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a b s t r a c t

In this paper, we study minimum-energy frame Ψ = {ψ1, ψ2, . . . , ψM
} on the inter-

val with arbitrary factor d for L2[0, 1], Ψ corresponding to some refinable functions with
compact support. We give the constructive proof as well as the necessary and sufficient
conditions of minimum-energy frames for L2[0, 1], present the decomposition and recon-
struction formulas of minimum-energy frame on the interval [0, 1], and some examples.
The experimental results show that the proposed minimum-energy frame on the interval
improves the performance in the application of image denoising significantly.
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1. Introduction

This paper is concerned with the study of compactly supported tight frames as a replacement of compactly supported
orthonormal wavelets when the system {φ(· − k) : k ∈ Z} generated by the corresponding compactly supported scaling
function φ is not orthogonal and, more generally, when φ is simply a refinable function (meaning that {φ(· − k) : k ∈ Z}

may not be stable).
Both orthogonal and biorthogonal wavelets on the real line have been proved to be very useful in various applications.

However, in many applications, one is interested in problems confined to an interval such as solutions to differential
equations with boundary conditions and image processing. An excellent construction of orthogonal wavelet based on the
interval was given in [1] by adapting the famous Daubechies orthogonal wavelets on the real line to the interval. With
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the exception of the first order cardinal B-spline and its corresponding Haar function, however, any compactly supported
orthonormal scaling function and its corresponding MRA (Multi-Resolution Analysis) wavelet do not have the symmetry
or anti-symmetry property. For this and other reasons, biorthogonal scaling functions and wavelets with compact support
were introduced by Cohen et al. by using two different MRAs. One of the disadvantages of this biorthogonal approach is
that since two different MRAs are used, the analysis and synthesis operations of biorthogonal wavelet pair (ψ,ψ) cannot
be interchanged at any particular scale dj0 . In other words, ‘change-of-bases’ between {ψj0,k : k ∈ Z} and {ψ̃j0,k : k ∈ Z} is
not possible [2].

Fortunately, besides orthonormal wavelets, minimum-energy frames can well avoid the complication of change of bases
but still use the samewavelets both for analysis and synthesis. Recently, wavelet tight frames have been attractedmore and
more attention, just because they have good time-frequency location property, shift-invariance, and more design freedom.
In addition, for their stability in signal reconstruction, wavelet tight frames have been widely applied in signal processing.

Wavelet frames have received increased attention in the literature [3–15], however, interval wavelet frame has not yet
been concerned. The main purpose of this paper is to study minimum-energy frame on the interval with arbitrary factor d.
Firstly, we construct a class of minimum-energy wavelet frames with arbitrary factor d for L2[0, 1], which not only allow the
design more freedom, can have the properties in the applications with symmetry and/or anti-symmetry, compact supports,
good time-frequency localized property and shift-invariance, but also can solve the un-matching problem between the
space of L2(R) and the signal space of L2(K) (K denotes a finite region). And then we obtain the necessary and sufficient
conditions of minimum-energy wavelet frames for L2[0, 1]. Moreover, we give the decomposition and reconstruction
algorithms, and some examples of minimum-energy wavelet frames for L2[0, 1]. In the final, we apply minimum-energy
frameon the interval to imagedenoising. The experimental results show that the proposed algorithm improves thedenoising
performance significantly.

2. Preliminaries

In this paper, K is the set of integers, R is the set of real numbers, d is integer number and d ≥ 2. We shall consider
only functions of one variable in the space L2(R) with the inner product ⟨f , g⟩ =


+∞

−∞
f (x)g(x)dx, the Fourier transform

ˆf (ω) =


+∞

−∞
f (x)e−iωxdx.

Definition 1. Let H be a Hilbert space, {hk}k∈Z ⊂ H , if there exist constants A > 0, B < ∞, such that for any f ∈ H , there
is A‖f ‖2

≤
∑

k∈Z |⟨f , hk⟩|
2

≤ B‖f ‖2, then {hk}k∈Z is a frame, B, A is up and below frame bounds of the frame; if A = B, the
frame is called tight frame; if A = B = 1, is called normal tight frame.

