutation without being eventually constant (Claim 2.4). Finally,
Theorem 1.8 tells us that, when restricted to permutations, convergence in this metric space coincides
with the concept of convergence in Definition 1.2.

We have found two essentially different paths for establishing the main results in this paper. One
of them starkly resembles the work of Lovász and Szegedy [21] for graph sequences, which relies
on Szemerédi-type regularity arguments. However, several difficulties of technical nature arise, as
the limit objects here are more constrained than in the graph case. For a detailed account of this
approach, we refer the reader to [16], while most of its permutation regularity ingredients may be
found in [17].

In this paper, we have opted for an alternative approach, with a distinctive probabilistic flavor,
which has the advantage of being both more compact and more direct, since several of the technical-
ities of the first approach can be avoided.

The remainder of this paper is structured as follows. In Section 2 we collect some preliminary
results from probability theory. For instance, we discuss the relation between limit permutations and
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probability measures on the unit square, and we recall some facts about weak convergence of prob-
ability measures in this context. Moreover, we prove some simple facts about the convergence of
permutation sequences. Section 3 is devoted to a discussion of Z -random permutations and of the
probabilistic meaning of subpermutation densities. Section 4 deals with the rectangular distance on S
and Z , and we prove that a large Z -random permutation is close to Z in the d�-distance with high
probability. In Section 5 we define three natural, different notions of convergence on Z , and prove
that they are all equivalent. This is then used to prove Theorems 1.6, 1.7 and 1.8. For completeness,
we provide Appendix A containing the proof of an auxiliary probabilistic lemma that turns out to be
important in our proofs, but which may be proven by standard measure-theoretic arguments.

2. Preliminaries

The present section introduces the main concepts of probability theory that are important in this
paper, and gives the proofs of two simple remarks about the convergence of permutation sequences.
It is organized as follows. Subsection 2.1 deals with relevant properties of probability distributions on
the unit square. In Subsection 2.2 we recall useful facts about weak convergence of probability mea-
sures on compact subspaces of Rd , while in Subsection 2.3 we relate limit permutations to probability
distributions on the unit square using the notion of regular conditional probability distributions. The
remarks about the convergence of permutation sequences are addressed in Subsection 2.4.

2.1. Probability distributions on the unit square

If A ⊆ Ω is an event in a probability space, we denote by 1[A] the indicator of the event, i.e., the
random variable which takes value 1 if A occurs and value 0 if A does not occur.

We shall work with random variables (X, Y ) that take values in the unit square [0,1]2: X is the
horizontal and Y is the vertical coordinate of the random point (X, Y ). The joint distribution of (X, Y )

can be represented in many different ways.
We might define a probability measure μ on [0,1]2 by defining μ(B) = P((X, Y ) ∈ B) for every

Borel set B ⊆ [0,1]2, but since the σ -algebra of Borel sets is generated by the collection of rectangles
of the form B = [0, x] × [0, y], it is enough to specify μ(B) for sets of this form to define μ uniquely.
Thus we define the joint probability distribution function F of (X, Y ) by

F (x, y) = P(X � x, Y � y) = μ
([0, x] × [0, y]), x, y ∈ [0,1].

We call the distribution of X and Y the first and second marginal distributions of (X, Y ), respectively,
which satisfy P(X � x) = F (x,1) and P(Y � y) = F (1, y).

If x1 < x2 and y1 < y2 then

P
(

X ∈ (x1, x2], Y ∈ (y1, y2]
)= F (x2, y2) − F (x1, y2) − F (x2, y1) + F (x1, y1). (6)

The [0,1]2-valued random variables that correspond to limit permutations will always have the
property that both X and Y are uniformly distributed on [0,1], which we denote by X, Y ∼ U [0,1].
This happens if and only if we have F (x,1) = x, F (1, y) = y for any x, y ∈ [0,1].

We shall make use of the following simple inequality many times:

X, Y ∼ U [0,1]
�⇒ ∀x1, x2, y1, y2 ∈ [0,1]: ∣∣F (x2, y2) − F (x1, y1)

∣∣� |x2 − x1| + |y2 − y1|. (7)

A direct consequence of the fact that X and Y are both uniform is that, for any rectangle R = [x1, x2]×
[y1, y2] ⊆ [0,1]2, we have

P
(
(X, Y ) ∈ ∂ R

)
� P(X = x1) + P(X = x2) + P(Y = y1) + P(Y = y2) = 0, (8)

where ∂ R denotes the boundary of R . In particular we have

F (x, y) = P(X < x, Y < y) = P(X � x, Y � y).
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If (X1, Y1) and (X2, Y2) are both [0,1]2-valued random variables then we say that they have the
same distribution or briefly write (X1, Y1) ∼ (X2, Y2) if their respective probability measures μ1 and
μ2 agree on the Borel sets of [0,1]2, or, equivalently, if their respective joint distribution functions
are the same: F1(x, y) = F2(x, y) for all x, y ∈ [0,1].
2.2. Weak convergence of probability measures

Now we recall some well-known facts about weak convergence of probability measures (for details,
see [3]).

Let Ω be a complete, separable metric space and let B denote the σ -algebra of Borel sets. If
μ1,μ2, . . . and μ are probability measures on the measurable space (Ω,B), then we say that the
sequence (μn)∞n=1 converges weakly to μ (which we denote μn ⇒ μ) if for all bounded, continuous
functions f : Ω →R we have

lim
n→∞

∫
Ω

f (ω)dμn(ω) =
∫
Ω

f (ω)dμ(ω). (9)

We will make use of the following consequence of Prokhorov’s theorem (see Chapter 1, Section 5
of [3]) characterizing compact subsets of the space of probability measures on Ω .

If Ω is compact then every sequence (μn)
∞
n=1 has a weakly convergent subsequence. (10)

For Ω = Rd , if we denote by (X1, . . . , Xd) the Rd-valued random variable with distribution μ,
and, similarly, we let (X1

n , . . . , Xd
n) be the random variable with distribution μn , then we say that

(X1
n , . . . , Xd

n) converges in distribution to (X1, . . . , Xd) (or briefly write (X1
n , . . . , Xd

n)
d−→ (X1, . . . , Xd))

if μn ⇒ μ.
It easily follows from (9) that(

X1
n , . . . , Xd

n

) d−→ (
X1, . . . , Xd) �⇒ ∀i ∈ [d] : Xi

n
d−→ Xi . (11)

In other words, weak convergence of the joint d-dimensional distributions implies weak convergence
of the marginal distributions. As a consequence we obtain the following useful fact about weak con-
vergence of [0,1]2-valued random variables with uniform marginals:

∀n ∈R: Xn, Yn ∼ U [0,1], and (Xn, Yn)
d−→ (X, Y ) �⇒ X, Y ∼ U [0,1]. (12)

The converse implication of (11) does not hold in general, but it does hold in the special case
when the marginals are independent.

