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a b s t r a c t

When individual classifiers are combined appropriately, a statistically significant increase
in classification accuracy is usually obtained. Multiple classifier systems are the result of
combining several individual classifiers. Following Breiman’s methodology, in this paper
a multiple classifier system based on a ‘‘forest” of fuzzy decision trees, i.e., a fuzzy random
forest, is proposed. This approach combines the robustness of multiple classifier systems,
the power of the randomness to increase the diversity of the trees, and the flexibility of
fuzzy logic and fuzzy sets for imperfect data management. Various combination methods
to obtain the final decision of the multiple classifier system are proposed and compared.
Some of them are weighted combination methods which make a weighting of the decisions
of the different elements of the multiple classifier system (leaves or trees). A comparative
study with several datasets is made to show the efficiency of the proposed multiple clas-
sifier system and the various combination methods. The proposed multiple classifier sys-
tem exhibits a good accuracy classification, comparable to that of the best classifiers
when tested with conventional data sets. However, unlike other classifiers, the proposed
classifier provides a similar accuracy when tested with imperfect datasets (with missing
and fuzzy values) and with datasets with noise.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Classification has always been a challenging problem [1,14]. The explosion of information that is available to companies
and individuals further compounds this problem. There have been many techniques and algorithms addressing the classifi-
cation issue. In the last few years we have also seen an increase of multiple classifier systems based approaches, which have
been shown to deliver better results than individual classifiers [27]. However, imperfect information inevitably appears in
realistic domains and situations. Instrument errors or corruption from noise during experiments may give rise to information
with incomplete data when measuring a specific attribute. In other cases, the extraction of exact information may be exces-
sively costly or unviable. Moreover, it may on occasion be useful to use additional information from an expert, which is usu-
ally given through fuzzy concepts of the type: small, more or less, near to, etc. In most real-world problems, data have a
certain degree of imprecision. Sometimes, this imprecision is small enough for it to be safely ignored. On other occasions,
the imprecision of the data can be modeled by a probability distribution. Lastly, there is a third kind of problem where
the imprecision is significant, and a probability distribution is not a natural model. Thus, there are certain practical problems
where the data are inherently fuzzy [9,28,30,31].
. All rights reserved.
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Therefore, it becomes necessary to incorporate the handling of information with attributes which may, in turn, present
missing and imprecise values in both the learning and classification phases of the classification techniques. In addition, it
is desirable that such techniques be as robust as possible to noise in the data.

In this paper, we will focus on how to start from a multiple classifier system with performance comparable to or better
than the best classifiers and extend it to handle imperfect information (missing values and fuzzy values) and make it robust
to noise in nominal attributes and to outliers in numerical attributes [6,10]. To build the multiple classifier system, we follow
the random forest methodology [8], and for the processing of imperfect data, we construct the random forest using a fuzzy
decision tree as base classifier. Therefore, we try to use the robustness of both, a tree ensemble and a fuzzy decision tree, the
power of the randomness to increase the diversity of the trees in the forest, and the flexibility of fuzzy logic and fuzzy sets for
imperfect data management.

The majority vote is the standard combination method for random forest ensembles. If the classifiers in the ensemble are
not of identical accuracy, then it is reasonable to attempt to endow the more ‘‘competent” classifiers with more power in
making the final decision when using weighted majority vote. In this work, we propose and compare various weighted com-
bination methods to obtain the final decision of the proposed multiple classifier system.

In Section 2, we review the major elements that constitute a multiple classifier system, providing a brief description of
how the outputs of each classifier are combined to produce the final decision and we comment on some aspects of the incor-
poration of fuzzy logic in classification techniques. In Section 3, we explain the learning and classification phases of the pro-
posed multiple classifier system, which we call a fuzzy random forest. In Section 4, we define combination methods for the
fuzzy random forest. In Section 5, we show different computational results that illustrate the behaviour of the fuzzy random
forest. Finally, we present our conclusions in Section 6.
2. Multiple classifier systems and fuzzy logic

When individual classifiers are combined appropriately, there is usually a better performance in terms of classification
accuracy and/or speed to find a better solution [1]. Multiple classifier systems are the result of combining several individual
classifiers. Multiple classifier systems differ in their characteristics by the type and number of base classifiers; the attributes
of the dataset used by each classifier; the combination of the decisions of each classifier in the final decision of the ensemble;
and the size and the nature of the training dataset for the classifiers.

2.1. Decision tree-based ensembles

In recent years several ensemble techniques have been proposed using different base classifiers. However, this work fo-
cuses on ensembles using decision trees as base classifier. Therefore, we will present them in chronological order to show the
evolution of this concept in the literature.

Bagging [7] is allegedly one of the oldest techniques for creating an ensemble of classifiers. In bagging, diversity is ob-
tained by constructing each classifier with a different set of examples, which are obtained from the original training dataset
by re-sampling with replacement. Bagging then combines the decisions of the classifiers using uniform-weighted voting.

The boosting algorithm [15,32] creates the ensemble by adding one classifier at a time. The classifier that joins the ensem-
ble at step k is trained on a dataset sampled selectively from the original dataset. The sampling distribution starts from uni-
form and progresses towards increasing likelihood of misclassified examples in the new dataset. Thus, the distribution is
modified at each step, increasing the likelihood of the examples misclassified by the classifier at step k� 1 being in the train-
ing dataset at step k.

Ho’s random subspaces technique [19] selects random subsets of the available attributes to be used in training the indi-
vidual classifiers in the ensemble.

Dietterich [13] introduced an approach called randomization. In this approach, at each node of each tree of the ensemble,
the 20 best attributes to split the node are determined and one of them is randomly selected for use at that node.

Finally, Breiman [8] presented random forest ensembles, where bagging is used in tandem with random attribute selec-
tion. At each node of each tree of the forest, a subset of the available attributes is randomly selected and the best split avail-
able within those attributes is selected for that node. The number of attributes randomly chosen at each node is a parameter
of this approach.

In a recent paper [3], Banfield et al. compared these decision tree ensemble creation techniques. They proposed an eval-
uation approach using the average ranking of the algorithms on each dataset.

2.2. Combination methods

In [24,25] some of the views in the literature about combination of classifiers are described. In this paper, we follow
one of these views of grouping the combination methods in multiple classifier systems into trainable and non-trainable
combiners.

Non-trainable combiners are those that do not need training after the classifiers in the ensemble have been trained
individually. Trainable combiners may need training during or after the training of individuals ones. In the literature
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the trainable combiners also are called data-dependent combiners and are divided into implicity dependent and explic-
itly dependent. The implicity data-dependent group contains trainable combiners where the parameters of the com-
biner do not depend on the target example. In other words, the parameters are trained before the system is used
for classifying new examples. The explicit data-dependent combiners use parameters that are functions of the target
example.

2.3. Fuzzy logic in classification techniques

Although decision tree techniques have proved to be interpretable, efficient and capable of dealing with large datasets,
they are highly unstable when small disturbances are introduced in training datasets. For this reason, fuzzy logic has been
incorporated in decision tree construction techniques.

Leveraging its intrinsic elasticity, fuzzy logic offers a solution to overcome this instability. In [21–23,26,29] we
find approaches in which fuzzy sets and their underlying approximate reasoning capabilities have been successfully
combined with decision trees. This integration has preserved the advantages of both components: uncertainty man-
agement with the comprehensibility of linguistic variables, and popularity and easy application of decision trees. The
resulting trees show an increased robustness to noise, an extended applicability to uncertain or vague contexts, and
support for the comprehensibility of the tree structure, which remains the principal representation of the resulting
knowledge.