Definition 2. For wavelet function ψ(x) for L2(R), a > 1, b > 0, if {ψj,k(x) = aj/2ψ(ajx − kb), j, k ∈ Z} span a frame for
L2(R), then the frame is called affine (or wavelet) frame, and (ψ, a, b) is called the generators of the frame.

Definition 3. Assume φ ∈ L2(R), Vj = span{dj/2φ(dj · −k), k ∈ Z}, j ∈ Z , if the subspace Vj satisfy:

(1) Vj ⊂ Vj+1,∀j ∈ Z;
(2)


j∈Z Vj = L2(R),


j∈Z Vj = {0};

(3) f (·) ∈ Vj if and only if f (d·) ∈ Vj+1,∀j ∈ Z
(4) f (·) ∈ Vj if and only if f (· +

1
dj
) ∈ Vj,∀j ∈ Z

(5) {φ(· − k), k ∈ Z} is a frame of space V0;

then φ is called scaling function, and we say that φ generates a FMRA(Vj) (Frame Multi-Resolution Analysis) for L2(R),
abbreviated as FMRA.

Definition 4. Assume Ψ = {ψ1, ψ2, . . . , ψM
} ⊂ L2(R), Vj is spanned by scaling function in sense of Definition 3, if Ψ ⊂ V1

and satisfies:
∑M

i=1
∑

j,k∈Z |⟨f , ψ i
j,k⟩|

2
= ‖f ‖2, where ψ i

j,k = dj/2ψ i(dj · −k), we say Ψ = {ψ1, ψ2, . . . , ψM
} ⊂ L2(R) is a

MRA frame generated by scaling function φ.

Definition 5. Let φ ∈ L2(R), with φ̂ ∈ L∞, φ̂ continuous at 0, and φ̂(0) = 1, be a refinable function that generates the nested
subspaces {Vj}j∈Z , then Ψ = {ψ1, ψ2, . . . , ψM

} ⊂ V1 is called a minimum-energy (wavelet) frame associated with φ, if

−
k∈Z

|⟨f , φ1,k⟩|
2

=

−
k∈Z

|⟨f , φ0,k⟩|
2
+

M−
i=1

−
k∈Z

|⟨f , ψ i
0,k⟩|

2 (1)

where φj,k = dj/2φ(dj · −k).

Remark 1. By the parseval identity, a minimum-energy frame ψ is necessarily a tight frame for L2(R), with frame bound
equal to 1.
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Remark 2. The formulation (1) is equivalent to the formulation

−
k∈Z

⟨f , φ1,k⟩φ1,k =

−
k∈Z

⟨f , φ0,k⟩φ0,k +

M−
i=1

−
k∈Z

⟨f , ψ i
0,k⟩ψ

i
0,k. (2)

3. Main results

3.1. The notion of FMRA on the interval [0, 1]

Let γ = 2N or γ = 2N + 1,N be a positive integer number, K ′ be a positive number, j0 = min{ j : dj ≥ γ },N ′
=

(d − 1)γ − dN .

Definition 6. Frame multi-Resolution Analysis on the interval [0, 1] is the nested subspaces Vj ⊂ L2[0, 1], which satisfy:

(1) Vj ⊂ Vj+1, j ≥ j0;
(2)


j≥j0

Vj = L2[0, 1],


j≥j0
Vj = {0};

(3) f (·) ∈ Vj if and only if f (d·) ∈ Vj+1, j ≥ j0;
(4) f (·) ∈ Vj if and only if f (· +

1
dj
) ∈ Vj, j ≥ j0;

(5) Family of {φ(· − k), 0 ≤ k ≤ K ′
}, supp(φ) = [0, γ ], is a frame of space V0;

then φ is called scaling function, and we say φ generates a FMRA(Vj) for L2[0, 1], abbreviated as FMRA(Vj[0, 1]).

Let Vj+1[0, 1] := Vj[0, 1] + Uj[0, 1], but this is not a direct sum decomposition, because Vj[0, 1]


Uj[0, 1] ≠ 0. If there
exist functionsψ1, ψ2, . . . , ψM such that for any j ≥ j0, the family {ψ i(·− k), 0 ≤ k ≤ K , i = 1, . . . ,M} is a frame of space
U0, then we say ψ1, ψ2, . . . , ψM is a wavelet frame for L2[0, 1].