Let Ω i denote a metric space for all i ∈ [d], and denote by Ω = Ω1 × · · · × Ωd the product space
(we may define the distance between points of Ω to be the L∞-distance, that is, the maximum of
the distance of each pair of coordinates). If μi

n , μi are probability measures on Ω i then

∀i ∈ [d]: μi
n ⇒ μi �⇒ μ1

n × · · · × μd
n ⇒ μ1 × · · · × μd, (13)

where μ1 × · · · × μd denotes the product measure of the measures μ1, . . . ,μd on the product
space Ω . For the proof of this fact, see [3, Theorem 2.8(ii)].

We say that B ∈ B is a continuity set of the measure μ if μ(∂ B) = 0. The following equivalent
characterization of weak convergence is a consequence of the Portmanteau theorem (see [3, Theo-
rem 2.1]):

μn ⇒ μ ⇐⇒ μn(B) → μ(B) for all continuity sets B of μ. (14)

Lemma 2.1. Let (μn)∞n=1 and μ be probability measures on [0,1]2 . Denote by (Xn, Yn) and (X, Y ) the cor-
responding [0,1]2-valued random variables and by Fn(x, y) and F (x, y) the corresponding joint probability
distribution functions. Assume that for all n ∈N, we have Xn, Yn ∼ U [0,1]. Then

(Xn, Yn)
d−→ (X, Y ) ⇐⇒ ‖Fn − F‖∞ = sup

x,y∈[0,1]
∣∣Fn(x, y) − F (x, y)

∣∣→ 0.
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Proof. In order to prove that ‖Fn − F‖∞ → 0 implies (Xn, Yn)
d−→ (X, Y ) we need to show (9). It is

enough to prove that, for all ε > 0 and for every continuous function f : [0,1]2 →R, we have

lim sup
n→∞

∣∣∣∣∣
1∫

0

1∫
0

f (x, y)dμn(x, y) −
1∫

0

1∫
0

f (x, y)dμ(x, y)

∣∣∣∣∣� ε. (15)

Since [0,1]2 is compact, f is uniformly continuous, so we can choose k ∈ N such that if we define
Bk(i, j) = [ i−1

k , i
k ] × [ j−1

k ,
j
k ] then we have

∀i, j ∈ [k]: max
{

f (x, y): (x, y) ∈ Bk(i, j)
}− min

{
f (x, y): (x, y) ∈ Bk(i, j)

}
� ε.

We bound the integral on the l.h.s. of (15):

1∫
0

1∫
0

f (x, y)
(
dμn(x, y) − dμ(x, y)

)

�
k∑

i, j=1

(
μn

(
Bk(i, j)

) · max
Bk(i, j)

f − μ
(

Bk(i, j)
) · min

Bk(i, j)
f
)

�
k∑

i, j=1

ε · μn
(

Bk(i, j)
)+

k∑
i, j=1

∥∥ f
∥∥∞ · ∣∣μn

(
Bk(i, j)

)− μ
(

Bk(i, j)
)∣∣

(6)

� ε + k2‖ f ‖∞ · 4‖Fn − F‖∞.

With the same arguments, we may prove that

1∫
0

1∫
0

f (x, y)
(
dμ(x, y) − dμn(x, y)

)
� ε + k2‖ f ‖∞ · 4‖Fn − F‖∞,

so that∣∣∣∣∣
1∫

0

1∫
0

f (x, y)
(
dμn(x, y) − dμ(x, y)

)∣∣∣∣∣� ε + k2‖ f ‖∞ · 4‖Fn − F‖∞.

Now (15) follows from the above inequality and ‖Fn − F‖∞ → 0.

In order to prove that (Xn, Yn)
d−→ (X, Y ) implies ‖Fn − F‖∞ → 0, we will have to make use of

our assumption that Xn, Yn ∼ U [0,1] for every n (this implication does not hold for general sequences
of weakly convergent probability measures on [0,1]2).

We are going to show that

∀k ∈R ∃n0 ∈N ∀n � n0: ‖Fn − F‖∞ = sup
x,y∈[0,1]

∣∣Fn(x, y) − F (x, y)
∣∣� 5

k
. (16)

Since Xn, Yn ∼ U [0,1] for every n and (Xn, Yn)
d−→ (X, Y ), we know from (12) that X, Y ∼ U [0,1].

By (8), it follows that, for every rectangle R ∈ [0,1]2, P((X, Y ) ∈ ∂ R) = 0, so that rectangles are
continuity sets with respect to the associated measure μ. We may then apply (14) to deduce
that Fn(x, y) → F (x, y) for all x, y ∈ [0,1]. Thus there exists n0 ∈ N such that for all n � n0 and
i, j ∈ {0,1, . . . ,k} we have∣∣∣∣Fn

(
i

k
,

j

k

)
− F

(
i

k
,

j

k

)∣∣∣∣� 1

k
. (17)
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In order to deduce (16) from this, pick x, y ∈ [0,1] and let i := �k · x� and j := �k · y�. Then∣∣Fn(x, y) − F (x, y)
∣∣

�
∣∣∣∣Fn(x, y) − Fn

(
i

k
,

j

k

)∣∣∣∣+ ∣∣∣∣Fn

(
i

k
,

j

k

)
− F

(
i

k
,

j

k

)∣∣∣∣+ ∣∣∣∣F (x, y) − F

(
i

k
,

j

k

)∣∣∣∣
(7)

� 2

k
+
∣∣∣∣Fn

(
i

k
,

j

k

)
− F

(
i

k
,

j

k

)∣∣∣∣+ 2

k

(17)

� 5

k
, (18)

which concludes the proof. �
2.3. Regular conditional probabilities

The aim of this subsection is to show that limit permutations are (essentially) in one-to-one cor-
respondence with probability measures on the unit square with U [0,1] marginals: Z is the regular
conditional distribution function of Y with respect to X . Heuristically we may think about Z as the
function satisfying Z(x, y) = P(Y � y | X = x), although the condition X = x has zero probability.

Denote by B[0,1] the σ -algebra of Borel sets of the unit interval [0,1] and recall the definition of
limit permutation, given in Definition 1.3.

Lemma 2.2. Let (X, Y ) be a [0,1]2-valued random variable satisfying X, Y ∼ U [0,1].

(a) Then there exists a limit permutation Z such that

∀B ∈ B[0,1], ∀y ∈ [0,1]: P(X ∈ B, Y � y) =
1∫

0

Z(x, y)1[x ∈ B]dx. (19)

(b) Moreover, if Ẑ is another limit permutation satisfying (19) then

1∫
0

1
[∃y ∈ [0,1]: Z(x, y) �= Ẑ(x, y)

]
dx = 0. (20)

The proof of Lemma 2.2 is a standard measure-theoretic argument that is almost identical to that
of Theorem 4 of Chapter II, Section 7 of [23] about the existence of regular conditional distribution
functions. Nevertheless we give a full proof of Lemma 2.2 in Appendix A in order to keep the paper
self-contained.

Lemma 2.2 tells us how to obtain a limit permutation Z from a [0,1]2-valued random variable
(X, Y ) satisfying X, Y ∼ U [0,1]. Conversely, with a limit permutation Z , we may associate such a
random variable (X, Y ) as follows.