Thus, we propose a random forest with a fuzzy decision tree as base classifier. Among the various techniques of ensemble
based on decision trees, we have chosen random forest because, like boosting, it generates the best results [3]. In addition, as
concluded in [8], random forest is more noise resistant (when a fraction of values of the class attribute in the training dataset
are randomly altered) than boosting based ensembles. Therefore, we take advantage of the improvement in results that pro-
vide multiple classifier systems compared to the individual classifiers, and increase the noise resistance of random forests
based ensembles to use fuzzy decision trees instead of crisp decision trees as base classifier. In addition, the use of fuzzy
decision trees adds to random forest some of the advantages that we have commented on earlier for this type of technique:
uncertainty management with the comprehensibility of linguistic variables, an increased noise resistance, and an extended
applicability to uncertain or vague contexts.

3. Fuzzy random forest: an ensemble based on fuzzy decision trees

Following Breiman’s methodology, we propose a multiple classifier system that is a random forest of fuzzy decision trees.
We will refer to it as a fuzzy random forest ensemble and it will be denoted as FRF ensemble. In this section, we describe the
learning phase required to construct the multiple classifier system and its classification phase.

In the random forest proposed by Breiman, [8], each tree is constructed to the maximum size and without pruning. During
the construction process of each tree, every time that it needs to split a node (i.e. select a test at the node), only a random
subset of the total set of available attributes is considered and a new random selection is performed for each split. The size of
this subset is the only significant design parameter in the random forest. As a result, some attributes (including the best)
might not be considered for each split, but an attribute excluded in one split might be used by other splits in the same tree.
Random forests have two stochastic elements [8]: (1) bagging is used for the selection of the datasets used as input for each
tree; and (2) the set of attributes considered as candidates for each node split. These randomizations increase the diversity of
the trees and significantly improve their overall predictive accuracy when their outputs are combined. When a random forest
is constructed, about 1=3 of the examples are excluded from the training dataset of each tree in the forest. These examples
are called ‘‘out of bag” (OOB) [8]; each tree will have a different set of OOB examples. The OOB examples are not used to build
the tree and constitute an independent test sample for the tree [8].

3.1. Fuzzy random forest learning

We propose Algorithm 1 to generate a random forest whose trees are fuzzy decision trees, so defining, a basic algorithm
to generate the FRF ensemble.
Algorithm 1. FRF ensemble Learning

FRFlearning(in: E, Fuzzy Partition; out: Fuzzy Random Forest)
begin

1. Take a random sample of jEj examples with replacement from the dataset E
2. Apply Algorithm 2 to the subset of examples obtained in the previous step to construct a fuzzy tree, using the fuzzy partition
3. Repeat steps 1 and 2 until all fuzzy trees are built to constitute the FRF ensemble

end
Each tree in the FRF ensemble will be a fuzzy tree generated along the guidelines in [22], modifying it so as to adapt it to
the functioning scheme of the FRF ensemble. Algorithm 2 shows the resulting algorithm.
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Algorithm 2. Fuzzy Decision Tree Learning

FuzzyDecisionTree(in: E, Fuzzy Partition; out: Fuzzy Tree)
begin

1. Start with the examples in E with values vFuzzy Tree;rootðeÞ ¼ 1
2. Let M be the set of attributes where all numeric attributes are partitioned according to the Fuzzy Partition
3. Choose an attribute to do the split at the node N

3.1. Make a random selection of attributes from the set of attributes M
3.2. Compute the information gain for each selected attribute using the values vFuzzy Tree;NðeÞ of each e in node N

3.3. Choose the attribute such that information gain is maximal
4. Divide N in children nodes according to possible outputs of the attribute selected in the previous step and remove it from the
set M. Let En be the dataset of each child node

5. Repeat steps 3 and 4 with each ðEn;MÞ until the stopping criteria is satisfied
end
Algorithm 2 has been designed so that the trees can be constructed without considering all the attributes to split the
nodes. We select a random subset of the total set of attributes available at each node and then choose the best one to make
the split. So, some attributes (including the best one) might not be considered for each split, but an attribute excluded in one
split might be used by other splits in the same tree. Algorithm 2 is an algorithm to construct trees based on ID3, where the
numeric attributes have been discretized through a fuzzy partition. This study uses the fuzzy partitioning algorithm for
numerical attributes proposed in [11]. The domain of each numeric attribute is represented by trapezoidal fuzzy sets,
A1; . . . ;Af so each internal node of the tree, whose division is based on a numerical attribute, generates a child node for each
fuzzy set of the partition. The fuzzy partition of each attribute guarantees completeness (no point in the domain is outside of
the fuzzy partition), and is a strong fuzzy partition (satisfying that 8x 2 E;

Pf
i¼1lAi

ðxÞ ¼ 1, where A1; . . . ;Af are the fuzzy sets
of partition given by its membership functions lAi

).
Moreover, Algorithm 2 uses a function, which we will call vt;NðeÞ, which indicates the degree with which the example e

satisfies the conditions that lead to node N of tree t. This function is defined as follows:

� Each example e used in the training of the tree t has been assigned an initial value 1 (vt;rootðeÞ ¼ 1) indicating that this
example was initially found only in the root node of tree t.

� According to the membership degree of the example e to different fuzzy sets of partition of a split based on a numerical
attribute, the example e may belong to one or two children nodes, i.e., the example will descend to a child node associated
with membership degree greater than 0 ðlfuzzy set partitionðeÞ > 0Þ. In this case vt;childnodeðeÞ ¼ vt;nodeðeÞ � lfuzzy set partitionðeÞ.

� When the example e has a missing value on the attribute used as split in a node, the example e descends to each child node
with a modified value vt;childnodeðeÞ ¼ vt;nodeðeÞ � 1

number outputssplit
.

The stopping criterion in Algorithm 2 is triggered by the first encountered condition among the following ones: (1) a node
is pure, i.e., node that contains examples of only one class, (2) the set of available attributes is empty, (3) the minimum num-
ber of examples allowed in a node has been reached. When we build the FRF ensemble with the above algorithm, we obtain
the OOB set for each fuzzy tree.

With Algorithms 1 and 2, we integrate the concept of fuzzy tree within the design philosophy of Breiman’s random forest.

3.2. Fuzzy random forest classification

In this section, we will describe how the classification is carried out using the FRF ensemble. First, we introduce the nota-
tion that we will use. Then, we define two general strategies to obtain the decision of the FRF ensemble for a target example.
Concrete instances of these strategies are defined in the next section, where we present different combination methods for
the FRF ensemble.

3.2.1. Notations
We describe the notation necessary to define the strategies and combination methods used by the FRF ensemble.

� T is the number of trees in the FRF ensemble. We will use the index t to refer to a particular tree.
� Nt is the number of leaf nodes reached by an example, in the tree t. A characteristic inherent in fuzzy trees is that in clas-

sification an example can reach two or more leaves due to the overlapping of the fuzzy sets that constitute the partition of
a numerical attribute. We will use the index n to refer to a particular leaf reached in a tree.

� I is the number of classes. We will use the index i to refer to a particular class.
� e is an example which will be used either as an example of training or as a test.
� vt;nðeÞ is the degree of satisfaction with which example e reaches the leaf n from t tree, as we indicated in

Section 3.1.
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� Support for the class i is obtained in each leaf as Ei
En

where Ei is the sum of the degrees of satisfaction of the examples with
class i in leaf n and En is the sum of the degrees of satisfaction of all examples in that leaf.

� L FRF is a matrix with size ðT �MAXNt Þ with MAXNt ¼ maxfN1;N2; . . . ;NTg, where each element of the matrix is a vector of
size I containing the support for every class provided by every activated leaf n on each tree t. Some elements of this matrix
do not contain information since not all the trees of the forest have MAXNt reached leaves. Therefore, the matrix L FRF con-
tains all the information generated by the FRF ensemble when it is used to classify an example e and from which it makes
its decision or class with certain methods of combination.