3.2. Characterization of minimum-energy FMRA on the interval [0, 1]

In this section, we give a complete characterization of minimum-energy frames associated with some given refinable
function in term of their two-scale symbols. For convenience, we only consider symbols in the Winner class W , meaning
that the coefficient sequences of the symbols are in l1. Let φ ∈ L2, with φ̂ ∈ L2, φ̂ continuous at 0, and φ̂(0) = 1, be a
refinable function with refinement equation φ(x) =

∑
k∈Z pkφ(dx − k) such that its two-scale symbol P(z) =

1
d

∑
k∈Z pkz

k

is in W . Consider Ψ = {ψ1, ψ2, . . . , ψM
} ⊂ V1, with ψ i(x) =

∑
k∈Z q

i
kφ(dx − k), i = 1, . . . ,M , and two-scale symbol

Q i(z) =
1
d

∑
k∈Z q

i
kz

k, i = 1, . . . ,M .

Theorem 1. Define left scaling function φL
j,k(x) and right scaling function φR

j,k(x) as follows

φL
j,k(x) =

k−N−
n=γ+1

Ck,nφj,n(x)|[0,1], 0 ≤ k ≤ N − 1

φR
j,k(x) =

dj−1−
n=dj−γ+N−k

C ′

k,nφj,n(x)|[0,1], 0 ≤ k ≤ N − 1

let Φj = {φL
j,k, k = 0, . . . ,N − 1, φj,k, k = 0, . . . , dj − γ , φR

j,k, k = 0, . . . ,N − 1}, if Ck,n, C ′

k,n are constants such that
{φL

j,k, k = 0, . . . ,N − 1}, {φR
j,k, k = 0, . . . ,N − 1} satisfy frame condition, then there exist constants HL

k,n, H
R
k,n, h

L
k,n, h

R
k,n, such

that Φj satisfies two-scale equations

√
dφL

j,k =

N−1−
n=0

HL
k,nφ

L
j+1,n +

dk+N ′−
n=0

hL
k,nφj+1,n, 0 ≤ k ≤ N − 1 (3)

√
dφj,k =

dk+γ−
n=dk

Hn−dkφj+1,n, 0 ≤ k ≤ dj − γ (4)

√
dφR

j,k =

dk+N ′−
n=0

hR
k,nφj+1,dj+1−γ−n +

N−1−
n=0

HR
k,nφ

R
j+1,n, 0 ≤ k ≤ N − 1 (5)

and for any j ≥ ⌈logd γ ⌉, φj is a frame for Vj[0, 1]. Where ⌈x⌉ denotes the smallest integer not less than x.
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Proof. We give the proof ofΦj is a frame for Vj[0, 1].
For {φL

j,k, k = 0, . . . ,N − 1} and {φR
j,k, k = 0, . . . ,N − 1} satisfy frame condition respectively, i.e., there exist constants

0 ≤ A1 ≤ B1 < ∞, 0 ≤ A2 ≤ B2 < ∞ such that for any f ∈ L2(R), A1‖f ‖2
≤
∑

j≥j0,0≤k≤N−1 |⟨f , φL
j,k⟩|

2
≤ B1‖f ‖2,

A2‖f ‖2
≤
∑

j≥j0,0≤k≤N−1 |⟨f , φR
j,k⟩|

2
≤ B2‖f ‖2. And φ is a frame scaling function for L2(R), then {φj,k, k = 0, . . . , dj − γ }

satisfies frame condition, i.e., there exist constants 0 ≤ A3 ≤ B3 < ∞ such that for any f ∈ L2(R), A3‖f ‖2
≤∑

j≥j0,0≤k≤dj−γ |⟨f , φj,k⟩|
2

≤ B3‖f ‖2, then there exist constants A = A1 + A2 + A3, B = B1 + B2 + B3, 0 ≤ A ≤ B < ∞, such
that for any f ∈ L2(R), A‖f ‖2

≤
∑

j≥j0
|⟨f , φj,k⟩[0,1]|

2
≤ B‖f ‖2. One obtains thatΦj is a frame for Vj[0, 1].