Definition 2.3. Let Z ∈ Z . We generate the [0,1]2-valued random variable (X, Y ) associated with Z
in the following way. We first pick X ∼ U [0,1], and, given X , the random variable Y is generated
according to the cdf Z(X, ·).

It is easy to check that with this definition Z is indeed the regular conditional distribution function
of Y with respect to X in the sense of Lemma 2.2.

The joint distribution function of (X, Y ) associated with Z can be expressed as

F (x, y) = P(X � x, Y � y)
(19)=

x∫
0

Z(x, y)dx. (21)

By Definition 1.3(b) we get F (1, y) = y which is equivalent to Y ∼ U [0,1].
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2.4. Two simple remarks about permutation convergence

In this subsection, we prove two simple facts about the convergence of permutation sequences
that were mentioned in the introduction. We show that every convergent sequence (σn)n∈N such that
|σn| � ∞ must be eventually constant, and we establish that every permutation sequence contains
a convergent subsequence.

For the first, we remind the reader that Theorem 1.6 is only stated for permutation sequences
(σn)n∈N whose lengths tend to infinity, as we claimed that every other convergent sequence is even-
tually constant. In light of this, we prove this claim prior to addressing the main results. As before,
if σ ∈ Sn we write |σ | = n. Recall the notion of convergence of permutation sequences from Defini-
tion 1.2.

Claim 2.4. Let (σn)n∈N be a convergent permutation sequence such that |σn|� ∞. Then the sequence (σn)n∈N
is eventually constant, that is, there is a permutation σ and an n0 ∈N such that n � n0 implies σn = σ .

Proof. It follows from (3) that
∑

τ∈Sk
t(τ ,π) = 1[k � |π |] for any k ∈ N and any permutation π . By

Definition 1.2 we get that for any fixed k ∈ N the limit limn→∞
∑

τ∈Sk
t(τ ,σn) = limn→∞ 1[k � |σn|]

exists and must be equal to 0 or 1.
From this and our assumption that lim infn→∞ |σn| < ∞ one deduces that lim infn→∞ |σn| =

lim supn→∞ |σn|; thus there is some m ∈ N such that |σn| = m if n is large enough.
Now if τ ,π ∈ Sm then t(τ ,π) = 1[τ = π ], and hence limn→∞ t(τ ,σn) must be equal to 0 or 1 for

all τ ∈ Sm . From this and |Sm| = m! < ∞ it is straightforward to deduce that the sequence (σn)n∈N is
eventually constant. �

To conclude this section, we show that permutation sequences always contain convergent subse-
quences.

Lemma 2.5. Every permutation sequence has a convergent subsequence.

Proof. Let (σn)n∈N be a permutation sequence. We shall find a convergent subsequence of (σn)n∈N by
a standard diagonalization argument. Since Sn is finite for every n � 1, the set of S = ⋃∞

n=1 Sn of all
finite permutations is countable, say S = (τm)m∈N .

If (σn)n∈N does not converge, starting with τ1, we let (σ 1
n )n∈N be a subsequence of (σn)n∈N for

which the bounded real sequence (t(τ1, σ
1
n ))n∈N converges. Inductively, for m � 2, we let (σm

n )n∈N
be a subsequence of (σm−1

n )n∈N such that (t(τm, σm−1
n ))n∈N converges. It is now easy to see that the

diagonal sequence (σ n
n )n∈N is such that, for every positive integer m, the sequence (t(τm, σ n

n ))n∈N
converges. In other words, the sequence (σ n

n )n∈N is a convergent subsequence of (σn). �
3. Z -random permutations and subpermutation densities

In this section we define the concept of a random subpermutation σ(k,π) of length k of a permu-
tation π and relate the subpermutation densities t(τ ,π) to the distribution of σ(k,π). Analogously,
given a limit permutation Z we define the Z -random permutation σ(k, Z) of length k and the sub-
permutation densities t(τ , Z). In order to treat permutations and limit permutations in a unified way
we assign a limit permutation Zσ to every permutation σ in such a way that their subpermutation
densities are close to each other.

First we recall Definition 1.1, the definition of the density t(τ ,π) of τ ∈ Sk in π ∈ Sn . Now we give
a probabilistic interpretation of this quantity.

Definition 3.1. Let π ∈ Sn . For k � n, the random subpermutation σ(k,π) of π of length k is the random
element of Sk generated in the following way. Choose an element (X ∗

1 , . . . ,X ∗
k ) ∈ [n]k

< uniformly from
the

(n
k

)= |[n]k
<| possibilities and let σ = σ(k,π) be the permutation of [k] satisfying

∀i, j ∈ [k]: π
(
X ∗

i

)
< π

(
X ∗

j

) ⇐⇒ σ(i) < σ( j).
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In plain words: σ(k,π) encodes the relative order of (π(X ∗
1 ), . . . ,π(X ∗

k )). It is obvious from Def-
inition 1.1 that we have

∀τ ∈ Sk: P
(
σ(k,π) = τ

)= t(τ ,π). (22)

Definition 3.2 (Z -random permutation (Version 2)). Given a limit permutation Z and a positive integer
n, a Z -random permutation σ(n, Z) is a permutation of [n] generated as follows. Recall Definition 2.3,
and let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed [0,1]2-valued random vari-
ables with distribution associated with Z . These pairs define the permutations R, S ∈ Sn , where

R(i) = ∣∣{ j: X j � Xi}
∣∣, S(i) = ∣∣{ j: Y j � Yi}

∣∣. (23)

The random permutation σ = σ(n, Z) is given by σ(n, Z) = S ◦ R−1, that is, σ(i) = S(R−1(i)) for every
i ∈ [n].

Note that Z -random permutations are well defined with probability one, because the probability
that either (X1, . . . , Xn) or (Y1, . . . , Yn) has repeated elements (i.e., S or R is not a well-defined
permutation) is zero. This follows directly from the fact that both (X1, . . . , Xn) and (Y1, . . . , Yn) are
independent and uniformly distributed on [0,1]. It is easy to see that σ(n, Z) in Definition 3.2 is
equivalent to the one given in Definition 1.4, since the X∗

i and Y ∗
j defined in the latter may be related

to X and Y by XR−1(i) = X∗
i and Y j = Y ∗

S( j) . Moreover, observe that one could alternatively define a
random permutation with the same distribution as σ(n, Z) by first generating a sequence (X∗

1, . . . , X∗
n )

uniformly distributed on [0,1]n
< and then drawing each Ŷ i in [0,1] independently according to the

probability distribution induced by Z(X∗
i , ·). The random permutation σ(n, Z) is given by the order

of the elements in (Ŷ1, . . . , Ŷn). This definition of σ(n, Z) resembles Definition 3.1.

Definition 3.3. Given a limit permutation Z and τ ∈ Sk the density of τ in Z is given by

t(τ , Z) = P
(
σ(k, Z) = τ

)
. (24)

It will be convenient for us to associate a limit permutation Zσ with every permutation σ in such
a way that t(τ , Zσ ) of (24) is close to t(τ ,σ ) of (22).