L FRFt;n;i refers to an element of the matrix that indicates the support given to the class i by the leaf n of tree t. An example
of the matrix assuming that I ¼ 2; T ¼ 3; N1 ¼ 1; N2 ¼ 2 and N3 ¼ 1 may be:

The information in this matrix is directly provided by each fuzzy tree of the FRF ensemble. From this matrix, we can get

new information, through certain transformation of the same, which we will use later in some combination methods. The
transformations that we will use are:

– Transformation 1, denoted as TRANS1: This transformation, L FRF ¼ TRANS1ðL FRFÞ, provides information where each
reached leaf assigns a simple vote to the majority class. For example, if we apply this transformation to the previous
matrix get the following matrix:

– Transformation 2, denoted as TRANS2: This transformation, L FRF ¼ TRANS2ðL FRFÞ, provides information where each

reached leaf votes with weight vt;nðeÞ for the majority class. For example, if we apply this transformation to the previous
matrix and v1;1ðeÞ ¼ 1; v2;1ðeÞ ¼ 0:6; v2;2ðeÞ ¼ 0:4 and v3;1ðeÞ ¼ 1 we get the following matrix:
– Transformation 3, denoted as TRANS3: This transformation, L FRF ¼ TRANS3ðL FRFÞ, provides information where each
reached leaf provides support for each class weighted by the degree of satisfaction with which the example e reaches
the leaf. For example, if we apply this transformation to the previous matrix and v1;1ðeÞ ¼ 1; v2;1ðeÞ ¼ 0:6; v2;2ðeÞ ¼ 0:4
and v3;1ðeÞ ¼ 1 we get the following matrix:
� T FRF is a matrix with size ðT � IÞ that contains the confidence assigned by each tree, t, to each class i. The matrix elements
are obtained from the support for each class in the leaves reached when applying some combination method. An element

of matrix is denoted by T FRFt;i.

� D FRF is a vector with size I that indicates the confidence assigned by the FRF ensemble to each class i. The matrix ele-
ments are obtained from the support for each class in the leaves reached when applying some combination method.
Denote an element of this vector as D FRFi.
3.2.2. Strategies for fuzzy classifier module in the FRF ensemble
To find the class of an example given with the FRF ensemble, we will define the fuzzy classifier module. The fuzzy clas-

sifier module operates on fuzzy trees of the FRF ensemble using one of these two possible strategies:
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Strategy 1: Combining the information from the different leaves reached in each tree to obtain the decision of each
individual tree and then applying the same or another combination method to generate the global decision of
the FRF ensemble. In order to combine the information of the leaves reached in each tree, the Faggre11 function
is used and the Faggre12 function is used to combine the outputs obtained with Faggre11. Fig. 1 shows this
strategy.

Strategy 2: Combining the information from all reached leaves from all trees to generate the global decision of the FRF
ensemble. We use function Faggre2 to combine the information generated by all the leaves. Fig. 1 shows this
strategy.

The functions Faggre11; Faggre12 and Faggre2 are defined as frequently used combination methods in multiple classifier
systems [24,25]. In the next section, we will describe different ways of defining these functions Faggre11 and Faggre12, for
Strategy 1, and Faggre2 for Strategy 2.

In Algorithm 3 we implement Strategy 1.

Algorithm 3. FRF Classification (Strategy 1)

FRFclassification(in: e, Fuzzy Random Forest; out: c)
begin

DecisionsOfTrees(in: e,Fuzzy Random Forest; out: T_FRF)
DecisionOfForest(in: T_FRF; out: c)

end
DecisionsOfTrees(in: e,Fuzzy Random Forest; out: T_FRF)
begin

1. Run the example e through each tree to obtain the matrix L FRF
2. For each tree t do {For each class i do T FRFt;i ¼ Faggre11ðt; i; L FRFÞ}

end
DecisionOfForest(in: T_FRF; out: c)
begin

1. For each class i do D FRFi ¼ Faggre12ði; T FRFÞ
2. The FRF ensemble assigns class c to example e such that c ¼ arg maxi;i¼1;...;IfD FRFig

end
In Algorithm 3, Faggre11 is used to obtain the matrix T FRF. In this case, Faggre11 aggregates the information provided by
the leaves reached in a tree. Later, the values obtained in each tree t, will be aggregated by means of the function Faggre12 to
obtain the vector D FRF. This algorithm takes a target example e and the FRF ensemble, and generates the class value c as a
decision of the FRF ensemble.

To implement Strategy 2, the previous Algorithm 3 is simplified so that it does not add the information for each tree, but
directly uses the information of all leaves reached by example e in the different trees of the FRF ensemble. Algorithm 4 imple-
ments Strategy 2 and uses the example e to classify and the FRF ensemble as target values, and provides the value c as class
proposed as decision of the FRF ensemble. Faggre2 aggregates the information provided by all leaves reached in the different
trees of the FRF ensemble to obtain the vector D FRF.
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Algorithm 4. FRF Classification (Strategy 2)

FRFclassification(in: e, Fuzzy Random Forest; out: c)
begin

1. Run the example e through each tree to obtain the matrix L FRF
2. For each class i do D FRFi ¼ Faggre2ði; L FRFÞ
3. The FRF ensemble assigns the class c to example e such that c ¼ arg maxi;i¼1;...;IfD FRFig

end
4. Combination methods in the FRF ensemble

In the previous section, we have shown the general scheme of classification that we use to obtain the final decision of the FRF
ensemble. In this section, we describe specific instances of combination methods that we have designed for both strategies.

In all designed methods we will describe functions Faggre11 and Faggre12 if it is a method designed for Strategy 1 (Algo-
rithm 3) or only the function Faggre2 if it is a method for Strategy 2 (Algorithm 2) also indicating if we use the matrix L FRF or
a transformation of it.

We have divided the several methods implemented in the following groups according to the classification given in
Section 2.2:

� Non-trainable methods: In this group, we have defined the methods based on the simple majority vote which do not
require training during or after the individual training of the ensemble classifiers. This group includes the methods that
we have called Simple Majority vote and which, depending on the strategy used for the classification, we will denote as
SM1 or SM2 for Strategy 1 or 2, respectively.

� Trainable methods: This group includes those methods that require training during or after the individual training of the
ensemble classifiers. The methods defined in this group will, through this additional training, obtain the values of certain
parameters that act as weightings or weights in the decisions of the various elements of the ensemble (leaves or trees).
Within this group we have implemented explicitly data-dependent methods and implicitly data-dependent methods.
– Explicitly data-dependent methods: The methods in this sub-group need to learn a parameter which depends on the exam-
ple to be classified (it depends on the input) and which is common to all the methods of this sub-group. This parameter is
the degree of satisfaction with which the example to be classified reaches the various leaves of the trees in the ensemble
ðvt;nðeÞÞ. Within the sub-group we distinguish:
� Majority vote Weighted by Leaf for Strategies 1 and 2, (MWL1 and MWL2, respectively). These do not need to learn any

other parameter.
� Majority vote Weighted by Leaf and by Tree for Strategies 1 and 2, (MWLT1 and MWLT2, respectively). These two

methods need to learn an additional parameter that indicates the weight of each tree in the decision of the ensemble.
This weight is obtained using the OOB dataset.

� Majority vote Weighted by Leaf and by Local Fusion for Strategies 1 and 2, (MWLFUS1 and MWLFUS2, respectively).
These need to learn an additional parameter. Again, it is the parameter for the weight of each tree, and it is obtained
by considering the behaviour of each tree with those examples which are similar to the example to be classified (local
fusion).

� Majority vote Weighted by Leaf and by membership Function for Strategies 1 and 2, (MWLF1 and MWLF2, respec-
tively). These need to learn an additional parameter which indicates the weight of each tree in the decision of the
ensemble, obtained this time through a membership function that expresses the importance of each tree in proportion
to the errors committed with the OOB dataset.

� Minimum Weighted by Leaf and by membership Function for Strategy 1 (MIWLF1). This method is obtained in the
same way as the MWLF1 above but using the minimum instead of the majority vote.

