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Abstract This paper outlines the inspiration received by the author from the Zadeh–MacFarlane–Jamshidi
trio in his pursuit concerning the theory and Application of fuzzy logic. Beginningwith Zadeh’s pioneering
work, a hierarchical control system was developed, in collaboration with MacFarlane, for application in
robotic manipulators. Subsequently, the work was extended to an analytical basis for controller tuning
using fuzzy decision making. On the prompting of Jamshidi to address the issue of knowledge-base
simplification, theorems were developed related to decoupling a fuzzy rule base. These developments
provided a theoretical basis for applying single-context decision making to a problem governed by the
knowledge base of coupled fuzzy rules. The developed theorems establish an analytical equivalence
between the decisions made from a coupled set of fuzzy rules and an uncoupled set of fuzzy rules
concerning the same problem domain. These developments have been applied to supervisory control of
an industrial fish cutting machine. The paper presents the pertinent theory and illustrative examples.
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1. Introduction

In the mid 1960’s, Professor L.A. Zadeh developed the
concept of fuzzy sets and the use of fuzzy logic in approximate
reasoning. Even though this author had been exposed to the
basic notions of fuzzy logic and the unsubstantiated anecdotal
reports on Zadeh-Kalman rivalry, it was only in the mid
1980s that he embarked on some serious work concerning
the subject. In fact, it was under the coercion of one of his
graduate students from Korea, who insisted on working in self-
organizing fuzzy control, that he carefully read a paper by
Zadeh [1], and then studied the book by Dubois and Prade [2]
to learn the basics of fuzzy logic. At that crucial juncture
of his career, amidst teaching, research, student supervision,
committee meetings, business travel and research proposal
writing, the author did not even have many opportunities for
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quality timewith his family. An opportunity for dedicatedwork
in fuzzy logic arose only in 1987 when he visited Cambridge
University under a Senior Fulbright Fellowship. Fortunately, his
host at Cambridge, Professor A.G.J. MacFarlane-an authority in
traditional control-enthusiastically agreed to collaborate with
him on fuzzy control. So began a serious career in the subject.

Collaboration with Professor MacFarlane resulted in the
development of a hierarchical control systemwith fuzzy tuning
for robotic manipulators [3,4]. This work was subsequently
extended to an analytical basis for fuzzy tuning of servo
controllers [5]. The analytical difficulties and the computational
burden of using a coupled rule base formaking tuning decisions
were found to be paramount concerns, however. Consider, for
example, a fuzzy rule base containing n condition variables,
one action variable; each condition variable having m fuzzy
states (its fuzzy resolution), and each membership function
discretized by N points for digital computing. It has been
shown [5], for example, that the formation of the coupled rule
base requires nmnNn min operations andmnNn max operations,
while making a fuzzy inference from the rule base requires
nNn+1 min operations and N(Nn

− 1) max operations. If only
one condition variable and one action variable are present in
a rule, these computations will be reduced to approximately
nmN2 min operations and n(m − 1)N2 max operations.

Generally, some accuracy is lost by assuming that the rules
in a knowledge base are uncoupled when they are coupled in
reality. In view of this, it is important to examine the conditions
under which this assumption can be made without sacrificing
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the accuracy of decisionmaking. The author discussed this issue
with Professor M. Jamshidi during their first meeting at the
International Symposium on Robotics and Manufacturing held
in Vancouver, Canada, in 1990, and organized by Professor
Jamshidi [6]. Professors Zadeh and Jamshidi were invited by
the author for numerous return visits to Vancouver where
they gave public talks and workshops, punctuated by group
discussions. On the first occasion of Zadeh’s visit to the
University of British Columbia, the author booked the biggest
lecture theatre in the Mechanical Engineering Building for the
talk. To his dismay, as the talk was about to start, the theatre
became fully packed by attendees, with a long line-up outside.
Quickly, in consultationwith Professor Zadeh, a second talkwas
scheduled for the next day, thereby averting an adverse reaction
from the prospective audience. The author was careful to book
the biggest lecture theatre in the University for Zadeh’s talks
during subsequent visits.