Definition 3.4. Given a permutation σ ∈ Sn define Zσ ∈ Z by defining the associated [0,1]2-valued
random (Xσ , Yσ ) to have joint density function

fσ (x, y) = n · 1[σ (�n · x�)= �n · y�]. (25)

Note that the support of the density function fσ (x, y) “looks like” the matrix Aσ = (δσ (i), j)
n
i, j=1 of

the permutation σ , the row and column sums of which are all equal to 1. From this it easily follows
that we have Xσ , Yσ ∼ U [0,1]; thus, by Lemma 2.2 we can define Zσ almost surely uniquely. Indeed,

Zσ (x, y) =
y∫

0

fσ (x, ỹ)dỹ. (26)

Lemma 3.5. Let τ ∈ Sk, σ ∈ Sn, k � n. Then

∣∣t(τ ,σ ) − t(τ , Zσ )
∣∣� 1

n

(
k

2

)
. (27)
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Proof. If A, B are events in a probability space then it is easy to check that∣∣P(A) − P(A | B)
∣∣� 1 − P(B) = P

(
Bc). (28)

We are going to apply this inequality to prove (27). To this end, let (Xi, Yi), i = 1, . . . ,k, be i.i.d. with
the same joint distribution as (Xσ , Yσ ) of Definition 3.4. Then Xi , i = 1, . . . ,k, are i.i.d. and uniform
on [0,1].

Let A be the event that the relative order of the vertical coordinates of (Xi, Yi), i = 1, . . . ,k
is τ with respect to their ordered horizontal coordinates, i.e., with the notation of (23), let A =
{τ = S ◦ R−1}.

Define Xi := �n · Xi� for each i ∈ [k]. We define the event

B = {∀1 � i < j � k: Xi �= X j} (29)

and let (X ∗
1 ,X ∗

2 , . . . ,X ∗
k ) denote the k-tuple that we get by arranging (X1,X2, . . . ,Xk) in increasing

order. Note that �n · Yi� = σ(Xi) by (25), and that under the condition that the event B occurs the
random k-tuple (X ∗

1 ,X ∗
2 , . . . ,X ∗

k ) is uniformly distributed on [n]k
< . Thus we have

P(A)
(24)= t(τ , Zσ ), P(A | B)

(22)= t(τ ,σ ) and P
(

Bc)� 1

n

(
k

2

)
,

and our result follows from (28). �
4. Rectangular distance

In this section we introduce the notion of rectangular distance d�(σ1, σ2) between two permu-
tations and also give the analogous definition d�(Z1, Z2) of rectangular distance between two limit
permutations. Using the notion of the limit permutation Zσ assigned to a permutation σ , we make a
connection between these two definitions of d� .

In Subsection 4.2 we prove that the rectangular distance between Z and the random subpermuta-
tion σ(k, Z) is small with high probability if 1 	 k. In other words, we show that Z can be recovered
from the sample σ(k, Z) with small error. From this we derive an analogous statement which quan-
tifies how small d�(π,σ (k,π)) is. This will prove to be useful in the characterization of testability
in [15].

4.1. Preliminary facts about the rectangular distance

Let I[n] be the set of all intervals in [n], that is, the set of all subsets of the form {x ∈ [n]: a � x < b},
where a,b ∈ [n + 1] are called the endpoints of the interval. Given a permutation σ on [n], Cooper [7]
defines the discrepancy of σ as

D(σ ) = max
S,T ∈I[n]

∣∣∣∣∣∣σ(S) ∩ T
∣∣− |S||T |

n

∣∣∣∣. (30)

This is used to measure the “randomness” of a permutation. Indeed, sequences with low discrep-
ancy, i.e., for which D(σ ) = o(n), are said to be quasi-random. We use a normalized version of the
same concept to introduce a distance between permutations.

Definition 4.1. Given permutations σ1, σ2 ∈ Sn , the rectangular distance between σ1 and σ2 is given by

d�(σ1,σ2) = 1

n
max

S,T ∈I[n]
∣∣∣∣σ1(S) ∩ T

∣∣− ∣∣σ2(S) ∩ T
∣∣∣∣. (31)

An analogous metric d� may be defined to measure the distance between limit permutations.
Given Z1, Z2 ∈Z , and the associated [0,1]2-valued random variables (X1, Y1) and (X2, Y2) (see Defi-
nition 2.3), the rectangular distance between Z1 and Z2 is defined by
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d�(Z1, Z2)

= sup
x1<x2∈[0,1]
y1<y2∈[0,1]

∣∣∣∣∣
x2∫

x1

(
Z1(x, y2) − Z1(x, y1)

)
dx −

x2∫
x1

(
Z2(x, y2) − Z2(x, y1)

)
dx

∣∣∣∣∣
(19),(8)= sup

x1<x2∈[0,1]
y1<y2∈[0,1]

∣∣P(X1 ∈ [x1, x2], Y1 ∈ [y1, y2]
)− P

(
X2 ∈ [x1, x2], Y2 ∈ [y1, y2]

)∣∣. (32)

Denote by F1 and F2 the joint probability distribution function (see (21)) of (X1, Y1) and (X2, Y2),
respectively. We define

d∞(Z1, Z2) = ‖F1 − F2‖∞ = sup
x,y∈[0,1]

∣∣P(X1 � x, Y1 � y) − P(X2 � x, Y2 � y)
∣∣. (33)

Using identity (6), it is easy to deduce that

d∞(Z1, Z2) � d�(Z1, Z2) � 4 · d∞(Z1, Z2). (34)

In the sequel we will use the simpler d∞ in our proofs rather than d� . Note that we have

d�(Z1, Z2) = 0 ⇐⇒ d∞(Z1, Z2) = 0 ⇐⇒ F1 ≡ F2 ⇐⇒ (X1, Y1) ∼ (X2, Y2)

(20)⇐⇒
1∫

0

1
[

Z1(x, ·) ≡ Z2(x, ·)]dx = 1. (35)

Recalling Definition 3.4 it is not hard to see that, for permutations σ1, σ2 ∈ Sn , we have
d�(σ1, σ2) = d�(Zσ1 , Zσ2 ), which allows us to extend the definition of rectangular distance to per-
mutations on different sets of integers. Indeed, we may define d�(σ ,π) := d�(Zσ , Zπ ) for every pair
of permutations σ ,π ∈ S .

Similarly, we define the rectangular distance of a permutation σ and a limit permutation Z by

d�(σ , Z) := d�(Zσ , Z). (36)

With this definition we may express the discrepancy in (30) as D(σ ) = n · d�(σ , Zu), where Zu is the
uniform limit permutation defined on page 96.

4.2. Rectangular distance and subpermutations

The main objective of this subsection is to show that the rectangular distance between a limit
permutation and a large constant-size random subpermutation σ(k, Z) of it is small.