– Implicitly data-dependent methods: all the parameters that the methods of this sub-group need to learn do not depend on
the example to be classified.
� Majority vote Weighted by membership Function for Strategies 1 and 2, (MWF1 and MWF2, respectively). It only needs

to learn one parameter which indicates the weight of each tree in the decision of the ensemble, which is obtained by a
membership function which expresses the importance of each tree in proportion to the errors it committed with the
OOB dataset.

� Minimum vote Weighted by membership Function for Strategies 1 and 2, (MIWF1 and MIWF2, respectively). These two
methods are obtained in the same way as methods MWF1 and MWF2, but using the minimum instead of the majority
vote.

All the methods presented above are described in detail in the rest of this section.
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4.1. Non-trainable methods

Within this group, we define the following methods:

� Simple Majority vote: In this combination method, the transformation TRANS1 is applied to the matrix L FRF in Step 2 in
Algorithms 3 and 4 so that each leaf reached assigns a simple vote to the majority class. We get two versions of this
method depending on the strategy used:
Strategy 1 ? method SM1
The function Faggre11 in Algorithm 3 is defined as:
Faggre11ðt; i; L FRFÞ ¼ 1 if i ¼ arg max
j;j¼1;...;I

PNt

n¼1
L FRFt;n;j

� �
0 otherwise

8><
>:
In this method, each tree t assigns a simple vote to the most voted class among the Nt reached leaves by example e in the
tree.
The function Faggre12 in Algorithm 3 is defined as:
Faggre12ði; T FRFÞ ¼
XT

t¼1

T FRFt;i

Strategy 2 ? method SM2
For Strategy 2 it is necessary to define the function Faggre2 combining information from all leaves reached in the ensem-
ble by example e. Thus, the function Faggre2 in Algorithm 4 is defined as:

Faggre2ði; L FRFÞ ¼
XT

t¼1

XNt

n¼1

L FRFt;n;i
4.2. Trainable explicitly dependent methods

Within this group we define the following methods:

� Majority vote Weighted by Leaf: In this combination method, the transformation TRANS2 is applied to the matrix L FRF in
Step 2 of Algorithms 3 and 4 so that each leaf reached assigns a weighted vote to the majority class. The vote is weighted
by the degree of satisfaction with which example e reaches the leaf. Again, we have two versions according to the strategy
used.
Strategy 1 ? method MWL1
The functions Faggre11 and Faggre12 are defined as:
Faggre11ðt; i; L FRFÞ ¼ 1 if i ¼ arg max
j;j¼1;...;I

PNt

n¼1
L FRFt;n;j

� �
0 otherwise

8><
>:

Faggre12ði; T FRFÞ ¼
XT

t¼1

T FRFt;i

Strategy 2 ? method MWL2
The function Faggre2 is defined as:

Faggre2ði; L FRFÞ ¼
XT

t¼1

XNt

n¼1

L FRFt;n;i

� Majority vote Weighted by Leaf and by Tree: In this method, the transformation TRANS2 is applied to matrix L FRF in Step
2 of Algorithms 3 and 4 so that each reached leaf assigns a weighted vote, according to the degree of satisfaction, to the
majority class.

In addition, in this method a weight for each tree obtained is introduced by testing each individual tree with the OOB
dataset. Let p ¼ ðp1; p2; . . . ; pTÞ be the vector with the weights assigned to each tree. Each pt is obtained as N success OOBt

size OOBt
where

N success OOBt is the number of examples classified correctly from the OOB dataset used for testing the tth tree and size OOBt

is the total number of examples in this dataset.
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Strategy 1 ? method MWLT1
The function Faggre11 is defined as:

Faggre11ðt; i; L FRFÞ ¼ 1 if i ¼ arg max
j;j¼1;...;I

PNt

n¼1
L FRFt;n;j

� �
0 otherwise

8><
>:

Vector p is used in the definition of function Faggre12:
Faggr12ði; T FRFÞ ¼
XT

t¼1

pt � T FRFt;i

Strategy 2 ? method MWLT2
The vector of weights p is applied to Strategy 2.

Faggre2ði; L FRFÞ ¼
XT

t¼1

pt

XNt

n¼1

L FRFt;n;i

� Majority vote Weighted by Leaf and by Local Fusion: In this combination method, the transformation TRANS2 is applied to
the matrix L FRF in Step 2 of Algorithms 3 and 4 so that each reached leaf assigns a weighted vote, again according to
the degree of satisfaction, to the majority class.

Strategy 1 ? method MWLFUS1
The function Faggre11 is defined as:
Faggre11ðt; i; L FRFÞ ¼ 1 if i ¼ arg max
j;j¼1;...;I

PNt

n¼1
L FRFt;n;j

� �
0 otherwise

8><
>:
In addition, for each tree and each example to be classified, a weight is used in the function Faggre12 which is obtained in the
way explained below.

To apply this combination method, first, during the learning of the FRF ensemble, we obtain an additional tree from
each tree generated, which we denote error tree. The procedure to construct the error tree associated to tth tree is the
following:

With the training dataset of the tth tree (tds treet in Fig. 2) we make a test of the tree. So, we consider the training dataset
as the test dataset. With the results of this test we build a new dataset (tds error_treet in Fig. 2) with the same data but
replacing the class attribute for the binary attribute error. The attribute error indicates whether that example has been clas-
sified correctly or not by the tth tree (for example, that binary attribute can take the value 0 if the example has been correctly
classified by the tree or 1 if it has been incorrectly classified and therefore it is a mistake made by the tree). With this new
dataset a tree is constructed to learn the attribute error.

In Fig. 2, tds treet is the training dataset of the tth tree and it contains examples represented by vectors where

� ej;t is the jth example in the training dataset of the tth tree;
� classj;t is the value of the attribute class to the jth example. This attribute is the classification aim for the FRF ensemble;

and, tds error_treet is the training dataset of the error tree associated to the tth tree. It contains vectors represented as

� ej;t is the jth example in the training dataset of the tth tree;
� errorj;t is the attribute that acts as class in this dataset. It is a binary attribute with value:

– 1 if ej;t is incorrectly classified by the tth tree;
– 0 if ej;t is correctly classified by the tth tree.

Once the FRF ensemble and the additional error trees have been built, we will obtain a vector ple ¼ ðple;1; ple;2; . . . ; ple;TÞ for
each example e to classify and each tree of the FRF ensemble with the weights assigned to each tree with this example (local
weights). Each ple;t is obtained as ple;t ¼

PNerrort
n¼1 verrort ;nðeÞsuperrort ;n;0; 8t ¼ 1; . . . ; T where the index errort is the error tree of tth

tree; Nerrort is the number of leaves reached by the example e in the error tree errort; verrort ;nðeÞ is the degree of satisfaction
with which the example e reaches leaf n of the error tree errort and superrort ;n;0 is the proportion of examples of class 0 (value
of binary attribute error = 0) in the leaf n of the error tree.



Fig. 2. Classification using local fusion.
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The key idea that we want to capture with this method is the use of a local weight or a local fusion mechanism [5].
Given a new example, we first evaluate the performance of the tree with those examples (in the training dataset) which
are similar to it. Similar examples are those which belong to the leaf node of the error tree which has activated the exam-
ple to the greatest degree. Then, we associate a weight to the decision of that tree on the basis of its performance with
those examples.

Finally, the function Faggre12 is defined by weighting the decision of each tree with the weight obtained specifically for
example e and tree t:
Faggre12ði; T FRFÞ ¼
XT

t¼1

ple;t � T FRFt;i
Strategy 2 ? method MWLFUS2

This method uses the vector of weights ple applied to Strategy 2.
Faggre2ði; L FRFÞ ¼
XT

t¼1

ple;t

XNt

n¼1

L FRFt;n;i
� Majority vote Weighted by Leaf and by membership Function:
In this combination method, the transformation TRANS2 is applied to the matrix L FRF in Step 2 of Algorithms 3 and 4
so that each reached leaf assigns a weighted vote, again according to the degree of satisfaction, to the majority class.

