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Effective degrees of freedom of the quark–gluon plasma
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Abstract

The effective degrees of freedom of the quark–gluon plasma are studied in the temperature range ∼ (1–2)Tc. We show that including light
bosonic states one can reproduce the pressure and energy density of the quark–gluon plasma obtained by lattice simulations. The number of the
bosonic states required is at most of the order of 20, consistent with the number of light mesonic states and in disagreement with a recently
proposed picture of the quark–gluon plasma as a system populated with exotic bound states. We also constrain the quark quasiparticle chiral
invariant mass to be � 300 MeV. Some remarks regarding the role of the gluon condensation and the baryon number-strangeness correlation are
also presented.
© 2006 Elsevier B.V.
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Quantum chromodynamics (QCD) predicts that at extremely
high temperatures matter consists of a gas of weakly interacting
quarks and gluons, the quark–gluon plasma (QGP). However
at moderate temperatures T = (1–2)Tc , (Tc � 170 MeV de-
confinement temperature) it is less clear what the dynamical
phase is.

The experimental data obtained at the Relativistic Heavy Ion
Collider (RHIC), with the measurement of the pt spectra and
the related indications on the radial and elliptic flow (see [1]
for a review), clearly suggest that at moderate temperatures the
produced system is in a strongly interacting phase (sQGP) and
there are remnant of the confining interaction up to tempera-
tures � 2Tc, in agreement with lattice (lQCD) results. Actually,
lattice calculations of the pressure and energy density of the
system do not reach the Stefan–Boltzmann values for a weakly
interacting quark–gluon plasma even at very large temperatures
� 5Tc [2,3].

This surprising picture calls for understanding the relevant
degrees of freedoms to describe such a phase and, in this re-
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spect, several models have been proposed, where deconfine-
ment and chiral symmetry restoration occur at a lower tem-
perature than the q̄q dissociation temperature and “resonance”
states may play an important dynamical role [4–9].

However, recent lattice and phenomenological analyses [10]
have shown that the emerging degrees of freedom are quark and
gluon quasiparticles and this result has to be compatible with
the survival of q̄q states [2,11] as obtained by the analysis of
mesonic spectral functions above Tc.

In this Letter we address these puzzling aspects by perform-
ing a phenomenological analysis of the pressure and of the
energy density of the system taking into account the presence
of quark and gluon quasiparticles as well as of q̄q states in the
temperature range (1–2)Tc.

Let us consider a system of quark, antiquark, gluons and cor-
related particle states.

The gluonic sector contains quasiparticle contributions as
well as nonperturbative condensation effects. The ratio, ce(T ),
between the chromo-electric condensate evaluated at finite tem-
perature and at T = 0 strongly decreases for temperature T >

1.2Tc, whereas the same ratio for the magnetic condensate is
� 1 up to larger temperatures [12]. Since at T = 0 the chromo-
electric and chromo-magnetic parts are equal, one can write the
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gluon condensate as

(1)

〈
αs

π
Ga

μνG
μν
a

〉
T

= 1

2

〈
αs

π
Ga

μνG
μν
a

〉
0

[
1 + ce(T )

]
,

where the ratio ce(T ) can be approximated by the unquenched
data of Ref. [12] and we take 〈αsG

2/π〉0 � 0.01 GeV4, consis-
tently with QCD sum rules [13].

The gluon condensate, i.e. a macroscopically populated state
with zero momentum, does not essentially contribute to the
pressure but is crucial for the evaluation of the energy density
[14]. On the other hand, the gluonic sector contains also gluon
quasiparticles which contribute to the pressure and to the en-
ergy density and that we shall treat in a phenomenological way
(see below).

Concerning the fermionic sector, we assume that the number
of quark/antiquark degrees of freedom is fixed, Dq = Dq̄ = 18.
Recently a fermionic system with a dispersion relations of the
general form

(2)ωq̄(k) = ωq(k) =
√

k2 + m2 + ΣR,

has been studied in [6,15] where m and the self-energy ΣR

have been evaluated taking into account the interaction of the
quasiparticles with the medium. For the relevant momenta, of
the order of the thermal momentum, we consider that m/k is
small [6] and treat the chiral invariant term ΣR as a constant
parameter M by using the dispersion relation

(3)ωq̄(k) = ωq(k) = k + M.

Therefore, at this level of approximation, we neglect the dy-
namical phenomena related to frequencies with ω/T � 1, such
as viscosity.

The structure of the in-medium correlated states as a func-
tion of temperature is not easily evaluated. These states may
describe q̄q states as well as more exotic states [5]. Close to
Tc, it should be reasonable to consider that the number of cor-
related state degrees of freedom Db is of the order of 10, which
corresponds to the pseudoscalar nonet. However in our analy-
sis we will treat Db as a parameter indicating that an effective
number of bosonic states is present. In the following we will
neglect, as a first approximation, the effect on the thermody-
namics quantities of the width of the bosonic states. Therefore
we employ the dispersion law ωb = √

k2 + 4M2. Considering
a different value of the mass of the mesons in the range M–3M

changes our results of less than 25%.
Finally, the interaction of the gluonic sector with fermions

and correlated states is described, in a mean field-like treatment,
by M and Db which will be evaluated employing unquenched
lattice data of pressure and energy density.