Lemma 4.2. If k ∈N is a sufficiently large integer and Z ∈Z , then

P
(
d�

(
Z ,σ (k, Z)

)
� 16k−1/4)� 1 − 1

2
e−√

k. (37)

Proof. As in (21), denote by F the joint probability distribution function of the random variable (X, Y )

associated with the limit permutation Z (see Definition 2.3). Let σk = σ(k, Z) and, recalling (25), we
define the random functions fk and Fk by

fk(x, y) = n · 1[σk
(�n · x�)= �n · y�], Fk(x, y) =

y∫ x∫
fk(u, v)dv du. (38)
0 0



106 C. Hoppen et al. / Journal of Combinatorial Theory, Series B 103 (2013) 93–113
By (36), (33) and (34), we only need to prove that if k is large enough then

P
(

sup
x,y∈[0,1]

∣∣F (x, y) − Fk(x, y)
∣∣> 4k−1/4

)
� 1

2
e−√

k. (39)

As in (18), for i = �k · x� and j = �k · y�, we have |F (x, y) − Fk(x, y)| � 4
k + |F ( i

k ,
j
k ) − Fk(

i
k ,

j
k )|. We

claim that, in order to show (39), we only need to show that for large k we have

P
(

max
i, j∈[k]

∣∣∣∣F( i

k
,

j

k

)
− Fk

(
i

k
,

j

k

)∣∣∣∣> 3k−1/4
)

< 6e−2
√

k. (40)

This is because 4/k < k−1/4 for large k and

P
(

max
i, j∈[k]

∣∣∣∣F( i

k
,

j

k

)
− Fk

(
i

k
,

j

k

)∣∣∣∣> 3k−1/4
)

= P
( ⋃

i, j∈[k]

{∣∣∣∣F( i

k
,

j

k

)
− Fk

(
i

k
,

j

k

)∣∣∣∣> 3k−1/4
})

�
∑

i, j∈[k]
P
(∣∣∣∣F( i

k
,

j

k

)
− Fk

(
i

k
,

j

k

)∣∣∣∣> 3k−1/4
)

(40)

� k2 · 6e−2
√

k = (
12k2e−√

k ) ·
(

1

2
e−√

k
)

.

Now 12k2e−√
k � 1 if k is large enough, and we get (39).

To establish (40), let (X1, Y1), . . . , (Xk, Yk) be i.i.d. [0,1]2-valued random variables with dis-
tribution function F (x, y). Denote by (X∗

1, . . . X∗
k ) and (Y ∗

1 , . . . Y ∗
k ) the values of {X1, . . . , Xk} and

{Y1, . . . , Yk}, respectively, rearranged in increasing order.
Then we have

Fk

(
i

k
,

j

k

)
(38)= 1

k

i∑
�=1

1
[
σk(�) � j

]= 1

k

k∑
�=1

1
[

X� � X∗
i , Y� � Y ∗

j

]
.

In order to prove (40) we first show that

∀i, j ∈ [k] : P

(
1

k

k∑
l=1

1
[

Xl � X∗
i , Yl � Y ∗

j

]
> F

(
i

k
,

j

k

)
+ 3k−1/4

)
< 3e−2

√
k. (41)

Set ε = k−1/4. By (7) we get

F

(
i

k
+ ε,

j

k
+ ε

)
+ ε � F

(
i

k
,

j

k

)
+ 3ε. (42)

Let us define the event

A :=
{

1

k

k∑
l=1

1
[

Xl � X∗
i , Yl � Y ∗

j

]
> F

(
i

k
+ ε,

j

k
+ ε

)
+ ε

}
.

Then by (42) the probability on the left-hand side of (41) is less then or equal to P(A). On the other
hand,

P(A)

= P
(

A ∩
{

X∗
i <

i

k
+ ε

}
∩
{

Y ∗
j <

j

k
+ ε

})
+ P

(
A ∩

({
X∗

i � i

k
+ ε

}
∪
{

Y ∗
j �

j

k
+ ε

}))
� P

(
A ∩

{
X∗

i <
i

k
+ ε

}
∩
{

Y ∗
j <

j

k
+ ε

})
+ P

(
X∗

i >
i

k
+ ε

)
+ P

(
Y ∗

j >
j

k
+ ε

)
. (43)
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In order to bound these probabilities we are going to use the following large deviation estimate on
binomial random variables, which is a consequence of Hoeffding’s inequality (see McDiarmid [22]).

S ∼ BIN(k, p) �⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P
(

1

k
S > p + ε

)
� exp

(−2kε2),
P
(

1

k
S < p − ε

)
� exp

(−2kε2). (44)

This inequality will be used to bound the three terms on the r.h.s. of (43),

P
(

X∗
i >

i

k
+ ε

)
= P

(
1

k

k∑
�=1

1

[
X� �

i

k
+ ε

]
<

i

k

)
(44)

� exp
(−2kε2)

and, similarly, it holds that P(Y ∗
j >

j
k + ε) � exp(−2kε2). Thus it only remains to notice that

P
(

A ∩
{

X∗
i <

i

k
+ ε

}
∩
{

Y ∗
j <

j

k
+ ε

})

� P

(
1

k

k∑
l=1

1

[
Xl �

i

k
+ ε, Yl �

j

k
+ ε

]
> F

(
i

k
+ ε,

j

k
+ ε

)
+ ε

)
(44)

� exp
(−2kε2).

Thus by (43) and the above applications of (44) we get (41), namely

P(A) � 3 exp
(−2kε2)= 3 exp

(−2k
(
k−1/4)2)= 3e−2

√
k.

The inequality

∀i, j ∈ [k] : P

(
1

k

k∑
�=1

1
[

X� � X∗
i , Y� � Y ∗

j

]
< F

(
i

k
,

j

k

)
− 3k−1/4

)
< 3e−2

√
k

can be proven analogously. Putting this and (41) together we get (40). �
Lemma 4.3. Let k be a sufficiently large positive integer. Let n > e2

√
k and π ∈ Sn. Then we have

P
(
d�

(
π,σ (k,π)

)
� 16k−1/4)� 1 − e−√

k. (45)

Proof. The proof uses ideas similar to the ones in the proof of Lemma 3.5.
Given the permutation π , define Zπ by Definition 3.4. The random permutations σ(k,π) and

σ(k, Zπ ) do not have the same distribution, but, if (X1, Y1), . . . , (Xk, Yk) are i.i.d. [0,1]2-valued ran-
dom variables associated with Zπ (see Definition 2.3), then

(i) the distribution of σ(k, Zπ ) is the same as that of S ◦ R−1 (defined for Zπ in (23)),
(ii) the distribution of σ(k,π) is the same as that of S ◦ R−1 under the condition that the event B

defined in (29) occurs.

It follows from (28) that for any event A we have∣∣P(A) − P(A | B)
∣∣� P

(
Bc)� 1

n

(
k

2

)
� e−2

√
k
(

k

2

)
(∗)

� 1

2
e−√

k,

where the inequality (∗) holds if k is large enough. If we let A = {d�(Zπ , S ◦ R−1) � 16k−1/4} then

we have P(A) � 1 − e−√
k/2 by Lemma 4.2. Now, for k large enough, (45) follows from

P
(
d�

(
π,σ (k,π)

)
� 16k−1/4)= P(A | B) � P(A) − P

(
Bc)

� 1 − 1

2
e−√

k − 1

2
e−√

k � 1 − e−√
k. �
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5. Limits of permutation sequences

The objective of this section is to use the machinery developed in the previous sections to prove
our main results. In Subsection 5.1 we define three different types of convergence on the space of limit
permutations Z (weak convergence, d�-convergence and convergence of subpermutation densities)
and prove that they are all equivalent. This is then used in Subsection 5.2 to prove the theorems
stated in the introduction.