Strategy 1 ? method MWLF1
The function Faggre11 is defined as:
Faggre11ðt; i; L FRFÞ ¼ 1 if i ¼ arg max
j;j¼1;...;I

PNt

n¼1
L FRFt;n;j

� �
0 otherwise

8><
>:
In this method, the function Faggre12 weights the decision of each tree of the FRF ensemble using the membership function
defined by lpondðxÞ:
lpondðxÞ ¼
1 0 6 x 6 ðpminþmargÞ
ðpmaxþmargÞ�x
ðpmax�pminÞ ðpminþmargÞ 6 x 6 ðpmaxþmargÞ

0 ðpmaxþmargÞ 6 x

8><
>:
where
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– pmax is the maximum rate of errors in the trees of the FRF ensemble ðpmax ¼maxt¼1;...;T
errorsðOOBt Þ

sizeðOOBt Þ

n o
Þ. The rate of errors in a

tree t is obtained as errorsðOOBt Þ
sizeðOOBt Þ

where errorsðOOBt Þ is the number of classification errors of the tree t (using the OOBt dataset as

test set), and sizeðOOBt Þ is the cardinal of the OOBt dataset. As we indicated above, the OOBt examples are not used to build
the tree t and they constitute an independent sample to test tree t. So we can measure the goodness of a tree t as the num-
ber of errors when classifying the set of examples OOBt;

– pmin is the minimum rate of errors in the trees of the FRF ensemble; and
– marg ¼ pmax�pmin

4 .

With this membership function, all trees have a weight greater than 0 in the decision of the FRF ensemble. The weight is
decreased when the rate of errors increases so that trees with a minimum rate of error will have a weight equal to 1.

So, the function Faggre12 is defined as:
Faggre12ði; T FRFÞ ¼
XT

t¼1

lpond

errorsðOOBt Þ

sizeðOOBtÞ

� �
� T FRFt;i
Strategy 2 ? method MWLF2
In this method the function Faggre2 is defined as:
Faggre2ði; L FRFÞ ¼
XT

t¼1

lpond

errorsðOOBtÞ

sizeðOOBt Þ

� �
�
XNt

n¼1

L FRFt;n;i
� Minimum Weighted by Leaf and by membership Function:
In this combination method, the transformation TRANS3 is applied to the matrix L FRF in Step 2 of Algorithm 3.

Strategy 1 ? method MIWLF1
The function Faggre11 is defined as:
Faggre11ðt; i; L FRFÞ ¼
1 if i ¼ arg max

j;j¼1;...;I
minðL FRFt;1;j; L FRFt;2;j; . . . ; L FRFt;Nt ;jÞ
� �

0 otherwise

(

The function Faggre12 incorporates the weighting defined by the previous fuzzy membership function for each tree:
Faggre12ði; T FRFÞ ¼
XT

t¼1

lpond

errorsðOOBt Þ

sizeðOOBtÞ

� �
� T FRFt;i
4.3. Trainable implicitly dependent methods

Within this group we define the following methods:

� Majority vote Weighted by membership Function: In this combination method, the transformation TRANS1 is applied to the
matrix L FRF in the Step 2 in Algorithms 3 and 4 so that each reached leaf assigns a simple vote to the majority class.
Strategy 1 ? method MWF1
The function Faggre11 is defined as:
Faggre11ðt; i; L FRFÞ ¼ 1 if i ¼ arg max
j;j¼1;...;I

PNt

n¼1
L FRFt;n;j

� �
0 otherwise

8><
>:
The function Faggre12 incorporates the weighting defined by the previous fuzzy membership function for each tree:
Faggre2ði; T FRFÞ ¼
XT

t¼1

lpond

errorsðOOBtÞ

sizeðOOBtÞ

� �
� T FRFt;i

Strategy 2 ? method MWF2
The function Faggre2 incorporates the weighting defined by the previous fuzzy membership function:
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Faggre2ði; L FRFÞ ¼
XT

t¼1

lpond

errorsðOOBtÞ

sizeðOOBtÞ

� �
�
XNt

n¼1

L FRFt;n;i
� Minimum Weighted by membership Function: In this combination method, no transformation is applied to matrix L FRF
in Step 2 of Algorithm 3.

Strategy 1 ? method MIWF1
The function Faggre11 is defined as:
Faggre11ðt; i; L FRFÞ ¼
1 if i ¼ arg max

j;j¼1;...;I
minðL FRFt;1;j; L FRFt;2;j; . . . ; L FRFt;Nt ;jÞ
� �

0 otherwise

8<
:

The function Faggre12 incorporates the weighting defined by the previous fuzzy membership function for each tree:
Faggre12ði; T FRFÞ ¼
XT

t¼1

lpond

errorsðOOBtÞ

sizeðOOBtÞ

� �
� T FRFt;i
5. Experiments and results

In this section, we describe several computational results, which show the accuracy of the proposed FRF ensemble. The
experiments are grouped as follows:

� The experiments of Section 5.3 are designed to measure the behaviour and stability of the FRF ensemble with imperfect
data and noisy data. In other words, we want to test the FRF behaviour against dataset that contain missing values, values
provided by fuzzy sets (fuzzy values), noise in the class or outlier examples. We therefore form two groups of
experiments:
– FRF behaviour with imperfect data:
* Missing values and
* Fuzzy values.

– FRF behaviour with noise:
* Noise in the class and
* Outlier examples.
� The experiments of Section 5.4 are designed to compare the FRF ensemble with other classifiers and ensembles.
– First, we compare the FRF ensemble with other ensembles. These ensembles are formed with same base classifier as

the FRF ensemble (a fuzzy decision tree). We also use Breiman’s Random Forest.
– Second, we compare and baseline the operation of the FRF ensemble with other classifiers and ensembles found in the

literature.
s.
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Table 2
Testing accuracies of the FRF ensemble for different percentages of missing values.

Dataset Introducing missing values

Without 5% 15% 30%

% Decrease average accuracy

APE 91.13(9.70) MIWF1/MIWLF1 0.82MIWF1/MIWLF1 1.03MWLT2/MWLF2 0.21MIWF1/MIWLF1

BCW 97.31(1.76) MWLT1/MWLT2 0.12MWL2/MWLT2 0.79MWLT2 2.92MWLT2

GER 76.68(3.97) MWLF2 0.70MWLT2 3.86MWLFUS2 5.16MWLFUS2

GLA 77.66(7.36) MWLT2 6.62MWLFUS2 10.95MWL2 17.20MWLT2

ION 96.41(2.89) MIWLF1 0.94MIWF1/MIWLF1 2.66MWLFUS2 6.09MIWF1/MIWLF1

IRP 97.33(3.93) ** 1.23SM1/SM2//MWF1/MWF2 4.11MWF1 16.71MWL2

PIM 77.14(4.88) MWF1 0.82MWF1 2.57MWF1 7.47MWLF2

WIN 97.87(2.85) MWLF1 4.41MIWF1/MIWLF1 6.27MWL2 14.21MIWF1/MIWLF1
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5.1. Datasets and parameters for the FRF ensemble

To obtain these results we have used several datasets from the UCI repository [2], whose characteristics are shown in Ta-
ble 1. It shows the number of examples ðjEjÞ, the number of attributes ðjMjÞ and the number of classes (I) for each dataset.
‘‘Abbr” indicates the abbreviation of the dataset used in the experiments.

Finally, we use the FRF ensemble with size T 2 ð100;150Þ trees except for the experiment of Section 5.4.1, which will be
shown in Table 7. The number of attributes chosen at random at a given node is log2ðj � j þ 1Þ, where j � j is the number of
available attributes at that node, and each tree of the FRF ensemble is constructed to the maximum size (node pure or
set of available attributes is empty) and without pruning.

5.2. Validating the experimental results by non-parametric tests

After the experimental results have been shown, we make an analysis of them in each subsection using statistical tech-
niques. Following the methodology of [16] we use non-parametric tests.