Visits from Professor Zadeh were both enjoyable and intel-
lectually challenging and hewas religiously accompanied by his
lovely wife, Fay. Zadeh was found to be a simple and easygo-
ing man with many admirable qualities, and he shared with us
anecdotes about his early days at MIT and Columbia. Particu-
larly inspiring was the story of how he discovered the theory of
fuzzy sets during a visit to his parents’ house in New York City.
The author of this paper dedicates the following analytical work
to the Zadeh–MacFarlane–Jamshidi trio, without whose inspi-
ration his career in fuzzy logic would not have been possible.

2. Theory of rule-base decoupling

First, the general fuzzy decisionmaking problemwith a cou-
pled rule base is formulated. Next, themethod of single degree-
of-freedom decisionmaking, using a coupled rule base, is given.
Then, the assumption of an uncoupled rule base is incorporated
into the single-degree-of-freedom decision making problem.
On that basis, sufficient conditions are established for rule-base
decoupling in the problemof single degree-of-freedomdecision
making. Finally, these conditions are further relaxed.

2.1. Preliminaries

Some useful definitions in fuzzy logic are restated below [7],
which form preliminaries for the problem statement and
subsequent analytical development.

Definition 1. Consider a membership function µ(x, y) : ℜ
n
×

ℜ
p

→ [0, 1]. Its projection in the Xi × Yj subspace is denoted
by Proj⌊µ(x, y)⌋(xi, yj) : ℜ × ℜ → [0, 1] and is given by:

Proj[µ(x, y)](xi, yj) , sup
∀xk≠xi
∀yℓ≠yj

µ

x, y


. (1)

Example 1. Consider a two-variable membership function
(a fuzzy relation in x and y), as shown in Figure 1. In the figure,
this relation is projected onto the plane of the variable, y. The
application of the sup operation to determine the projection is
clear in this example.

Definition 2. Consider:

x , [x1, x2, . . . , xn]T ∈ ℜ
n,

y ,

y1, y2, . . . , yp

T
∈ ℜ

p and

µ

xi, y


: ℜ × ℜ

p
→ [0, 1] with 1 ≤ i ≤ n.
Figure 1: An example of fuzzy projection.

Figure 2a: A discrete membership function.

The cylindrical extension of µ(xi, y) over the entire space, ℜn
×

ℜ
p, is given by:

Cyl⌊µ

xi, y


⌋

x, y


: ℜ

n
× ℜ

p
→ [0, 1] = µ


xi, y


,

∀x, y; 1 ≤ i ≤ n. (2)

Example 2. A discrete fuzzy relation, R(xi, yj), is given by the
followingmembership functionmatrix, defined in X ×Y where
X = [0, 1, 2, 3, 4] and Y = [0, 1, 2, 3, 4]:

µR(xi, yj) =

y0 = 0 y1 = 1 y2 = 2 y3 = 3 y4 = 4
x0 = 0 0.0 0.4 0.7 0.3 0.0
x1 = 1 0.1 0.5 0.8 0.4 0.1
x2 = 2 0.6 0.7 1.0 0.5 0.2
x3 = 3 0.3 0.4 0.9 0.7 0.4
x4 = 4 0.0 0.1 0.5 0.3 0.1

The following discrete fuzzy set is derived from R(xi, yj):

A(xi) = Projection
xi

R(xi, yj).

Then:

µA(xi) = sup
yj

[µR(xi, yj)],

which gives:

A(xi) =

[
0.7
0

,
0.8
1

,
1.0
2

,
0.9
3

,
0.5
4

]
.

This membership function is sketched in Figure 2a.
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Figure 2b: The cylindrical extension of A.

Now consider the cylindrical extension of A in X × Y , which
is given by:

CX×Y (A) =

−
xi,yj

µA(xi)
xi, yj

=


y0 y1 y2 y3 y4

x0 0.7 0.7 0.7 0.7 0.7
x1 0.8 0.8 0.8 0.8 0.8
x2 1.0 1.0 1.0 1.0 1.0
x3 0.9 0.9 0.9 0.9 0.9
x4 0.5 0.5 0.5 0.5 0.5

.

This membership function is sketched in Figure 2b.
Now several properties are given [7].

Property 1. Consider two independent universes, X and Y . Then
the commutativity of the sup and min operations holds:

sup
x,y

min[(µ(x), µ(y))] = min
[
sup
x

µ(x), sup
y

µ(y)
]

,

for ∀x ∈ X, ∀y ∈ Y . (3a)

This produces the property:

sup
y

min[(µ(x), µ(y))] = min
[
µ(x), sup

y
µ(y)

]
= min[µ(x), hgtµ(y)],

for ∀x ∈ X, ∀y ∈ Y , (3b)

in which ‘‘hgt’’ is the height of a membership function which is its
global peak value.