The deduction of two-scale equations is similar to the deduction of Theorem 1 in the paper [16]. �

Theorem 2. Assume that ψ L,i
j,k , k = 0, . . . ,N −1,ψ i

j,k, k = 0, . . . , dj −γ ,ψR,i
j,k , k = 0, . . . ,N −1, i = 1, . . . ,M, are expressed

as follows:

√
dψ L,i

j,k =

N−1−
n=0

GL,i
k,nφ

L
j+1,n +

dk+N ′−
n=0

gL,i
k,nφj+1,n, 0 ≤ k ≤ N − 1, i = 1, . . . ,M (6)

√
dψ i

j,k =

dk+γ−
n=dk

Gi
n−dkφj+1,n, 0 ≤ k ≤ dj − γ , i = 1, . . . ,M (7)

√
dψR,i

j,k =

dk+N ′−
n=0

gR,i
k,nφj+1,dj+1−γ−n +

N−1−
n=0

GR,i
k,nφ

R
j+1,n, 0 ≤ k ≤ N − 1, i = 1, . . . ,M (8)

let Ψj = {ψ
L,i
j,k , k = 0, . . . ,N − 1, ψ i

j,k, k = 0, . . . , dj − γ ,ψ
R,i
j,k , k = 0, . . . ,N − 1, i = 1, . . . ,M}, if {GL,i

k,n}, {g
L,i
k,n}, {G

R,i
k,n},

{gR,i
k,n} are constants such that {ψ

L,i
j,k (x), k = 0, . . . ,N − 1} and {ψ

R,i
j,k (x), k = 0, . . . ,N − 1} satisfy frame condition, then for any

j ≥ ⌈logd γ ⌉, ψj is a frame for Uj[0, 1].

The proof is similar to Theorem 1.
For convenience, we denote

(1) Sj = {k| − N ≤ k ≤ dj − γ + N}

H =

HLL HLI 0
0 H II 0
0 HRI HRR

 , Gi
=

GLL
i GLI

i 0
0 GII

i 0
0 GRI

i GRR
i


Dj = diag(eiω(−N)/dj , eiω(−N+1)/dj , . . . , eiω(d

j
−γ+N)/dj), P(z) = (1/d)D−1

j HDj+1, Q i(z) = (1/d)D−1
j GiDj+1.

(2) The structured scaling functions in Theorem 1 are expressed as

φj,k =


φL
j,N+k, k = −N, . . . ,−1,
φj,k, k = 0, . . . , dj − γ ,

φR
j,k−(dj−γ )−1, k = dj − γ + 1, . . . , dj − γ + N.

(3) The structured wavelet functions in Theorem 2 are expressed as

ψ i
j,k =


ψ

L,i
j,N+k, k = −N, . . . ,−1,
ψ i

j,k, k = 0, . . . , dj − γ .

ψ
R,i
j,k−(dj−γ )−1

, k = dj − γ + 1, . . . , dj − γ + N.

Then φ̂(ω) = P(z)φ̂(ωd ), ψ̂
i(ω) = Q i(z)φ̂(ωd ), i = 1, . . . ,M .

Theorem 3. Let ψ L,i
j,k , k = 0, . . . ,N − 1,ψ i

j,k, k = 0, . . . , dj − γ ,ψR,i
j,k , k = 0, . . . ,N − 1, i = 1, . . . ,M, be defined as (6)–(8),

then the following statements are equivalent:

(1) Ψj = {ψ
L,i
j,k , k = 0, . . . ,N − 1, ψ i

j,k, k = 0, . . . , dj − γ ,ψ
R,i
j,k , k = 0, . . . ,N − 1, i = 1, . . . ,M} is a minimum-energy tight

frame for L2[0, 1].
(2)

d


P∗(z)P(z)+

M−
i=1

(Q i(z))∗Q i(z)


= I|Sj+1|, |z| = 1 (9)
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(3) −
k∈Sj


Hk,mHk,l +

M−
i=1

Gi
k,mG

i
k,l


− dδm,l = 0, ∀m, l ∈ Sj+1 (10)

where * represents the conjugate of the transpose, δj,k is the Kronecker symbol.