We use the Wilcoxon signed-rank test to compare two methods. This test is a non-parametric statistical procedure for
performing pairwise comparison between two methods. This is analogous with the paired t-test in non-parametric statistical
procedures; therefore, it is a pairwise test that aims to detect significant differences between two sample means, that is, the
behaviour of two methods.

When we compare multiple methods, we use the Friedman test and the Benjamin–Hochberger procedure [4] as post-hoc
test (this last procedure is more powerful than Bonferroni–Dunn test, Holm test and Hochberger procedure). The Friedman
test is a non-parametric test equivalent to the repeated-measures ANOVA. Under the null-hypothesis, it states that the meth-
ods are equivalent, so a rejection of this hypothesis implies the existence of differences in the performance of all the methods
studied. After this, the Benjamin–Hochberger procedure is used as a post-hoc test to find whether the control or proposed
methods show statistical differences with regard to the other methods in the comparison.

5.3. Behaviour and stability of the FRF ensemble with imperfect data and noise

5.3.1. Management of imperfect data
To introduce an a% of imperfect values in a dataset of jEj examples, each of which has jMj attributes (excluding the class

attribute), we select randomly a% � jEj � jMj values of the dataset uniformly distributed among all the attributes. For each va-
lue, corresponding to an example and to an attribute, we modify the value. Imperfect data were introduced to both the train-
ing and testing datasets.

We divided this test in three experiments:

� In the first experiment, we run the FRF ensemble on datasets in which we have inserted missing values, in both numerical
and nominal attributes.

� In the second experiment, we run the FRF ensemble on datasets in which we have inserted fuzzy values in the numerical
attributes. These fuzzy values correspond to the different fuzzy sets of the fuzzy partition for each numeric attribute of the
dataset.

� In the third experiment, we inserted tanto missing values como fuzzy values on datasets.

When the value of a numerical attribute of an example from the dataset is chosen to be replaced by a fuzzy value, it is
done as follows: since the numerical attribute is partitioned in a fuzzy partition, the value of the attribute will belong, with
associated degrees of membership, to one or two fuzzy sets of the partition. We substitute the value of the attribute of that
example for the fuzzy set with which the greatest degree of membership was obtained. The percentages of imperfect data



Table 3
Testing accuracies of the FRF ensemble for different percentages of fuzzy values.

Dataset Introducing fuzzy values

Without 5% 15% 30%

% Decrease average accuracy

APE 91.13(9.70) MIWF1/MIWLF1 �0.21MIWF1/MIWLF1 0.82MIWF1/MIWLF1MWLF1/MWLF2 0.21MIWF1/MIWLF1

BCW 97.31(1.76) MWLT1/MWLT2 0.42MWLT1/MWLT2MWLFUS1/MWLFUS2 0.28MWLT1/MWLT2 0.12MWLT1/MWLT2

GER 76.68(3.97) MWLF2 0.08MIWF1/MIWLF1 �0.29MIWLF1 �0.26MWLF2

GLA 77.66(7.36) MWLT2 �1.08MWLF2 0.00SM2 1.31MWF2

ION 96.41(2.89) MIWLF1 0.53MIWLF1 0.46MWLF2 0.94MIWF1/MIWLF1

IRP 97.33(2.14) ** 0.00 ** 0.00** 0.00 **

PIM 77.14(4.88) MWF1 0.52MWF1 0.17MWF1 1.49SM1

WIN 97.87(2.85) MWLF1 �0.29MWL2/MWLT2/MWLFUS2/MWLF2 �0.51MWLF1/MWLF2 0.75MWF2

Table 4
Testing accuracies of the FRF ensemble for different percentages of missing and fuzzy values.

Dataset Introducing missing values and fuzzy values

Without 5% 15% 30%

% Decrease average accuracy

APE 91.13(9.70) MIWF1/MIWLF1 0.00MIWF1/MIWLF1 1.03MIWF1/MIWLF1 0.21MWF2

BCW 97.31(1.76) MWLT1/MWLT2 0.76MWLFUS1 0.31MWL1/MWLT1 0.67MWF1

GER 76.68(3.97) MWLF2 0.76MIWLF1 1.10MIWF1/MIWLF1 2.50MIWF1/MIWLF1

GLA 77.66(7.36) MWLT2 0.59MWL2 5.90MWLF2 10.11MWLFUS2

ION 96.41(2.89) MIWLF1 1.18MWLFUS2 2.83MIWF1/MIWLF1 3.25MIWF1/MIWLF1

IRP 97.33(2.14) ** 1.91 ** 4.11MWL1/MWLT1/MWLFUS1/MWLF1 6.99MWLF2

PIM 77.14(4.88) MWF1 1.11MWF1 1.19MWLT1 1.36MWF1

WIN 97.87(2.85) MWLF1 0.29MWLFUS1 4.89MWL2 7.07MIWF1/MIWLF1

Fig. 3. Distribution of attribute Atri and value of k� .
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inserted in the datasets were 5%, 15%, and 30% in each of the three experiments1. In the third experiment, the percentage was
divided into equal parts of missing values and fuzzy values.

In these experiments, a 10-fold cross validation is independently performed five times using different partitions of the
dataset (5 � 10-fold cross validation) and we show the percentage of classification average accuracy of the FRF ensemble
(mean and standard deviation) in dataset without imperfect data and decrease in the percentage of classification average
accuracy of the FRF ensemble in the dataset with imperfect data, together with the combination methods of the FRF ensem-
ble which obtains these values (the symbol ‘‘**” indicates that there are more than four methods that obtain that average
value). The decrease in the percentage of classification average accuracy, which is shown in Tables 2–4, is computed as,
%decrease accuracy ¼ 100 � ðCPðoriginalÞ�CPðimperfectÞÞ

CPðoriginalÞ where CP(imperfect) is the classification average accuracy for the dataset with
imperfect data, and CP(original) is the one for the original data.

In Tables 2–4 it can be observed that the FRF ensemble presents a very stable behaviour in the presence of a significant
amount of imperfect data.
5.3.2. Effect of noise
In this test, we analyze the effect that noise can cause in the FRF ensemble. We divided this test in two experiments. In the

first, we ran the FRF ensemble on datasets in which we introduced outlier examples. In the second experiment, we ran the
FRF ensemble on datasets in which we inserted data with noise in the class attribute.
5.3.2.1. Introducing outliers in datasets. One way to identify outliers is with the quartile method. This method uses the lower
quartile or 25th percentile ðQ1Þ and the upper quartile or 75th percentile ðQ3Þ of each attribute of the dataset (the Q2 quartile
1 In order to obtain these datasets with imperfect data we used the NIP 1.5 tool [12].



Fig. 4. Three possible values for generating outliers.

Table 5
Effect for different types of outliers on the FRF ensemble.

Dataset Outliers

Without Obtained with k1 Obtained with k2 Obtained with k3

% Increase average error

BCW 97.30(1.48) MWLFUS1/MWLFUS2 �1.11MWF1/MWLF1 �5.19MWLFUS1/MWLFUS2 �3.70MWLFUS1/MWLFUS2

BLD 72.97(5.19) MWF2 �3.22MWF2 �2.70MWF2 1.59MWF2

CMC 53.62(2.00) MWLF1 0.19MWLT1 0.30MWLT1 �0.11MWLF1

GLA 78.38(6.11) MWLT2 1.57MWLT2 3.75MWLT2 1.06MWLT2

HEA 82.87(5.29) MWLT1 �4.32MWLT1 �1.11MWLF2 �4.32MWLT1

ION 94.66(2.19) SM1 6.93MWF1 6.74SM1 5.43SM1

IRP 97.33(2.14) ** 0.00** 0.00** 0.00**

PID 79.61(3.27) MWF2 1.62MWF2 0.49MIWLF1 2.11MWF2

PIM 76.53(3.86) MWF1 3.07MWF1 1.79SM1 �0.13SM1

SEG 97.19(0.48) MWF1 2.85MWF1 3.91MWF1 3.20MIWLF1

SMO 69.54(1.97) MIWF1/MIWLF1 0.03MIWF1/MIWLF1 0.03MIWF1/MIWLF1 0.03MIWF1/MIWLF1

VEH 75.18(1.91) MWLF2 0.60MWF1 1.93MWF2 1.33MWF2

WIN 97.48(3.23) MWLF1 17.06MWLF1 11.51MWLF1 11.51MWLF1
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corresponds to the median and min and max correspond to the lowest and highest value of each attribute, respectively). We
will use this quartile method to generate and insert examples with outlier values in the different datasets.