Our expressions of pressure and energy density are given by
the sum of the contributions of quarks, antiquarks, bosonic pairs
and gluons:

(4)p(T ) = T
∑

i=q,q̄,b

Di

∫
d3k

(2π)3
log

(
1 ± e−ωi/T

)±1 + pg,

(5)ε(T ) =
∑
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∫
d3k

(2π)3

ωi

eωi/T ± 1
+ εg + εcon(T ),
i=q,q̄,b
where the sign + (−) refers to fermions (bosons), pg(T ) and
εg(T ) are respectively the contributions to the pressure and
energy density due to gluon quasiparticles and εcon(T ) is the
gluonic condensate given in Eq. (1).

In order to evaluate M and Db we perform a simultaneous
fit of the lattice data of pressure and energy density of 3 flavors
quark matter with quark masses m = 0.4T of Refs. [2,3] as a
function of the temperature employing Eqs. (1), (4) and (5).
For each value of the temperature we consider the central value
of pressure and energy density of the lattice data. Considering
a different value within the statistical error bars determines a
variation in our results of less than 10%.

Due to the temperature dependence of the parameters M(T )

and Db(T ) and to the introduction of the gluon condensate, the
thermodynamics consistency must be carefully checked. The
relation between pressure and energy density is given by

(6)T
dp

dT
= p + ε + Cr,

where the correction Cr depends on the temperature and is
given by

Cr = −T
2Dq

2π2
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where pb is the contribution to the pressure of the in-medium
correlated states. The thermodynamics consistency requires
that

(8)Cr = 0,

which implies that Db satisfies the differential equation

(9)A
dDb

dT
+ BDb + C = 0,

where

(10)A = − 1

2π2

∫
dk k2 log

[
1 − exp(−ωb/T )

]
,

(11)B = − 1

2π2

∫
dk k2 1

−1 + exp(ωb/T )

4M

ωb

dM

dT
,
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T
.

Substituting the values of Db(T ) and of M(T ), obtained fitting
the lattice data of energy and pressure, in the previous equa-
tions, represents a self-consistent check of our result. We find
that the differential equation (9) is satisfied with a good accu-
racy and the corresponding correction Cr is of the same order
of the error in the lattice data.

According to the results obtained in quenched lattice simu-
lations, the contribution εg to the energy density is small with
respect to the gluon condensate, moreover the effect of pg on
the pressure of the whole system (i.e. including fermions and
correlated states) is expected to be small [2]. Therefore, as a
first step of our analysis let us assume that pg = εg = 0.
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Fig. 1. (Color online.) Effective number of bosonic degrees of freedom (upper
panel) and quasiparticle chiral mass (lower panel) as a function of the temper-
ature for T = (1.2–2)Tc . Full (blue online) lines correspond to pg = εg = 0;
dashed (red online) lines correspond to pressure and energy density evaluated
with mg = 1.0 GeV and dotted (green online) lines to mg = 0.9 GeV.

The result of the combined, p(T )–ε(T ), analysis, for pg =
εg = 0, are shown in the plots of Fig. 1, full (blue online) lines.

From the upper panel of Fig. 1 one sees that even if the gluon
quasiparticles are turned off, i.e. one is artificially increasing the
number of correlated pairs, the effective number of bosonic de-
grees of freedom, in the range T = (1.2–2)Tc, is at most of the
order of 20. Notice that such result is not consistent with the
outcomes of Ref. [5] where the existence of a large number (of
order 100) of exotic states in the deconfined phase is hypothe-
sized.

The chiral invariant mass of the quark quasiparticles, shown
in the lower panel of Fig. 1, turns out to be a decreasing function
of the temperature suggesting that the mechanism which deter-
mines the chiral mass becomes less efficient as the temperature
increase. It is interesting to note that the decreasing of the chi-
ral mass as a function of the temperature determined with this
approach is in qualitative agreement with the one determined in
Ref. [6] with a different method.