Property 2. Consider a series of independent universes, Xi, i =

1, 2, . . . , n, and the function:

f (x) = min[µ1(x1), µ2(x2), . . . , µn(xn)] : ℜ
n

→ [0, 1],

x = [x1, x2, . . . , xn]T .

Then by definition we have:

Proj[f (x)](x1, x2) = sup
x3,...,xn

min[µ1(x1), µ2(x2), . . . µn(xn)],

and from Property 1 we obtain:

Proj[f (x)](x1, x2)

= min
[
µ1(x1), µ2(x2), sup

x3
µ3(x3), . . . , sup

xn
µn(xn)

]
= min [µ1(x1), µ2(x2), hgt µ3(x3), . . . , hgtµn(xn)] . (4)
Property 3. Here use the fact that:

min [µ(x), µ(y), α] = min [min[µ(x), µ(y)], α] ,
∀x ∈ X, ∀y ∈ Y .

Suppose that:

sup
x,y

min[µ(x), µ(y)] ≤ α.

Then in view of the commutativity property (Eq. (3a)), one has:

min
[
sup
x

µ(x), sup
y

µ(y)
]

≤ α.

Since by definition:

min[µ(x), µ(y)] ≤ sup
x,y

min[µ(x), µ(y)],

one has:

min[µ(x), µ(y)] ≤ α.

Then:

min[min[µ(x), µ(y)], α] = min[µ(x), µ(y)].

Hence, if:

min[sup
x

µ(x), sup
y

µ(y)] ≤ α,

one has:

min[µ(x), µ(y), α] = min[µ(x), µ(y)],
for independent universes X and Y . (5)

2.2. Coupled rule base

Consider a general, coupled, fuzzy rule base:

Rcoupled : Elsei

Y i
1, Y

i
2, . . . , Y

i
n


→


U i
1,U

i
2, . . . ,U

i
p


, (6)

where, Y i
j denotes the fuzzy state of the jth context variable in

the ith rule, and U i
k denotes the fuzzy state of the kth context

variable in the ith rule. The membership function of the rule
base is given by:

µR(y, u) = max
i

min[µY i
1
(y1), µY i

2
(y2), . . . , µY i

n
(yn),

µU i
1
(u1), µU i

2
(u2), . . . , µU i

p
(up)]

= max
i

min[CylµY i
1
(y, u), CylµY i

2
(y, u), . . . ,

CylµY i
n
(y, u), CylµU i

1
(y, u),

CylµU i
2
(y, u), . . . , CylµU i

p
(y, u)]. (7)

Rule interaction can take place due to a coupled rule base. As
a result, the decision obtained from individual rules can be
affected by the presence of other rules in the rule base.

Example 3. First, consider just one rule, R1 : A1 → C1, ex-
pressed in the discrete form where:

A1 = 0.7/a1 + 0.6/a2 + 0.1/a3, with cardinality 3,
C1 = 0.5/c1 + 0.4/c2, with cardinality 2.

Using the min operation to represent fuzzy implication (if–
then), this rule base may be expressed as:

µR1(ai, cj) =

0.5 0.4
0.5 0.4
0.1 0.1


.
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Now, suppose that a fuzzy observation, A′

1 = 0.7/a1 +0.6/a2 +

0.1/a3, ismade. By applying themax–min composition, the cor-
responding inference is given by:

µC ′


cj


= max
row

min
column

0.7
0.6
0.1

 0.5 0.4
0.5 0.4
0.1 0.1



= max
row

0.5 0.4
0.5 0.4
0.1 0.1


=


0.5 0.4


,

or:

C ′
= 0.5/c1 + 0.4/c2.

Next, suppose that a second rule, R2 : A2 → C2, is available
with:

A2 = 0.6/a1 + 0.7/a2 + 0.2/a3,
C2 = 0.4/c1 + 0.5/c2.

The corresponding rule membership function is:

µR2


ai, cj


=

0.4 0.5
0.4 0.5
0.2 0.2


.