We will take an outlier value as that which is greater than Q3 þ k � IQ where k is a given positive constant and IQ is the
inter-quartile range. Thus, the datasets with outliers were obtained in the following way:

1. We selected a numerical attribute ðAtriÞ for each dataset.
2. For each dataset and its selected attribute Atri, we calculate k� ¼ minfk=Q 3 þ ðk� 0:5Þ � IQ 6 ðmax value Atri in EÞ
6 Q3 þ k � IQg with E being the set of examples from the datasets, k takes values in f0:5;1;1:5;2;2:5; . . .g and
IQ ¼ Q 3 � Q 1 (inter-quartile range), Q 1 lower quartile (25th percentile), Q3 upper quartile (75th percentile), respectively,
of the attribute Atri (see Fig. 3).

3. For each dataset, we select a 1% of examples.
4. We define k1 ¼ k� þ 0:5; k2 ¼ k� þ 1 and k3 ¼ k� þ 1:5.
5. For each example selected, we modified the value of the numerical attribute Atri by replacing it by a value chosen ran-

domly from interval ½Q3 þ ki � IQ ;Q 3 þ ðki þ 0:5Þ � IQ � for i ¼ 1;2;3. As can be observed (see Fig. 4), we obtain three possi-
ble values for each replacement, depending on k1; k2 and k3. Hence, we will obtain three datasets with outliers
corresponding to k1; k2 and k3 for each original dataset. This was done only for the training dataset.

We carried out three experiments, one for each dataset obtained in the previous process with the selected k1; k2 and k3.
The experiments were done with a 4� 5-fold cross validation. Table 5 shows the percentage of classification average accu-
racy values (mean and standard deviation) for datasets without outliers and the percentage increase in the classification
Table 6
Comparison of tree-based ensembles and classifiers with noise data.

Dataset % Increase error Best classification method % Increase error Best combination method
Hamza et al. [18] Hamza et al. [18] (FRF) (FRF)

BCW 54.84 ST-NLC-G 4.54 MWLFUS2
BLD 16.98 BA-NLC-G 6.78 MWLFUS2
CMC �6.23 ST-NLC-G 0.57 MWLFUS2
HEA �2.08 RF �2.44 MIWF1
PID 5.74 RF 4.42 MWLFUS2
SEG 115.56 RF 81.36 MWF2
SMO 3.07 BA-NLC-G 0.02 MWLT2,MWLFUS2
THY 23.08 RF 18.19 MWF2
VEH �0.76 ST-NLC-G �0.95 MIWF1
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average error between the original data and data with outliers. In addition, the combination method that obtains these val-
ues is indicated (the symbol ‘‘**” indicates that there are more than four combination methods that obtain that value). The
increase in the percentage of classification average error, shown in the Table 5, is computed as %increase error ¼
100 � ðCEðwith outliersÞ�CEðoriginalÞÞ

CEðoriginalÞ where CE(with_outliers) is the classification average error for the dataset with outliers, and CE(ori-
ginal) is the one for the original data.

When we perform the Friedman non-parametric statistical test to compare the average accuracy of these four samples we
find no significant differences between them with a 95% confidence level. From these results, we can conclude that introduc-
ing outliers further away from the sample causes the FRF ensemble to behave just as if it had no outliers.

5.3.2.2. Introducing noise data in the class attribute. We compared the FRF ensemble with the best technique reported in [18]
for the same experiment. The best technique is defined as the one with the lowest percentage increase in the classification
average error between the original dataset and dataset with noise, with a 10-fold cross validation.

The datasets with noise were obtained in the following way: with probability 10%, we modified the value of the class
attribute by replacing it with a value chosen uniformly at random from its other possible values. This was only for the train-
ing dataset. Again, noise was introduced into the training datasets via the NIP 1.5 tool [12]. The increase in the percentage of
classification average error, which is shown in the Table 6, is computed as %increase error ¼ 100 � ðCEðnoiseÞ�CEðoriginalÞÞ

CEðoriginalÞ where
CE(noise) is the classification error for the dataset with noise, and CE(original) is that for the original data.

The results can be seen in Table 6. Again, using the Wilcoxon test to compare the results of [18] and the FRF ensemble, we
obtain significant differences at 97.3%. With these results, the FRF ensemble has a good behaviour when we introduce noise
in the class attribute with an increase of error smaller than in [18].

5.4. Comparing the FRF ensemble with other classifiers and ensembles

5.4.1. Comparative of the FRF ensemble and other ensembles using the same base classifier
This subsection summarizes a series of experiments performed to observe the effectiveness of the FRF ensemble when

compared with the base classifier and several ensembles built with this base classifier: (1) the base classifier, (2) a boosting
based ensemble, (3) a bagging based ensemble, and (4) the FRF ensemble. We also compare the results of the FRF ensemble
with the obtained with Breiman’s Random Forest (RF) [17]. We should note that, excluding RF, all ensembles have been built
using a fuzzy decision tree as base classifier. The execution of each experiment was done with the same parameters. In this
experiment we have made a 4 � 5-fold cross validation. Table 7 shows the results obtained, indicating the percentage of clas-
sification average accuracy (mean and standard deviation).

The results obtained in this experiment clearly show that, for these datasets, the ensembles are always better than the
individual classifier. It is also shown that the FRF ensemble is the ensemble that consistently generates the best results.
In most cases bagging is better than boosting. When we perform the statistic test on these results, we first apply the Fried-
man test, obtaining a rejection of the null-hypothesis with a 99.9% confidence level. That is, it accepts that there are signif-
icant differences. When we perform the post-hoc test, we obtain that the FRF ensemble has significant differences with
methods RF, fuzzy decision tree (FT), boosting and bagging with a confidence level of 95.98%, where the FRF ensemble is
the best method. For other methods we obtain the following: with a 99.9% confidence level it is concluded that RF, FT
and boosting are significantly different, where RF is the best of them; and with a 99.7% confidence level it is concluded that
bagging, FT and boosting are significantly different.

5.4.2. Comparative with other methods of the literature
In this subsection, we compare and baseline the operation of the FRF ensemble with other classifiers and ensembles found

in the literature. In each case we will say how the comparison has been made.
Table 7
Testing average accuracies of the FRF ensemble with other ensembles with same base classifier.