Notice that the previously obtained values of Db are an upper
bound to the effective number of correlated degrees of freedom.
Indeed they were obtained taking pg = εg = 0. If in Eqs. (4)
and (5) one switches on gluons, that is if one includes the con-
tributions of the gluon quasiparticles to the pressure and to the
energy density, these terms reduce the weight of the fermions
and of the correlated bosonic states. To check numerically this
effect we have fitted the unquenched lattice data of Refs. [2,3]
Table 1
Pressure and energy density for three different values of the temperature. P and
E correspond to the values obtained in lattice simulations Refs. [2,3], whereas
p and ε are the sum of quark, bosonic and gluonic contribution evaluated by
Eqs. (4), (5), (13) and (14) with mg = 1.0 GeV

T/Tc P/T 4 p/T 4 E/T 4 ε/T 4

1.2 1.7 1.6 12.1 12.0
1.5 2.9 2.9 12.6 12.7
2.0 3.6 3.6 12.6 12.8

including in Eqs. (4) and (5) the gluonic pressure and energy
density respectively given by

(13)pg = Dg

∫
d3k

(2π)3
log

(
1 − e−ωg/T

)−1
,

(14)εg = Dg

∫
d3k

(2π)3

ωg

eωg/T − 1
,

where Dg = 24 is the number of gluonic degrees of free-
dom1 and the dispersion relation of gluons is given by ωg =√

m2
g + k2 with mg the gluon quasiparticle mass. The results

are reported in Fig. 1 which shows that increasing the values of
pg and εg , i.e. employing different values of mg , one obtains
that the values of Db and M decrease. The dashed (red online)
lines corresponds to mg = 1.0 GeV; the dotted (green online)
lines corresponds to mg = 0.9 GeV. Employing values of mg

smaller than 0.9 GeV both Db and M are reduced (the effect
is larger on Db). However for very small values of the mass of
the gluons one cannot simultaneously reproduce the lattice data
of energy density and pressure. For values of mg larger than
1.0 GeV both Db and M increase. Considering values of the
mass of the gluons larger than ∼ 1.5 GeV, the corresponding
values of M and Db cannot be distinguished from the full line
which corresponds to pg = 0 and εg = 0. We will discuss the
dependence of Db and M on mg with more details in a future
paper.

In order to check our results we have evaluated pressure and
energy density summing the contributes of quarks, bosonic de-
grees of freedom and gluons and compared our results with the
actual values obtained by lattice simulations [2,3]. The result
of such a comparison is shown in Table 1. The agreement with
lattice results in both cases is very good.

The main result of the present analysis of the unquenched
lattice data of pressure and energy density is that if a quasipar-
ticle description of the quark–gluon plasma holds in the tem-
perature range (1.2–2)Tc , then the number of correlated states
and of the quasiparticle masses is strongly constrained.

Few comments are now in order. The value of the mass of the
quasiparticles that we obtain is smaller than the one obtained in
Ref. [16] or in Ref. [17] where M is estimated to be ∼ (3–4)T

from fits of lattice data. This difference essentially relies on the
fact that we have considered the dispersion law of Eq. (3) with a
chirally invariant mass, whereas in [16] and [17] the quasiparti-

1 Here we are assuming that for T � 2Tc gluons have a non-vanishing mass.
However at larger temperatures the effective number of gluonic degrees of free-
dom will be reduced to 16. We will consider such effect in a forthcoming paper.
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cle dispersion law has been parameterized as ωq = √
k2 + M2.

However in the chirally symmetric phase, the fermion quasi-
particle mass cannot be a chiral breaking Dirac mass. Moreover
in Ref. [16], in order to reproduce the lattice results, a (small)
bag constant has been employed. In our case the contribution of
the gluonic condensate and of the mesonic resonant states play
a crucial role in determining the correct values of pressure and
energy density.

Finally let us comment on the correlation between baryon
number and strangeness (CBS) as an indication of the effective
dynamical degrees of freedom of the system. The analysis of
lQCD results performed in [10] indicates that at 1.5Tc the BS
correlation is very close to 1.

We can estimate, in an admittedly rough way, the BS corre-
lation as

(15)CBS ∼
2
3Dq〈nq〉

2
3Dq〈nq〉 + 4

9Db〈nb〉
,

where 〈nb〉 (〈nq〉) is the number density of bosonic (fermionic)
states, the coefficient Dq/3 takes into account that in the chiral
symmetric limit one third of fermions are strange (the factor
two takes into account antiparticles), whereas the coefficient
4/9Db is an effective way to weight the number of strange
bosons in Db according to the meson nonet.

Employing the data of Fig. 1 at T = 1.5Tc it turns out that
the correlation is about 0.95 for mg = 1.0 GeV. Using smaller
values of mg the correlation further increases. In any case the
correlation turns out to be � 1 at T = 2.0Tc.

In conclusion, according to the present work, the relevant
degrees of freedom in QCD, for temperatures above Tc are q, q̄ ,
g quasiparticles and bosonic states. Contrary to recent claims,
the effective number of degrees of freedom associated with the
bosonic states is at most of order 20 suggesting that only light
nonexotic states are present.

For T � 2Tc the contribution of mesonic bound states to
pressure and energy density is vanishing small and only qua-
siparticles are relevant. On the other hand, gluon condensation
and its persistence above Tc is a fundamental ingredient in the
energy balance.

Further investigations are needed to clarify the underlying
nonperturbative dynamics in terms of resonance scattering, chi-
ral phase fluctuations and instantons.
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