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Abstract

Recently, exotic black holes whose masses and angular momenta are interchanged have been found, and it is known that their entropies depend
only on the inner horizon areas. But a basic problem of these entropies is that the second law of thermodynamics is not guaranteed, in contrast
to the Bekenstein–Hawking entropy. Here, I find that there is another entropy formula which recovers the usual Bekenstein–Hawking form, but
the characteristic angular velocity and temperature are identified with those of the inner horizon, in order to satisfy the first law of black hole
thermodynamics. The temperature has a negative value, due to an upper bound of mass as in spin systems, and the angular velocity has a lower
bound. I show that one can obtain the same entropy formula from a conformal field theory computation, based on classical Virasoro algebras. I
also describe several unanswered problems and some proposals for how these might be addressed.
© 2007 Elsevier B.V.
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1. Introduction

Recently, exotic black holes whose masses and angular mo-
menta are interchanged have been found in several different
systems. These are (a) asymptotically anti-de Sitter black holes
in (2 + 1)-dimensional gravity for the case of a vanishing cos-
mological constant with minimally coupled topological mat-
ter, which is called “BCEA” gravity [1], (b) constant curvature
black holes in (4 + 1)-dimensional anti-de Sitter space [2], and
(c) BTZ-like black holes in gravitational Chern–Simons theory
[3–9]. But, it is known that these black holes do not satisfy the
Bekenstein–Hawking entropy formula, but depend only on the
area of the inner horizons, in order to satisfy the first law of
thermodynamics. This looks similar to Larsen’s suggestion in
another context [10]. But, a basic problem of these approaches
is that the second law of thermodynamics is not guaranteed with
their entropy formulae, in contrast to the Bekenstein–Hawking
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form [11]. Actually, without the guarantee of the second law,
there is no justification for identifying entropies with the inner
horizon areas [12].

In the usual system of black holes, the first law of thermo-
dynamics uniquely determines (up to an arbitrary constant) the
black hole entropy with a given Hawking temperature TH and
chemical potential for the event horizon r+. In this context,
there is no choice in the entropy for the exotic black hole, other
than proportional to the area of the inner horizon r−. In this Let-
ter, I show that there is another rearrangement of the first law
such as the entropy has the usual Bekenstein–Hawking form,
but now the characteristic temperature and chemical potential
are those of the inner horizon, in contrast to the previous ap-
proaches. And the temperature has a negative value, due to an
upper bound of mass as in spin systems, and the angular veloc-
ity has a lower bound. It is not yet clear how to measure these
characteristics by a physical observer who is in the outside of
the event horizon. But, I show that one can obtain the same
entropy from a conformal field theory computation, based on
classical Virasoro algebras at the spatial infinity.
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2. Thermodynamics

The three systems [3–9] which I have mentioned in the intro-
duction look different physically. But, they all allow the exotic
black hole solution with the following properties.

a) It has the same form of the metric as the BTZ (Banados–
Teitelboim–Zanelli) solution [13], or modulus an expand-
ing/contracting 2-sphere for the case of ‘(b)’,

(1)ds2 = −N2 dt2 + N−2 dr2 + r2(dφ + Nφ dt
)2

with

(2)N2 = (r2 − r2+)(r2 − r2−)

l2r2
, Nφ = − r+r−

lr2
.

Here, r+ and r− denote the outer and inner horizons, respec-
tively.

b) But, its mass and angular momentum are interchanged as

(3)M = xj/l, J = xlm

with an appropriate coefficient x: x = 1 for the BCEA black
hole [1], x is a fixed value of U(1) field strength for the case
of ‘(b)’ [2], and x is proportional to the coefficient of the grav-
itational Chern–Simons term for the case of ‘(c)’. Here, m and
j denote the usual mass and angular momentum for the BTZ
black hole

(4)m = r2+ + r2−
8Gl2

, j = 2r+r−
8Gl

with a negative cosmological constant Λ = −1/l2. One re-
markable result of (3) is that

(5)(lM)2 − J 2 = x2[j2 − (lm)2] � 0

for any non-vanishing x, which shows an upper bound for the
mass M , with a saturation by the extremal case of j2 = (lm)2.

c) On the other hand, since it has the same form of the met-
ric as the BTZ solution, it has the same form of the Hawking
temperature and angular velocity of the event horizon r+ as in
the BTZ also

T+ = h̄κ

2π

∣∣∣∣
r+

= h̄(r2+ − r2−)

2πl2r+
,

(6)Ω+ = −Nφ
∣∣
r+ = r−

lr+
with the surface gravity function κ = ∂N2/2∂r . Now, by con-
sidering the first law of thermodynamics as

(7)δM = Ω+δJ + T+δS

with T+ and Ω+ as the characteristic temperature and angular
velocity of the system, one can easily determine the black hole
entropy as

(8)S = x
2πr−
4Gh̄

.