Proof. Letαm,l :=
∑

k∈Sj
(Hk,mHk,l+

∑M
i=1 G

i
k,mG

i
k,l)−dδm,l, by using two-scale relations (3)–(8), formula (2) can bewritten as

−
k∈Sj+1

⟨f , φj+1,k⟩φj+1,k =

−
k∈Sj

⟨f , φj,k⟩φj,k +

M−
i=1

−
k∈Sj

⟨f , ψ i
j,k⟩ψ

i
j,k

=

−
k∈Sj


f ,

√
d
d

−
l∈Sj+1

Hk,lφj+1,l

 √
d
d

−
l∈Sj+1

Hk,lφj+1,l +

M−
i=1

−
k∈Sj


f ,

√
d
d

−
l∈Sj+1

Gi
k,lφj+1,l

 √
d
d

−
l∈Sj+1

Gi
k,lφj+1,l

=
1
d

−
l∈Sj+1

−
m∈Sj+1

−
k∈Sj


Hk,mHk,l +

M−
i=1

Gi
k,mG

i
k,l


⟨f , φj+1,m⟩φj+1,l

⇔

−
l∈Sj+1

−
m∈Sj+1

−
k∈Sj


Hk,mHk,l +

M−
i=1

Gi
k,mG

i
k,l


− dδm,l

 ⟨f , φj+1,m⟩φj+1,l = 0

⇔

−
l∈Sj+1

−
m∈Sj+1

αm,l⟨f , φj+1,m⟩φj+1,l = 0, f ∈ L2. (11)

We multiply the identities in (9) by the vector (φ̂(ωd ) . . . φ̂(
ω
d ))

T to obtain

2

P∗(z)

φ̂(ω)...
φ̂(ω)

+

M−
i=1

(Q i(z))∗

 ψ̂
1(ω)
...

ψ̂M(ω)


 =


φ̂
ω
d


...

φ̂
ω
d




⇔ d

(D−1
j HDj+1)

∗

φ̂(ω)...
φ̂(ω)

+

M−
i=1

(D−1
j GiDj+1)

∗

 ψ̂
1(ω)
...

ψ̂M(ω)


 =


φ̂
ω
d


...

φ̂
ω
d




⇔ H∗
√
d

 φj,−N
...

φj,dj−γ+N

+

M−
i=1

(Gi)∗
√
d

 ψ1
j,−N
...

ψM
j,dj−γ+N

 = d

 φj+1,−N
...

φj+1,dj+1−γ+N

 (12)

⇔ H∗H

 φj+1,−N
...

φj+1,dj+1−γ+N

+

M−
i=1

(Gi)∗Gi

 φj+1,−N
...

φj+1,dj+1−γ+N

 = d

 φj+1,−N
...

φj+1,dj+1−γ+N


⇔


H∗H +

M−
i=1

(Gi)∗Gi

 φj+1,−N
...

φj+1,dj+1−γ+N

 = d

 φj+1,−N
...

φj+1,dj+1−γ+N


⇔

−
m∈Sj+1

−
k∈Sj

Hk,lHk,mφ(dj+1x − m)+

M−
i=1

−
k∈Sj

Gi
k,l

−
m∈Sj+1

Gi
k,mφ(d

j+1x − m) = φ(dj+1x − l), l ∈ Sj+1

⇔

−
m∈Sj+1

αm,lφj+1,m = 0, l ∈ Sj+1. (13)

Hence, the proof of Theorem 3 reduces to the proof of the equivalence of (11), (13) and (10). It is obvious that (10) ⇒ (13)
⇒ (11). To show that (11) ⇒ (10), let f ∈ L2 be any compactly function, and βl(f ) :=