5.1. Equivalence of different notions of convergence of limit permutations

First we prove that a limit permutation is uniquely determined by the collection of its subpermu-
tation densities (up to the almost sure equivalence in (35)). Recall that we denote by S =⋃∞

i=1 Sn the
set of all finite permutations.

Lemma 5.1. Let Z , Ẑ ∈ Z . Denote by (X, Y ) and ( X̂, Ŷ ) the [0,1]2-valued random variables associated with
Z and Ẑ (see Definition 2.3). Then we have

∀τ ∈ S: t(τ , Z) = t(τ , Ẑ) �⇒ (X, Y ) ∼ ( X̂, Ŷ ).

Proof. Denote by F the joint probability density function of (X, Y ) (see (21)). By (35) it suffices to
prove that, if we know (t(τ , Z))τ∈S , then we also know the value of F (x, y) for every x, y ∈ [0,1].

As a matter of fact, given (t(τ , Z))τ∈S we know the distribution of the random permuta-
tion σ(k, Z) for every k ∈ N by (24), and, from σ(k, Z), we can define the random function Fk
as in (38). Thus we can calculate the expected value E(Fk(x, y)) given (t(τ , Z))τ∈Sk . As in the
proof of Lemma 4.2, it follows that (39) holds, which implies that for every x, y ∈ [0,1] we have
limk→∞ E(Fk(x, y)) = F (x, y).

In other words, we have shown that, given (t(τ , Z))τ∈S , the value of F (x, y) can be recovered for
every x, y ∈ [0,1]. �

Recall the definition of
d−→ from Subsection 2.2 and the definition of d�(Z1, Z2) from (32).

Definition 5.2. Let Z , Z1, Z2, . . . be limit permutations. Denote by (Xn, Yn) and (X, Y ) the [0,1]2-
valued random variables associated with Zn and Z , respectively. We say that

1. Zn ⇒ Z if (Xn, Yn)
d−→ (X, Y ) holds;

2. Zn
�−→ Z if limn→∞ d�(Zn, Z) = 0;

3. Zn
t−→ Z if ∀τ ∈ S: limn→∞ t(τ , Zn) = t(τ , Z).

Lemma 5.3. Let Z , Z1, Z2, . . . be limit permutations. The three notions of convergence of Definition 5.2 are
equivalent, that is we have

Zn ⇒ Z ⇐⇒ Zn
�−→ Z ⇐⇒ Zn

t−→ Z .

Proof. As before, denote by Fn and F the respective joint probability distribution functions of (Xn, Yn)

and (X, Y ), following (21).

We first address the equivalence of Zn ⇒ Z and Zn
�−→ Z . On the one hand, Zn ⇒ Z and

(Xn, Yn)
d−→ (X, Y ) are equivalent by definition, and it holds that Xn, Yn ∼ U [0,1]. On the other hand,

by (33) and (34), we have that Zn
�−→ Z is equivalent to ‖Fn − F‖∞ → 0. The equivalence of Zn ⇒ Z

and Zn
�−→ Z is now a direct consequence of Lemma 2.1.

Now we are going to prove that Zn ⇒ Z and Zn
t−→ Z are equivalent.
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First we assume that Zn ⇒ Z holds. In order to deduce Zn
t−→ Z from this, we need to show that

∀τ ∈ S: lim
n→∞ t(τ , Zn) = t(τ , Z).

Fix k and τ ∈ Sk . Let (Xi
n, Y i

n), i = 1, . . . ,k, be i.i.d. with the same joint distribution as (Xn, Yn), while
(Xi, Y i), i = 1, . . . ,k, are i.i.d. with the same joint distribution as (X, Y ).

It follows from Zn ⇒ Z and (13) that((
Xi

n, Y i
n

))
i∈[k]

d−→ ((
Xi, Y i))

i∈[k] as n → ∞, (46)

i.e., the sequence of [0,1]2k-valued random variables ((Xi
n, Y i

n))i∈[k] , n = 1,2, . . . , converges in distri-
bution to the [0,1]2k-valued random variable ((Xi, Y i))i∈[k] .

Let Aτ ⊆ [0,1]2k denote the event that the relative order of the vertical coordinates of (xi, yi),
i = 1, . . . ,k, is τ with respect to their ordered horizontal coordinates. Then

P
(((

Xi
n, Y i

n

))
i∈[k] ∈ Aτ

)= t(τ , Zn) and P
(((

Xi, Y i))
i∈[k] ∈ Aτ

)= t(τ , Z). (47)

In order to deduce t(τ , Zn) → t(τ , Z) from (47) we apply (14). We only need to show that the bound-
ary of Aτ has measure 0 with respect to the distribution of ((Xi, Y i))i∈[k] , which is indeed true
because, on the boundary of Aτ , either xi = x j or yi = y j holds for some i �= j, but this has zero
probability since both (X1, . . . , Xk) and (Y 1, . . . , Y k) are i.i.d. and U [0,1]-distributed. Thus we have

proven that Zn ⇒ Z implies Zn
t−→ Z .

Now we assume that Zn
t−→ Z holds and deduce from this that Zn ⇒ Z holds. By (9) we only

need to show that for any bounded, continuous function f : [0,1]2 → R we have

E
(

f (Xn, Yn)
)→ E

(
f (X, Y )

)
. (48)

We are going to prove this by contradiction: assume that there is some f such that (48)
does not hold. Since |E( f (Xn, Yn))| � ‖ f ‖∞ , we can choose a subsequence (n(m))∞m=1 such that
limm→∞ E( f (Xn(m), Yn(m))) = a for some a �= E( f (X, Y )). Now by (10) we can find a second sub-

sequence (m(�))∞�=1 and a [0,1]2-valued random variable ( X̂, Ŷ ) such that if we define ( X̂�, Ŷ�) :=
(Xn(m(�)), Yn(m(�))) then ( X̂�, Ŷ�)

d−→ ( X̂, Ŷ ) as � → ∞. In particular, we have E( f ( X̂, Ŷ )) = a.

We now look at the properties of X̂ and Ŷ . By (12) we know that X̂, Ŷ ∼ U [0,1]. Using Lemma 2.2,
we define Ẑ to be the limit permutation associated with ( X̂, Ŷ ). By definition, we now have Ẑl ⇒ Ẑ

where Ẑ� := Zn(m(�)) , and hence Ẑ�
t−→ Ẑ follows from our previous argument. On the other hand,

from the assumption Zn
t−→ Z , we obtain Ẑ�

t−→ Z .