There is no other choice in the entropy in this usual context [1,2,
8,9]. But, a basic problem of this approach is that the second law
of thermodynamics is not guaranteed with the entropy formula,
which depends only on the inner-horizon area A− = 2πr−:
Some of the assumptions for the Hawking’s area theorem, i.e.,
cosmic censorship conjecture might not be valid for the inner
horizon in general. Moreover, the usual instability of the inner
horizon makes it difficult to apply the Raychaudhuri’s equa-
tion to get the area theorem, even without worrying about other
assumptions for the theorem; actually, this seems to be the sit-
uation that really occurs in our exotic black holes also [14,15].

Now, without the guarantee of the second law of thermody-
namics, there is no justification for identifying entropy with the
inner horizon area, even though its characteristic temperature
and angular velocity have the usual identifications [12]. So, in
order to avoid this problem, we need another form of the en-
tropy which is linearly proportional to the outer horizon area
A+ = 2πr+, following the Bekenstein’s general argument [12],
which should be valid in our case also, but then the first law
would be satisfied with some another appropriate temperature
and angular velocity. After some manipulation, one finds that
the first law can be actually rearranged as

(9)δM = Ω−δJ + T−δSnew

with the black hole entropy

(10)Snew = x
2πr+
4Gh̄

and the characteristic temperature and angular velocity

T− = h̄κ

2π

∣∣∣∣
r−

= h̄(r2− − r2+)

2πl2r−
,

(11)Ω− = −Nφ
∣∣
r− = r+

lr−
for the inner horizon. Here, I note that the entropy (10), for the
BCEA gravity [1], gives the exactly the same factor as the usual
Bekenstein–Hawking formula, but it depends on other parame-
ters in general [2,8,9].

With this new formulation, we have a dramatic departure
from the usual situations. First, the angular velocity has a lower
bound Ω− � 1/l due to the fact of r+ � r−; it is saturated by
the extremal case r+ = r− and divergent for the vanishing in-
ner horizon. This implies that this system is always rotating, as
far as there is the event horizon r+. Second, the temperature
T− and the surface gravity κ− have negative values. [I used the
definition of κ as ∇ν(χμχμ) = −κχν for the horizon Killing
vector χμ in order to determine its sign, as well as its mag-
nitude.] The negative-valued temperature looks strange in the
usual black hole context, but this is a well-established concept
in the spin systems where some upper bound of the energy level
exists [16]. Actually, this is exactly the same situation as in our
case, due to the upper bound of mass in (5), and this provides
a physical justification for introducing the negative temperature
in our system also.1 This would be probably the first example in
the black hole systems where the negative temperature occurs.

1 One might consider the positive-valued surface gravity and temperature
with T = |κ−/(2π)| (as in [15]), but in this case one has an incorrect sign
in front of the T dS term in (9).
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3. Statistical entropy

It is well known that the black hole entropy for the BTZ
black hole can be also computed statistically using conformal
field theory results [17,18]. So it is natural to expect the similar
things in our case also since one has the same form of the metric
as in the BTZ. Here I consider, in particular, the case of gravi-
tational Chern–Simons gravity [3–9] which has been interested
recently in the context of higher curvature gravities also [7–9]
and whose conformal field theory analysis is evident; however,
I suspect the similar results for the cases of ‘(a)’ and ‘(b)’ [1,2]
also, although the explicit realizations would be different. There
are several approaches to compute the statistical entropy from
conformal field theory. Here, let me consider the Chern–Simons
gauge theory approach in this Letter.

To do this, I first note the equivalence of

(12)ICS
[
A+] − ICS

[
A−] = IGCS[e,ω]

for the Chern–Simons gauge action and the gravitational
Chern–Simons action [19],

ICS
[
A±] = ±α

k

4π

∫
d3x

〈
A±

(
dA± + 2

3
A±A±

)〉
,

(13)IGCS
[
e,ω

] = − α

32πG

∫
d3x

〈
ω

(
dω + 2

3
ωω

)
+ e

l2
T

〉
,

respectively, with A± = A±
a J a = (ωa ± ea/ l)J a , 〈JaJb〉 =

(1/2)ηab[ηab = diag(−1,1,1)], and T = de + 2ωe is the tor-
sion 2-form. Then, it is easy to see that the BTZ solution (1)
satisfies the equations of motion of gravitational Chern–Simons
action Cμν = 0 with the Cotton tensor Cμν = εμρσ ∇ρ(Rν

σ −
δν
σ R/4)/

√
g [3].

Now then, it is straightforward to apply the usual result of
Ref. [18], where the Virasoro algebras with classical central
charges are obtained, since the whole computation is governed
by the properties of BTZ solution (1) only. In this way, one
can obtain (see Ref. [20] for the details) two sets of Virasoro
algebras for the asymptotic isometry group SL(2,R)×SL(2,R)

with the classical central charges

(14)c± = γ ± 3l

2G

with γ ± = ±α/4l and the ground state generators

(15)L±
0 = γ ± 1

2
(lm ± j) + c±

24
.