∑
m∈Sj+1

αm,l⟨f , φj+1,m⟩, l ∈ Sj,

by taking the Fourier transform of formula (11), that the trigonometric
∑

l∈Sj+1
βl(f )e−ilω/dj+1

= 0, so that βl(f ) = 0, or
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equivalently ⟨f ,
∑

m∈Sj+1
αm,lφj+1,m⟩ = 0. By choosing f to be a compactly supported function for L2(R), it follows that∑

m∈Sj+1
αm,lφj+1,m = 0, Which implies that the trigonometric polynomial

∑
m∈Sj+1

αm,le−ilω/dj+1
is identically equal to 0, so

that αm,l = 0,m, l ∈ Sj+1. We complete the proof of Theorem 3. �

Theorem 4. Minimum-energy tight frame for L2[0, 1] has decomposition and reconstruction algorithm as follows
(1) Decomposition algorithm

√
dcLj,k =

N−1−
n=0

HL
k,nc

L
j+1,n +

dk+N ′−
n=0

hL
k,ncj+1,n, 0 ≤ k ≤ N − 1,

√
dcj,k =

γ−
n=0

Hncj+1,n+dk, 0 ≤ k ≤ dj − γ ,

√
dcRj,k =

dk+N ′−
n=0

hR
k,ncj+1,dj+1−γ−n +

N−1−
n=0

HR
k,nc

R
j+1,n, 0 ≤ k ≤ N − 1,

√
ddL,ij,k =

N−1−
n=0

GL,i
k,nc

L
j+1,n +

dk+N ′−
n=0

gL,i
k,ncj+1,n, 0 ≤ k ≤ N − 1, 1 ≤ i ≤ M,

√
ddij,k =

γ−
n=0

Gi
ncj+1,n+dk, 0 ≤ k ≤ dj − γ , 1 ≤ i ≤ M,

√
ddR,ij,k =

dk+N ′−
n=0

gR,i
k,ncj+1,dj+1−γ−n +

N−1−
n=0

GR,i
k,nc

R
j+1,n, 0 ≤ k ≤ N − 1, 1 ≤ i ≤ M.

(2) Reconstruction algorithm

√
dcLj+1,n =

N−1−
n=0

HL
k,nc

L
j,k +

M−
i=1

N−1−
n=0

GL,i
k,nd

L,i
j,k, 0 ≤ n ≤ N − 1,

√
dcRj+1,n =

N−1−
n=0

HR
k,nc

R
j,k +

M−
i=1

N−1−
n=0

GR,i
k,nd

R,i
j,k, 0 ≤ n ≤ N − 1,

√
dcj+1,n =

n−
k=0

hL
k,nc

L
j,k +

M−
i=1

n−
k=0

gL,i
k,nd

L,i
j,k +

−
k

Hn−dkcj,k +

M−
i=1

−
k

Gi
n−dkd

i
j,k, 0 ≤ n ≤ γ − 2,

√
dcj+1,n =

−
k

Hn−dkcj,k +

M−
i=1

−
k

Gi
n−dkd

i
j,k, γ − 1 ≤ n ≤ dj+1

− 2γ + 1,

√
dcj+1,n =

n−
k=0

hR
k,nc

R
j,k +

M−
i=1

n−
k=0

gR,i
k,nd

R,i
j,k +

−
k

Hn−dkcj,k +

M−
i=1

−
k

Gi
n−dkd

i
j,k,

dj+1
− 2γ + 2 ≤ n ≤ dj+1

− γ .

Proof. For ∀f ∈ L2, let cj,k = ⟨f , φj,k⟩, cLj,k = ⟨f , φL
j,k⟩, c

R
j,k = ⟨f , φR

j,k⟩, d
i
j,k = ⟨f , ψ i

j,k⟩, d
L,i
j,k = ⟨f , ψ L,i

j,k ⟩, d
R,i
j,k = ⟨f , ψR,i

j,k ⟩,
i = 1, . . . ,M . By using the two-scale relations (3)–(5) and (6)–(8), we obtain the decomposition algorithm, and taking the
inner product of formula (12) with f , we obtain the reconstruction algorithm. �

4. Some examples

It is well known that the mth order cardinal B-spline Nm(x) has the two-scale relation N̂m(ω) = Pd
m(z)Nm(

ω
d ), where

z = e−iω/d and Pd
m(z) = ( 1+z+···+zd−1

d )m. By Theorem 2 in [2] and Theorem 3 in [3], there exists a minimum-energy frame
{ψ1

m, ψ
2
m, . . . , ψ

M
m }.