However, from Ẑl
t−→ Z , Ẑl

t−→ Ẑ and Lemma 5.1, we obtain (X, Y ) ∼ ( X̂, Ŷ ) and, in particular,
E( f ( X̂, Ŷ )) = E( f (X, Y )) which contradicts E( f ( X̂, Ŷ )) = a �= E( f (X, Y )). Thus we have proven that

Zn ⇒ Z and Zn
t−→ Z are equivalent, which completes the proof of the lemma. �

5.2. Proof of the main theorems

In this section, we shall focus on the proofs of the main results of this work, which have been
stated in the introduction. We start with a brief overview of these results. Theorem 1.6 establishes
the correspondence between convergent permutation sequences and limit permutations, in the sense
that there is a limit permutation associated with every convergent sequence and vice-versa. The fact
that the limit of a permutation sequence is essentially unique is the subject of Theorem 1.7, while
Theorem 1.8 relates the original concept of convergence of a permutation sequence to convergence
with respect to the metric d� .

As a consequence of Claim 2.4, we shall henceforth restrict our attention to permutation sequences
(σn)n∈N such that |σn| → ∞. Moreover, as a useful auxiliary fact, we point out that it follows from
Definitions 1.5 and 3.4 and from Lemma 3.5 that we have

σn → Z ⇐⇒ Zσn

t−→ Z . (49)
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Proof of Theorem 1.6(i). Let us define Zn := Zσn . As usual, we denote by (Xn, Yn) the [0,1]2-valued
random variables associated with Zn (see Definition 2.3), which satisfy Xn, Yn ∼ U [0,1] for every
n. By (10) there is a [0,1]2-valued random variable (X, Y ) and a subsequence (n(m))∞m=1 such that

(Xn(m), Yn(m))
d−→ (X, Y ) as m → ∞. Moreover, it follows from (12) that we have X, Y ∼ U [0,1]. Using

Lemma 2.2 we define Z to be the limit permutation associated with (X, Y ). With these definitions

we have Zn(m) ⇒ Z as m → ∞, from which Zn(m)
t−→ Z follows by Lemma 5.3. By (49) we obtain

t(τ ,σn(m)) → t(τ , Z) as m → ∞ for every τ . Since we have assumed that t(τ ,σn) is convergent (see
Definition 1.2) as n → ∞ we obtain t(τ ,σn) → t(τ , Z) as n → ∞, i.e., σn → Z . �
Proof of Theorem 1.6(ii). The basic idea of the proof comes from [9], where the authors suggest that
the analogous theorem for graphs and graphons can be proven using reverse martingales.

We jointly define the random permutations (σn)n∈N in the following way: let (Xn, Yn), n ∈ N be
i.i.d. [0,1]2-valued random variables associated with Z (see Definition 2.3). Let σn be the relative
order of the vertical coordinates of (Xi, Yi), i = 1, . . . ,n with respect to their ordered horizontal co-
ordinates (see Definition 3.2). Note that, with this definition, σn is almost surely a subpermutation
of σn+1.

We are going to show that P(σn → Z) = 1, i.e., that the random sequence of permutations (σn)n∈N
almost surely converges to Z . It is enough to show that, for all τ ∈ S , we have P(t(τ ,σn) →
t(τ , Z)) = 1. Fix τ ∈ Sk and let Aτ ⊆ [0,1]2k denote the event that the relative order of the verti-
cal coordinates of (xi, yi), i = 1, . . . ,k, is τ with respect to their ordered horizontal coordinates. If
k � n then by (3) the random variable t(τ ,σn) can be expressed as

t(τ ,σn) = 1(n
k

) ∑
(i1,...,ik)∈[n]k

<

1
[(

(Xi j , Yi j )
)

j∈[k] ∈ Aτ

]
.

From this formula and (47), linearity of expectation leads to E(t(τ ,σn)) = t(τ , Z).
Now P(t(τ ,σn) → t(τ , Z)) = 1 follows from the strong law of large numbers for U-statistics (see

Section 3.4 of [18]). �
We observe that there is an alternative, more self-contained proof of P(σn → Z) = 1, with (σn)

as in the proof above. In fact, we may use the Borel–Cantelli lemma to derive P(d�(σn, Z) → 0) = 1

from Lemma 4.2 and then apply Lemma 5.3 to derive P(Zσn

t−→ Z) = 1 from this and finally use (49)
to arrive at P(σn → Z) = 1.

Proof of Theorem 1.7. We want to show that σn → Z1 and σn → Z2 implies that the set {x: Z1(x, ·) �≡
Z2(x, ·)} has Lebesgue measure zero. In light of the equivalence of the statements in (35), this follows
from Lemma 5.1. �
Proof of Theorem 1.8. By Claim 2.4 we may assume that |σn| → ∞.

Let Zn := Zσn . It suffices to show that (σn)n∈N is a Cauchy sequence w.r.t. d� if and only if

Zn
�−→ Z for some Z ∈ Z (i.e., the completion of (S,d�) is (Z/∼,d�), where ∼ is the equivalence

relation in (35)). Indeed, assuming that this is true, Lemma 5.3 implies that the fact that (σn)n∈N is a

Cauchy sequence with respect to d� is equivalent to Zn
t−→ Z for some limit permutation Z , which

is equivalent to σn → Z by (49), as required.

We now prove the above assertion. It is clear that, if Zn
�−→ Z for some Z ∈Z , then σn is a Cauchy

sequence w.r.t. d� . For the converse, let σn be such a Cauchy sequence and denote by (Xn, Yn) the
[0,1]2-valued random variables associated with Zn . Denote by Fn the joint probability distribution
function of (Xn, Yn). By (33) and (34) we get that Fn is a Cauchy sequence w.r.t. the L∞-norm. Thus

by the completeness of L∞[0,1]2, we have Fn
L∞→ F for some F : [0,1]2 → [0,1]. Now we show that

F itself is the joint probability distribution function of [0,1]2-valued random variable with uniform
marginals.
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By (10) there is an (X, Y ) and a subsequence (n(m))∞m=1 such that (Xn(m), Yn(m))
d−→ (X, Y ) as

m → ∞. By (12) we have X, Y ∼ U [0,1]. Denote by F̂ the joint probability distribution function

of (X, Y ). By Lemma 2.1 we have Fn(m)
L∞−→ F̂ . Comparing this to Fn

L∞−→ F we get that F = F̂ . In

other words, (Zn) converges to some Z ∈ Z w.r.t. the L∞-norm, and hence Zn
�−→ Z by (35), as

required. �
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Appendix A. Proof of Lemma 2.2

In this appendix we prove Lemma 2.2. The proof is quite similar to that of Theorem 4 of Chapter II,
Section 7 of [23]. It relies on Kolmogorov’s notion of conditional expectation, about which we recall
some useful facts now.

Given a measurable space (Ω,F) and an event A ∈ F we denote by 1A = 1[A] the random vari-
able which takes value 1 if the event A occurs and 0 if A does not occur. The following theorem
states the existence and almost sure uniqueness of conditional expectation. For a proof, see Section 7
of Chapter 2 of [23].

Theorem A.1. Let (Ω,F ,P) be a probability space and let G ⊆F be a σ -algebra. Consider an F -measurable,
real-valued random variable Y with E(|Y |) < ∞.