Note that, if one identifies the first term in (15) with (lM ±J )/2
as in the BTZ case [7–9], one finds that M and J are identified
with those of (3) with x = α/(4l); however, my computation
based on conformal field theory does not depend on the manner
of identifications of M and J , but only on r+ and r−. With
the data of (14) and (15), one can now compute the statistical
entropy from the Cardy’s formula for the asymptotic states [21]
as2

Sstat = 2π

h̄

√
1

6

(
c+ − L+

0(min)

)(
L+

0 − c+
24

)

+ 2π

h̄

√
1

6

(
c− − L−

0(min)

)(
L−

0 − c−
24

)

(16)= 2πr+
4Gh̄

∣∣∣∣ α

4l

∣∣∣∣,
where I have chosen L±

0(min) = 0 for the minimum value of L±
0

as usual [17]; this corresponds to the AdS3 (three-dimensional
anti-de Sitter space) vacuum solution in the usual context, but
it has a permanent rotation with the angular momentum J =
−(α/2)(l/16G) and the vanishing mass M = 0 in our new con-
text [7].

So, one finds an exact agreement for the case of α > 0,
where M , J , and Snew are positive definite, with my new en-
tropy formula (10). Hence, the new entropy formula for the
exotic black holes is supported by the statistical computation,
based on conformal field theory. Note that, in this case, all
c± and L±

0 − c±/24 are not positive definite, but their self-
compensations of the negative signs produce the positive en-
tropy.3 But for the case of α < 0, where Snew, as well as M

and J , becomes negative, the statistical counterpart does not
exist in principle, from its definition Sstat = lnρ � 0 for the
number of possible states ρ(� 1). So, it is not so surprising
that we have found a disagreement in this latter case.

4. Summary and discussion

I have argued that even the exotic black holes with the in-
terchanged masses and angular momenta have the black hole
entropies with the usual Bekenstein–Hawking form, but now
their characteristic temperatures and angular momenta are those
of the inner horizons. I have found that the new entropy formula
agrees with the statistical entropy, based on classical Virasoro
algebras at the asymptotic infinity. In the statistical analysis I
have considered only the case of gravitational Chern–Simons
gravity, and it is believed that similar results would be obtained
for the other two cases also. But, there are still several unan-
swered problems, and I will below describe the problems and
some possible proposals for how these might be addressed.

(1) We know that black holes are thermal objects because
they emit Hawking radiation with a thermal spectrum. In the

2 If I consider the system with both the Einstein–Hilbert term as well as the
gravitational Chern–Simons term as in Ref. [8], there is the inner-horizon’s con-
tribution also, in general. My result can be obtained from the general formula
by considering |β|/l → ∞ limit, where the inner-horizon’s contribution is neg-
ligible. However, the resulting formula (5.7) of Ref. [8] does not do the job, and
this is basically because it is valid only for |β|/l < 1 [20].

3 The application of the Cardy’s formula to the case of negative c and L0
might be questioned due to the existence of negatives-norm states with the
usual condition Ln|h〉 = 0(n > 0) for the highest-weight state |h〉. However,
this problem can be easily cured by considering another representation of the
Virasoro algebra with L̂n ≡ −L−n, ĉ ≡ −c, and L̂n|ĥ〉 = 0 (n > 0) for the new
highest-weight state |ĥ〉 [22]. So, the formula (16), which is invariant under this
substitution, can be understood in this more precise context also.
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standard analysis initiated by Hawking [23], this spectrum is
determined by the metric alone. However, this work implies that
two black holes with identical BTZ metrics will emit radiation
with different spectra, one a black body spectrum correspond-
ing to a positive temperature T+ for the ordinary black hole and
one a very non-black-body spectrum corresponding to a nega-
tive temperature T− for the exotic black holes. Then: “Can we
give a plausible explanation of why the standard computation
of black hole temperature should fail in the exotic cases?” and
“How can we compute the Hawking radiation if the standard
computation fails?”.