4.1. d = 2

Example 1 (Linear B-spline). P2
2 (z) =

1
4 +

1
2 z +

1
4 z

2, Q1(z) = −
1
4 +

1
2 z −

1
4 z

2, Q2(z) =

√
2
4 −

√
2
4 z2.
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Fig. 1. Scaling function and wavelet frame on the interval corresponding to linear B-spline.

By Theorems 1 and 2, obtain the filter coefficients:

H =


HL hL 0 0 0

0
1
2

1
1
2

0

0 0 0 hR HR

 , G1
=


GL,1 gL,1 0 0 0

0 −
1
2

1 −
1
2

0

0 0 0 gR,1 GR,1

 ,

G2
=


GL,2 gL,2 0 0 0

0

√
2
2

0 −

√
2
2

0

0 0 0 gR,2 GR,2

 .
By Theorem 3, there exists minimum-energy frame on the interval (see Fig. 1).

Example 2 (Quadratic B-spline). P2
3 (z) =

1
8 +

3
8 z +

3
8 z

2
+

1
8 z

3, Q1(z) = −

√
3
4 +

√
3
4 z, Q2(z) =

1
8 +

3
8 z −

3
8 z

2
−

1
8 z

3.
By Theorems 1 and 2, obtain the filter coefficients:

H =



HL hL
0 hL

1 0 0 0 0 0

0
1
4

3
4

3
4

1
4

0 0 0

0 0 0
1
4

3
4

3
4

1
4

0

0 0 0 0 0 hR
1 hR

0 HR

 ,

G1
=


GL,1 gL,1

0 gL,1
1 0 0 0 0 0

0 −

√
3
2

√
3
2

0 0 0 0 0

0 0 0 −

√
3
2

√
3
2

0 0 0

0 0 0 0 0 gR,1
1 gR,1

0 GR,1

 ,
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Fig. 2. Scaling function and wavelet frame on the interval corresponding to quadratic B-spline.

G2
=


GL,2 gL,2

0 gL,2
1 0 0 0 0 0

0
1
4

3
4

−
3
4

−
1
4

0 0 0

0 0 0
1
4

3
4

−
3
4

−
1
4

0

0 0 0 0 0 gR,2
1 gR,2

0 GR,2

 .

By Theorem 3, there exists minimum-energy frame on the interval (see Fig. 2).

4.2. d = 3

Example 3. P3
1 (z) =

1
3 +

1
3 z +

1
3 z

2, Q1(z) =

√
2
6 −

√
2
3 z +

√
2
6 z2, Q2(z) =

√
6
6 −

√
6
6 z2.

It’s obvious that the scaling function φ and wavelet functions ψ1, ψ2 (see Fig. 3) are supported in [0, 1]. It’s very easy
to restrict the frame for L2(R) to a frame for L[0, 1]; starting from the collection {φ0,k; k ∈ Z}


{ψ i

j,k; j ≥ 0, k ∈ Z,
i = 1, . . . ,M}, which is a frame for L2(R), we can restrict them to [0, 1] easily. Since every one of the them is supported
either in [0, 1] or in R\]0, 1[, the collection that remains after all the functions with restriction 0 has been weeded out, i.e.,
{φ0,0}


{ψ i

j,k; j ≥ 0, 0 ≤ k ≤ dj, i = 1, . . . ,M} is a frame for L[0, 1].

Example 4. P3
2 (z) = ( 13 +

1
3 z +

1
3 z

2)2, Q1(z) =

√
2

18 +

√
2
9 z −

√
2
3 z2 +

√
2
9 z3 +

√
2

18 z
4, Q2(z) =

√
6

18 +

√
6
9 z −

√
6
9 z3 −

√
6

18 z
4,

Q3(z) =
2
√
3

9 −
2
√
3

9 z.
By Theorems 1–3, there exists minimum-energy frame on the interval (see Fig. 4).