Then using ‘‘max’’ for the OR operation, the membership func-
tion of the combined rule base, R = R1 ∨ R2, is given by:

µR

ai, cj


=

0.5 0.5
0.5 0.5
0.2 0.2


.

Now, for the same fuzzy observation as before:

A′

1 = 0.7/a1 + 0.6/a2 + 0.1/a3,

the corresponding inference is obtained as:

µC ′


cj


= max
row

min
column

0.7
0.6
0.1

 0.5 0.5
0.5 0.5
0.2 0.2



= max
row

0.5 0.5
0.5 0.5
0.1 0.1


=


0.5 0.5


,

C ′
= 0.5/c1 + 0.5/c2,

which is different from the previous inference, as a result of rule
interaction.

2.3. Single-condition decision making through a coupled rule base

Inmaking single-condition inferences using the coupled rule
base (Relation (6)), it is necessary to project Expression (7)
onto the subspace of single degree-of-freedomdecisionmaking.
Without loss of generality, consider the context variable, y1, and
the inference variable, u1. We have:

ProjµR

y, u


(y1, u1) = sup

y2,...,yn,u2,...,up
max

i
min

[µY i
1
(y1), µY i

2
(y2), . . . , µY i

n
(yn),

µU i
1
(u1), µU i

2
(u2), . . . , µU i

p
(up)]. (8)

A sufficient condition for the rule-base subspace, given by
Eq. (8), to be equivalent to a single rule relating y1 and u1, is
given by the theorem below.
Theorem 1. For Rule i in rule base R, which satisfies Eq. (7), define:

αi = min[hgtµY i
2
(y2), . . . , hgt µY i

n
(yn), hgt µU i

2
(u2), . . . ,

hgt µU i
p
(up)]. (9)

The fuzzy relation of the variable pair (y1, u1) is uncoupled in the
rule base R, if:

αi ≥ min[hgt Y i
1, hgt U

i
1], for ∀i ∈ M (10)

where Y i
1 and U i

1 are the fuzzy states of Y1 and U1, respectively, in
the ith rule of R, and M = {1, 2, . . . ,m} is the set of rule indices
in R.

Proof. Directly follows from Properties 2 and 3.
The sufficient condition in Theorem 1 may be relaxed further.
To this end, several further definitions are given next. Without
loss of generality, consider a condition fuzzy variable, Y1, an
inference fuzzy variable, U1, and a set of rule indices denoted
by M = {1, 2, . . . ,m} for a rule base, R, given by Eq. (7), which
relates various fuzzy states of Y1, U1, and other variables. �

Definition 3. The isolated joint membership function of Y1 and
U1 in the ith rule is given by:

µi(y1, u1) = min[µY i
1
(y1), µU i

1
(u1)]. (11)

Definition 4. The αi cut of µi(y1, u1) is the crisp membership
function:

µαi(y1, u1) = 1 for µi(y1, u1) ≥ αi

= 0 elsewhere. (12)

Definition 5. The coupling function for the condition-inference
pair (Y1,U1) in the ith rule is given by:

βi(y1, u1) = min[µi(y1, u1), µαi(y1, u1)], (13)

in which threshold αi is given by the least height of the fuzzy
variables in the ith rule, excluding Y1 and U1, as expressed in
Eq. (9).

Definition 6. The coupling subset of rules Mc ⊆ M for the pair
(Y1,U1) is given by:

Mc = {i : sup
y1,u1

βi(y1, u1) > 0}. (14)

Corollary 1. Under the conditions of Theorem 1, the coupling
function, βi(y1, u1) = 0 for ∀i ∈ M.

Theorem 2. The fuzzy relation of (Y1,U1) is uncoupled in the rule
base R if and only if for ∀i ∈ Mc , there exist some ℓ ∈ M such that:

µℓ(y1, u1) ≥ βi(y1, u1) with ℓ ≠ i. (15)

Proof. By construction. If part: Assume that the ‘‘≥’’ condition
holds and show that the rule base is uncoupled, as in Theorem1.
Only if part: Assume that the ‘‘≥’’ condition does not hold and
show that at least one rule is coupled.

In the analytical developments presented in this section, just
one inference variablemay be assumed (i.e. p = 1) without loss
of generality. Furthermore, any T -normmay be used in place of
the min operation and any S-norm [6] may be used in place of
the max operation. �
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3. Illustrative example

In this section, an example is given to illustrate the main an-
alytical concepts presented in the paper. Three other examples
were given previously to illustrate the underlying fundamen-
tals.