This would be the most important but the most difficult ques-
tion whose complete answer is still missing. But here, I would
like to only mention the possible limitation of the standard ap-
proach in the exotic black hole case and how this might be
circumvented. To this end, I first note that, in the standard com-
putation of Hawking, the background metric is considered fixed
such as the back-reaction effects are neglected. Now, the ques-
tion is how much we can trust this approximation to get the
leading Hawking radiation effects for the real dynamical geom-
etry? In order to clarify this, let me consider a black hole with
“rotation”. Then, I note that we need to choose an appropri-
ate coordinate, called co-rotating coordinate, with the condition
Ñφ ≡ Nφ + Ω+ ≡ 0 at the “outer” horizon r+ in order to have
a well-defined analysis, i.e., analyticity, near the outer hori-
zon [24,25], where the Hawking radiation occurs. And also this
makes the s-wave or WKB approximation to be justified [26]
since the radial wave number approaches infinity near the hori-
zon due to the coincidence of the infinite redshift surface and
outer horizon, even for a rotating black hole. Now, let me turn
to the “dynamical” geometry where the back-reaction effects
during the emission process are considered. Then, it is easy to
see that, for the emitted particles without carrying the angular
momentum, the standard computation with a fixed background
is perfectly well defined “at the initially fixed horizon r+(i)”,
though the actual outer horizon shrinks dynamically at the loss
of the emitted positive energy: With the initial choice of the
co-rotating angular velocity Ω+, one has still Ñφ = 0 at the
initially fixed horizon r+(i) such as the infinite redshift surface
agrees with the initial horizon in the co-rotating coordinate sys-
tem. However, when there is a change of angular momentum,
the situation is quite different. Actually, in this case there is a
finite separation of the infinite redshift surface and the initial
horizon if we take into account the loss of the angular momen-
tum, i.e., Ñφ |r+(i)

= s/2r2
+(i), due to angular momentum s of

the emitted particles, with the initially chosen co-rotating angu-
lar velocity Ω+. So, in the standard computation one does not
know whether to use the angular velocity Ω+ before emission,
the angular velocity after emission, or something in between
when consider the co-rotating coordinate system. This problem
looks similar to the situation in the near extremal black holes
when determine a thermal temperature [27], but it would be
qualitatively different.

Now, let me explain why this might be relevant to the pos-
sible failure of the standard computation for the exotic black
holes. Here, the important point is that, for the exotic black
holes, the emission of energy ω with an initially chosen co-
rotating coordinate system would reduce the black holes’s mass
M from the conservation of energy, but this corresponds to the
change of the angular momentum j of (4) in the ordinary BTZ
black hole context, due to the interchange of the roles of the
mass and angular momentum as in (3). This is in sharp con-
trast to the case of ordinary black hole. This seems to be a
key point to understand the peculiar Hawking radiation for the
exotic black holes, and in this argument the conservations of
energy and angular momentum, which are not well enforced
in the standard computation, have a crucial role. So in this re-
spect, the Parikh and Wilczek’s approach [28], which provides
a direct derivation of Hawking radiation as a quantum tunnel-
ing by considering the global conservation law naturally, would
be an appropriate framework to study the problem. But before
this, we first need to study the self-gravitating shells with rota-
tion in Hamiltonian gravity for our exotic black hole system, as
a generalization of Kraus and Wilczek’s [29]. Currently this is
under study.

(2) The Green’s function methods for determining the tem-
perature of a black hole require an equilibrium with matter at
the corresponding temperature [25]. This work now implies that
the analysis assumes such an equilibrium with “some exotic
surrounding matter” which has a negative temperature, with an
upper bound of energy levels as in spin systems: Otherwise, i.e.,
with the ordinary surrounding matter, the negative temperature
black hole cannot be at equilibrium with positive temperature
surroundings since an object with a negative temperature is hot-
ter than one with any positive temperature. Then: “How one
could build a container with walls held at a negative tempera-
ture in order that such an equilibrium can exist—the Universe
might have to be filled with such “exotic matter”?”.

This would be a physically interesting question which might
be relevant to understand our Universe with a dark side. But I
suspect that the resolution would be rather simple in our case
from the fact that in the anti-de Sitter space the artificial con-
tainer is not needed in order to study the canonical (or grand-
canonical) ensemble [30,31]. But, in the context without the
explicit container, there is a critical angular velocity [31] at
which the action of the black hole or the partition function of its
corresponding conformal field theory diverges. However, I note
that the critical value is the same as the lower bound of Ω−
such as we are beyond the critical point with our angular veloc-
ity Ω−. So, from this fact, it seems clear that the ensemble, if
there is, in this strong coupling regime would be quite different
from that of the usual BTZ black hole such as one cannot sim-
ply apply the usual result to the strong coupling case. It seems
that we need an independent analysis for this case. But pre-
sumably, the ensemble may be still defined even in the strong
coupling case, due to the symmetry of the BTZ metric under
the r+ ↔ r− exchange.

Finally, I would like to remark that in the standard Green’s
function approach the determination of the equilibrium tem-
perature from the “fundamental period”, known as the KMS
(Kugo–Martin–Schwinger) condition [32–34], can be defined
without the implicit assumption of a positive temperature,
though not quite well known in the gravity community (see
Ref. [35], for example). Physicswise, this should also be the
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case since the negative temperature is perfectly well defined
in the ordinary statistical mechanics of spin systems and its
Green’s function formulation similarly will reflect the same
temperature, if there is.
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