(i) There exists a G-measurable, real-valued random variable W such that E(|W |) < ∞ and

∀A ∈ G: E(Y · 1A) = E(W · 1A). (50)

(ii) If Ŵ is another G-measurable, real-valued random variable such that E(|Ŵ |) < ∞ and

∀A ∈ G: E(Y · 1A) = E(Ŵ · 1A)

then we have P(W = Ŵ ) = 1.

We call any W that satisfies Theorem A.1(i) the conditional expectation of Y with respect to G and let
E(Y | G) = W . Note that Theorem A.1(ii) states that the conditional expectation of Y w.r.t. G is almost
surely uniquely defined.

If X is another real-valued F -measurable random variable and σ(X) is the σ -algebra generated
by X then we let E(Y | X) = E(Y

∣∣ σ(X)). Since E(Y | X) is a σ(X)-measurable random variable, it
follows from Theorem 3 of Section 4 of Chapter 2 of [23] that there is a Borel-measurable function
ϕ : R→ R such that

E(Y | X) = ϕ(X). (51)

For A ∈F , let P(A | X) := E(1A | X).
The proofs of the following facts about conditional expectation can be found in Section 7 of Chap-

ter 2 of [23]:

Y1 � Y2 �⇒ P
(
E(Y1 | G) � E(Y2 | G)

)= 1 (52)

Yn � Y ∗, E
(
Y ∗)< ∞, Yn ↘ Y �⇒ P

(
E(Yn | G) ↘ E(Y | G)

)= 1, (53)

where the notation Zn ↘ Z indicates that (Zn) is nonincreasing and converges to Z . Recall that we
write B[0,1] for the σ -algebra of Borel sets of the unit interval [0,1]. Denote by λ the Lebesgue
measure on [0,1]. We are now ready to give the proof of Lemma 2.2.
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Proof of Lemma 2.2. Let (Ω,F ,P) be the probability space on which our [0,1]2-valued random vari-
able (X, Y ) lives. Recall that we assume X , Y ∼ U [0,1] and, therefore, for any B ∈ B[0,1], we have
P(X ∈ B) = P(Y ∈ B) = λ(B). Denote by Q̃= Q∩ [0,1] the set of rational numbers in [0,1]. Thus, Q̃ is
a countable, dense subset of [0,1]. Throughout the proof, ỹ, ỹ1 and ỹ2 denote elements of Q̃, while
x and y denote elements of [0,1].

For x ∈ [0,1] and ỹ ∈ Q̃ define Z̃(x, ỹ) to be the function for which

Z̃(X, ỹ)
(51):= E

(
1[Y � ỹ] | X

)= P(Y � ỹ | X). (54)

Note that, given ỹ, the function Z̃(·, ỹ) is only defined almost surely uniquely with respect to the
distribution of X (i.e., the Lebesgue measure λ). We may assume Z̃(x,1) = 1.

For ỹ ∈ Q̃ and ỹ1 � ỹ2 ∈ Q̃, define A ỹ1, ỹ2
∈ B[0,1] and C ỹ ∈ B[0,1] by

A ỹ1, ỹ2
= {

x: Z̃(x, ỹ1) � Z̃(x, ỹ2)
}
, C ỹ =

{
x: lim

n→∞ Z̃

(
x, ỹ + 1

n

)
= Z̃(x, ỹ)

}
. (55)

It follows from 1[Y � ỹ1] � 1[Y � ỹ2] and (52) that P( Z̃(X, ỹ1) � Z̃(X, ỹ2)) = 1, which implies
λ(A ỹ1, ỹ2

) = 1. Moreover, it follows from 1[Y � ỹ + 1
n ] ↘ 1[Y � ỹ] and (53) that P( Z̃(X, ỹ + 1

n ) ↘
Z̃(X, ỹ)) = 1, which implies λ(C ỹ) = 1.

Define A ∈ B[0,1] by

A :=
( ⋂

ỹ1< ỹ2∈Q̃
A ỹ1, ỹ2

)
∩
(⋂

ỹ∈Q̃
C ỹ

)
.

If x ∈ A then Z̃(x, ·)|
Q̃

is a monotone increasing, right continuous function. By the countable additivity
of the measure λ we have λ(A) = 1.

Now we construct Z : [0,1]2 → [0,1] by defining Z(x,1) = 1 for all x and, for y ∈ [0,1), letting

Z(x, y) :=
{

infy< ỹ Z̃(x, ỹ) if x ∈ A,

y if x /∈ A.
(56)

Now we show that this Z is a limit permutation (see Definition 1.3) and that it satisfies Lemma 2.2(a).
Note first that it follows from (54) and (56) that Z is measurable.

It follows directly from (56) that, for all x ∈ [0,1], the function Z(x, ·) is a cdf (see (4)), and thus
Z satisfies Definition 1.3(a). For all x ∈ A and ỹ ∈ Q̃ we have Z(x, ỹ) = Z̃(x, ỹ).

Next we show that for any B ∈ B[0,1] and y ∈ [0,1] we have (19):

1∫
0

Z(x, y)1[x ∈ B]dx
λ(A)=1=

1∫
0

Z(x, y)1[x ∈ B ∩ A]dx

(56)=
1∫

0

inf
y< ỹ

Z̃(x, ỹ)1[x ∈ B ∩ A]dx
(∗)= inf

y< ỹ

1∫
0

Z̃(x, ỹ)1[x ∈ B ∩ A]dx

= inf
y< ỹ

E
(

Z̃(X, ỹ)1[X ∈ B ∩ A]) λ(A)=1= inf
y< ỹ

E
(

Z̃(X, ỹ)1[X ∈ B])
(54),(50)= inf

y< ỹ
E
(
1[Y � ỹ] · 1[X ∈ B]) (∗)= E

(
1[X ∈ B, Y � y])

= P(X ∈ B, Y � y).

The equalities marked by (∗) hold because of the monotone convergence theorem. Our assumption
Y ∼ U [0,1] and an application of (19) with B = [0,1] implies that Definition 1.3(b) holds, i.e., Z is
indeed a limit permutation. This finishes the proof of Lemma 2.2(a).
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It only remains to prove Lemma 2.2(b). Assume that Ẑ is another limit permutation that satis-
fies (19). For any given ỹ ∈ Q̃, define

D ỹ = {
x: Z(x, ỹ) = Ẑ(x, ỹ)

}
.

From the above proof it follows that both Z(X, ỹ) and Ẑ(X, ỹ) satisfy the definition of E(1[Y � ỹ] | X).
Thus by Theorem A.1(ii) we obtain P(Z(X, ỹ) = Ẑ(X, ỹ)) = 1, which implies λ(D ỹ) = 1. If we define
D = ⋂

ỹ D ỹ then we have λ(D) = 1 by countable additivity. By Definition 1.3(a) both Z(x, ·) and

Ẑ(x, ·) are right continuous functions for any x, and if x ∈ D then these two functions agree on Q̃

and, therefore, they agree on the whole unit interval. This proves that λ({x: Z(x, ·) ≡ Ẑ(x, ·)}) = 1,
which is a reformulation of (20), completing the proof of Lemma 2.2(b). �
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