Consider a fuzzy rule base R with its ith rule Ri containing
the two contexts, Ai and Bi, and one action, Ci, as given by:

Ri : (Ai, Bi) → Ci, R = ∪i Ri. (16)

Suppose that the membership functions of the pertinent fuzzy
states take a Gaussian shape expressed as:

µAi(x) = bi exp−(x − ai)2, (17)

µBi(y) = qi exp−(y − pi)2, (18)

µCi(c) = si exp−(c − ri)2. (19)

Then the membership function of the overall rule base, R, is:

µR(x, y, c) = max
i

min[bi exp−(x − ai)2,

qi exp−(y − pi)2,

si exp−(c − ri)2]. (20)

For making single-condition-single-action decisions, A → C ,
using Definition 1 and Eq. (8), we have the projection:

Proj[µR(x, y, c)](x, c) = sup
y

max
i

min[bi exp−(x − ai)2,

qi exp−(y − pi)2, si exp−(c − ri)2]. (21)

This, in view of Property 1 and the fact that:

sup
y

qi exp−(y − pi)2 = qi,

gives:

Proj[µR(x, y, c)](x, c)

= max
i

min [bi exp−(x − ai)2, qi, si exp−(c − ri)2]. (22)

Now:

hgt µAi(x) = hgt bi exp−(x − ai)2 = bi,

hgt µCi(c) = hgt si exp−(c − ri)2 = si.

Also, in using Theorem 1, the parameter defined by Eq. (9) is:

αi = qi.

Hence, the sufficient condition in Theorem 1, as given by
Relation (10) is:

qi ≥ min[bi, si], for ∀i ∈ M. (23)

This condition assures the complete validity of the uncoupled
decision making.

4. Concluding remarks

Fuzzy logic provides an approximate yet practical means
of representing knowledge regarding a system (e.g. describing
the behavior of the system) that is too complex or ill-defined,
and not easy to tackle using precise mathematical tools.
The approach also provides a means of making inferences
using that knowledge, which can be used in making correct
decisions regarding the system and for carrying out appropriate
actions. In particular, human-originated knowledge can be
effectively handled using fuzzy logic. As the complexity of
a system increases, the ability to develop precise analytical
models of the system diminishes until a threshold is reached,
beyond which analytical modeling becomes intractable. Under
such circumstances, precise model-based decision making
is not practical. Fuzzy knowledge-based decision making is
particularly suitable then.

The early work of fuzzy sets and fuzzy logic was pioneered
by Zadeh in the 1960s. Subsequent developments and indus-
trial applications in Europe and other regions in the 1970s, and
widespread commercial application in consumer appliances,
ground transportation, and various industrial products, primar-
ily in Japan in the 1980s have established this field with the
respect it rightfully deserves. The October 19, 1987 issue of
Nikkei Industrial Newswrote: ‘‘Toshiba has developed an AI sys-
tem which controls machinery and tools using Fuzzy Logic. It
has control rules, simulation and valuation. Toshiba will add an
Expert System function to it and accomplish synthetic AI.
Toshiba is going to turn it into practical uses in the field of
industrial products, traffic control and nuclear energy.’’ This
news item is somewhat ironic and significant because around
the same time at the Information Engineering Division of Cam-
bridge University, a similar application of fuzzy logic was de-
veloped [3,4]. This work was subsequently extended at the
Industrial Automation Laboratory of the University of British
Columbia, Canada, where the applications were centered on
the fish processing industry [8]. Many engineers, scientists, re-
searchers, and other professionals throughout the world have
made significant contributions to bringing the field of fuzzy
logic into maturity, both in research and practical applications.
These contributions are too numerous to mention here.

Fuzzy-rule-based decision making that incorporates a sin-
gle condition (context) and a single action (inference), has sig-
nificant computational advantages and simplicity in compari-
son to that incorporating coupled rules having many condition
variables. As a contribution inspired by the Zadeh–MacFarlane–
Jamshidi trio, this paper presented a theoretical basis for apply-
ing single-context decision making to a problem governed by
a knowledge base of coupled fuzzy rules. To this end, two the-
orems which provide necessary and sufficient conditions were
established, together with underlying analytical details. Several
exampleswere given to illustrate various concepts presented in
the paper.
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