5. Threshold-based image denoising via minimum-energy wavelet frame on the interval

In recent years, wavelets have been widely applied to various fields, especially to the image processing, such as image
denoising, image compression and so on. The redundant wavelet is very suitable for image denoising. Therefore, in order
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Fig. 3. Scaling function and wavelet frame on the interval corresponding to P3
1 (z).

Fig. 4. Scaling function and wavelet frame on the interval corresponding to P3
2 (z).

to verify the superiority of minimum-energy wavelet frame on the interval, we propose a threshold-based image denoising
method via minimum-energy wavelet frame on the interval.

Suppose that an observed image y that is corrupted by additive zero-mean white Gaussian noise ε can be represented by
y = x + ε, x represents coefficients of the ‘‘clean’’ image. As we’re known, the redundant wavelet system coefficients of the
resulting noisy signal will also be corrupted by white Gaussian noise.

We choose certain threshold for image denoising via minimum-energy frame on the interval. The process of denoising
can be divided into three steps:

(1) Transform the noisy image y into wavelet coefficientw via minimum-energy frame on the interval.
(2) Apply the hard threshold t at each scale j.
(3) Perform inverse transform to obtain the denoised image.

In the step (2), we use the most well-known VisuShrink universal threshold t = σ
√
2 logN (N is the size of the image)

proposed in [17] and the robust median method divided by 0.6745 to compute the value of σ , i.e., σ = MAD/0.6745.
We test the Lena and Barbara image corrupted by additive zero-mean white Gaussian noise σ . For comparison of the

denoising results, we apply such wavelets with the same support as the Daubechis orthogonal wavelet DB2 and the interval
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Fig. 4. (continued)

DB2 structured in [1] (INT-DB2), minimum-energy wavelet frame proposed in [2] (MEF, see Example 1 in [2]) and our
minimum-energy wavelet frame on the interval (INT-MEF, see Example 1 in the above section), respectively. The denoising
results are shown in Table 1 and Figs. 5 and 6. From the results, we see that our algorithm improves the objective quality
of the denoised image in terms of signal-to-noise ratio (SNR). This shows that our minimum-energy wavelet frames on
the interval is superior to orthogonal wavelets and minimum-energy wavelet frames. In fact, in the applications of image
denoising, minimum-energy wavelet frame due to the symmetry/anti-symmetry and shift-invariance has better denoising
performance than the orthogonalwavelets. At the same time,minimum-energywavelet frameon the interval avoids ‘‘border
effect’’ effectively owing to the edge wavelets maintaining the smoothness and symmetry.

6. Conclusion

The interval wavelets can solve the un-matching problem using the multi-resolution analysis for L2(R) between
the signal space and the approximate space, and avoid ‘‘border effect’’ effectively. Wavelet frame has more stability
for the reconstruction of the signal than orthogonal wavelet and biorthogonal wavelet, good time-frequency localized
representations, shift-invariance, and more design freedom.

In this paper, based on the theory of the wavelet frame, we construct a class of minimum-energy wavelet frames with
arbitrary factor d, obtain the necessary and sufficient conditions of theminimum-energy frames for L2[0, 1], and present the
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Fig. 5. Denoising results. (a) original Lena image, (b) noisy image with a white Gaussian noise with 25, (c) denoised image by DB2, (d) denoised image by
INT-DB2, (e) denoised image by MEF, (f) denoised image by INT-MEF.

Fig. 6. Denoising results. (a) original Barbara image, (b) noisy image with a white Gaussian noise with 25, (c) denoised image by DB2, (d) denoised image
by INT-DB2, (e) denoised image by MEF, (f) denoised image by INT-MEF.
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Table 1
The SNR of denoised image via different wavelets.

Image Noise variance σ DB2 INT-DB2 MEF INT-MEF

20 15.85 15.99 17.22 18.12
Lena 25 12.85 12.96 14.15 14.79

30 9.71 10.01 10.98 11.65

20 14.73 14.76 15.29 15.79
Barbara 25 12.17 12.31 13.11 13.95

30 9.53 9.73 10.40 11.13

decomposition and reconstruction algorithms. The experimental results in the application of image denoising show that our
minimum-energy wavelet frames on the interval is superior to orthogonal wavelets and minimum-energy wavelet frames.
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