Dataset Size RF RF fuzzy tree (FT) Size ensembles Boosting with FT Bagging with FT FRF ensemble

BCW 125 97.07(1.89) 95.50(1.75) 125 94.51(1.51) 95.68(1.60) 97.30(1.48)

BLD 200 72.68(6.32) 65.14(5.75) 200 65.79(6.23) 71.88(5.89) 72.97(5.19)

CMC 120 51.41(2.61) 47.17(2.62) 120 49.08(2.99) 51.49(2.04) 53.62(2.00)

GLA 120 78.85(6.05) 72.43(8.34) 50 74.89(6.29) 76.74(5.72) 78.38(6.11)

HEA 120 81.48(4.13) 74.26(6.58) 120 77.13(4.63) 81.02(5.13) 82.87(5.29)

ION 175 93.45(2.25) 92.59(3.29) 175 94.09(3.59) 93.25(3.12) 94.66(2.19)

IRP 120 95.33(1.74) 97.00(2.08) 120 96.67(2.53) 96.67(2.53) 97.33(2.14)

PID 125 76.41(2.12) 71.85(3.95) 50 70.54(3.69) 78.05(3.19) 79.61(3.27)

PIM 150 75.26(3.51) 67.55(4.53) 150 66.18(3.64) 73.63(2.96) 76.53(3.86)

SEG 140 97.85(0.59) 95.54(1.06) 140 96.54(0.77) 97.19(0.66) 97.19(0.48)

SMO 100 61.63(0.82) 55.29(2.42) 75 56.36(1.48) 69.50(1.91) 69.54(1.97)

THY 150 99.67(0.10) 96.13(0.53) 150 96.26(0.62) 98.25(0.38) 99.17(0.22)

VEH 200 76.27(2.73) 67.96(3.94) 200 70.06(3.64) 74.41(3.04) 75.18(1.91)

WIN 150 98.03(1.93) 97.19(2.85) 150 97.20(3.45) 97.06(3.36) 97.48(3.23)



Table 8
Comparative accuracies of the FRF ensemble and other classifiers.

Dataset Technique

FRF GRA CIGRA MLP C4.5 RBF Bayes Cart GBLM Fuzzy D.Tree

APE 91.04(10.12) MIWF1/MIWLF1 86.00 88.70 85.80 84.90 80.20 83.00 84.90 – –
BCW 97.14(1.78) MWLT1/MWLT2 96.20 96.80 96.50 94.70 96.60 96.40 94.40 96.70 96.80
GER 76.41(3.96) MWLF2 73.00 74.20 71.60 73.50 75.70 70.40 73.90 – –
GLA 76.82(7.85) MWLT2 57.40 63.20 68.70 65.80 46.70 71.80 63.60 65.40 66.00
ION 96.13(2.99) MIWLF1 88.50 92.60 92.00 90.90 94.60 85.50 89.50 – 86.50
IRP 97.33(4.58) ** 95.70 96.10 96.00 94.00 98.00 94.70 92.00 94.70 96.10
PIM 76.70(4.34) MWF1 74.90 76.20 75.80 72.70 75.70 72.20 74.70 75.80 73.10
WIN 97.64(3.19) MWLF1 93.30 96.20 98.30 93.30 94.90 94.40 87.60 95.10 91.20

Table 9
Comparison with tree-based ensembles.

Dataset

BCW BLD CMC HEA PID SEG SMO THY VEH

Best classification error
[18]

2.64 25.80 47.39 17.78 22.93 1.60 34.05 0.28 23.40

Best classification
error method [18]

RF RF RF RF RF RF BO(100)WLC-E BO(100)WLC-E BO(250)WLC-G

Best classification
error – FRF

2.49 24.67 46.57 14.44 19.35 2.55 30.47 0.78 23.17

Best classification error
combination method

MWLT1/MWLT2/
MWLFUS1/
MWLFUS2

MWLFUS1 MWLF1 MIWF1 MWLFUS2 MWF2 MWLT2
MWLFUS2

MIWF1/
MIWLF1

MWF2
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5.4.2.1. Comparative study with other classifiers. We have compared the results of the FRF ensemble with other classifiers,
taking the results reported in [20] which compare the classifiers GRA-based (grey relational analysis) and CIGRA-Based (Cho-
quet integral-based GRA) with other well known classification methods, including the MLP (multi-layer perceptron), the C4.5
decision tree, radial basis function (RBF), the naive Bayes, the Cart decision tree, the hybrid fuzzy genetic-based machine
learning algorithm (GBML) and a fuzzy decision tree.

To examine the generalization ability of the FRF ensemble, we have made a 10 � 10-fold cross validation. Again, we show
the percentage of classification average accuracy for all methods and in addition the standard deviation for the FRF ensemble
together with the combination methods of the FRF ensemble which obtain these values. The results can be seen in the
Table 8.

When we make the statistical analysis for these results, we first apply the Friedman’s test getting a rejection of the null-
hypothesis with a 99.6% confidence level. That is, we accept that there are significant differences. When we make the post-
hoc analysis, we obtain that the FRF ensemble has significant differences with the methods GRA, CIGRA, MLP, C4.5, RBF,
Bayes, Cart and Fuzzy D. Tree with a 98.2% confidence level and with GBLM with a 96.9% confidence level, and the FRF
ensemble is the best method. We conclude that the FRF ensemble is an effective classifier and that it exhibits very good
performance.
5.4.2.2. Comparative study with other ensembles. In Ref. [18] we find a comparative study of the best tree-based ensembles.
We will compare the results of the FRF ensemble with those reported in that work. A 10-fold cross validation is made. Then,
we very briefly describe the tree-based ensembles used in that work with which we make the comparison. The ensembles
used are:

1. Single Tree with pruning (CART).
2. Bagging with 100 trees (CART).
3. RF: Random Forest with 100 trees (number of attributes chosen at random at a given node is log2ðjMj þ 1Þ where M is the

set of attributes).
4. BO: Boosting (arcing) with 100 and 250 trees (CART). Split Criteria – G: Gini, E: Entropy, T: Twoing, WLC: With Linear

Combination, NLC: No Linear Combination.

The results can be seen in Table 9. On comparing the FRF ensemble with the best proposed ensemble in [18], with a 95.2%
confidence level, there are significant differences between the two methods, with the FRF ensemble being the best.



746 P. Bonissone et al. / International Journal of Approximate Reasoning 51 (2010) 729–747
6. Summary

In this paper, we present an ensemble based on fuzzy decision trees called FRF ensemble. We realize a hybridization of the
techniques of random forest and fuzzy trees for training. The proposed ensemble has the advantages of imperfect data man-
agement, of being robust to noise and of having a good degree of classification with relatively small sizes of ensembles.

We have defined various methods to combine the outputs of base classifiers of the FRF ensemble. These methods are
based on the combination methods used frequently in the literature to obtain the final decision in ensembles. Hence we have
defined:

� Non-trainable methods: Within this group there are methods based on simple majority vote.
� Trainable explicitly dependent methods: In this group are the methods that use weights defined by the degree of satisfaction

of the example to classify the different leaves reached and weights learned for the trees of the FRF ensemble.
� Trainable implicity dependent methods: In this group there are methods that use weights learned for the trees of the FRF

ensemble.

We have presented experimental results obtained by applying the FRF ensemble to various datasets. Overall, the combi-
nation methods that achieve better performances are the weighted combination methods, compared to non-weighted meth-
ods typically used in random forest based ensembles. Among the weighted methods those using a weighting based on
membership function have better performance, obtaining the best results in 65% of total tests performed. Although most
of the methods of combination have the same computational cost, we highlight the increased cost of local fusion based
methods. Nevertheless, these last methods have a good performance in the datasets with noise in the class attribute.

In particular, on the imperfect datasets (with missing and fuzzy values) the results obtained by the FRF ensemble are very
promising. The FRF ensemble has a good performance with datasets with fuzzy values. The weighted combination methods
perform better than non-weighted methods when working with these datasets.

With datasets with outliers the FRF ensemble shows a good performance and we can conclude that introducing outliers
further away from the sample causes the FRF ensemble to behave just as if it had no outliers. When making the comparison
with datasets with noise in the class attribute, the FRF ensemble shows a clear advantage over other proposals and the MWL-
FUS2 combination method shows the best behaviour in most cases. So, the FRF ensemble is robust to noise.

When we compare the FRF ensemble with the base classifier, RF and ensembles using the same base classifier, the FRF
ensemble obtains the best results. On comparing the results of the FRF ensemble with those obtained by a series of classifiers
and multi-classifiers we conclude that the FRF ensemble is an effective classifier and that it obtains the best results in most
cases.

Moreover, all these conclusions have been validated by applying statistical techniques to analyze the behaviour of differ-
ent methods or algorithms compared in each experiment.
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