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INTRODUCTION 

In this paper we shall study control systems of the form: 

dx 
- = X(x) + u(t) Y(x), dt 

where X and Y are analytic vector fields on an n-dimensional real manifold M, 
and where the control ?I is a piecewise continuous function defined on [0, a). 
In particular we shall be interested in the relation between controllability and 
stabilizability of systems described by (1). 

The paper will be divided into four sections. The first section consists of 
notation and the basic definitions. The second section deals with a controllability 
theorem (Theorem 1). This theorem is a slight generalization of a theorem 
contained in [3], and its proof is along the lines presented in [l]. The third 
section deals with global stabilizability (Theorem 2). There we also make 
a connection between controllability and the existence of stabilizing feedback 
functions. Finally, Section IV contains examples. 

1. NOTATION AND THE BASIC DEFINITIONS 

We let @ be the class of all real valued piecewise continuous functions defined 
on [0, 03), and we refer to them as the class of admissible controls. If X and Y 
are a pair of vector fields on M, then y E M is said to be (X, Y) accessible from 
x E M if there exist r~ E % and T > 0 such that the corresponding solution 
x(t) of (1) satisfies x(O) = x and x(T) = y. In such a case we will also say 
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that x can be (X, Y) joined to y. The set of all points which are (X, Y) accessible 
from x we shall denote by A+(x), and the set of all points which can be (X, Y) 
joined to x we denote by A-(x). Clearly both A+(x) and A-(x) depend on X 
and Y but for the sake of notational simplicity we omit this dependence in 
our notation. We will say that a pair of vector fields (X, Y) is controllable if 
A+(x) = M for all x in n/r. 

It follows that (X, Y) is controllable if and only if there exists a point x E M 
such that A+(x) = A-(x) = M. 

If x,, E M is such that X(x,) = 0, then (X, Y) is said to be stabilizable at x0 
af there exists an analytic function f on M with f (x0) = 0 such that x0 is a globally 
asymptotically stable point of the vector field X + f Y. This means that 

(i) x0 is a stable point of X + f Y, and 

(ii) {x0} is the positive limit set of each integral curve of X +fY. 

In the above context, such an f will be termed a stabilizing feedback control. 
Every integral curve x(t) of X + f Y corresponds to a solution of (1) generated 
by the control u(t) = f(x(t)). Hence, if (X, Y) is stabilizable at x0, then every 
point of M can be (X, Y) joined to points arbitrarily close to x0 . If in addition 
A-(x,) contains x,, in its interior then, necessarily A-(x) = M. 

If X and Y are vector fields on M, then [X, Y] denotes their Lie bracket. 
Recall that [X, Y] is a vector field defined by [X, Y]f = X( Yf) - Y(Xf) 
for each analytic function f. We will regard the set of all analytic vector fields 
on M as a Lie algebra under the operations of the pointwise addition and that 
of the Lie bracket. For any pair of vector fields (X, Y) we will denote by 
9(X, Y) the Lie algebra generated by X and Y. For each x E M we let 
9(X, Y)(x) = {V(x): VE~!Y(X, Y)}. Th us, if X and Y are given vector fields, 
2(X, Y) is in general an infinite dimensional algebra, but at each point x EM, 
9(X, Y)(x) is a linear subspace of ME the tangent space of M at x. 

If 2 is any smooth vector field, we let etz(x) be the maximal integral curve 
of 2 which passes through x at t = 0. Recall that this means that there exists 
an interval I containing the origin such that 

(i) (d/dt) e”“(x) = Z(etz(x)) f or all t E I, and that etZx = x for t = 0. 

(ii) if a(t) is any other curve defined on an interval i’ which satisfies (i) 
then I’ C I. 

For technical simplicity we will assume throughout this paper that all vector 
$elds are complete, i.e., that their maximal integral curves are defined for all 
t E R. 

If 2 is a complete vector field, then for each t E R, the map x --+ e”“(x) is a 
diffeomorphism on M. We will denote by et2 such a map. 

As it is we11 known, the family (et”} f orm a one-parameter group of diffeo- 
morphisms on M. 



CONTROLLABILITY AND STABILITY 383 

2. CONTROLLABILITY 

In studying controllability properties of systems of the form given by (I), 
it is convenient to recast the problem in certain algebraic terms. 

If X and Y are given vectors fields, we denote by 9(X, Y) the group of 
diffeomorphisms generated by all the elements of the form et(X+uY) where 
(t, U)E R2. 

The group 3(X, Y) acts on M in a natural way; we denote by 3(X, Y)(x) 
its orbit through the point x in M. It is well known from the integrability 
theory of families of vector fields, that each orbit 9(X, Y)(x) is a submanifold 
of M with its dimension equal to the dimension of 2(X, Y)(x). In particular, 
it then follows that 9(X, Y)(x) = M if and only if the dimensions of 
2(X, Y)(x) = n for all x E M. 

We shall denote by Y the semi-group of diffeomorphisms generated by 
the elements of the form et(X+uY) where t 20 and UER. For each XEM 
we let Y(x) be the semi-orbit of Y through x, i.e., Y(x) = {g(x): g E 9’}. 

For each x E M and any g E Y, g(x) lies on a trajectory of (1) generated by a 
piecewise constant control function. Hence, for each x EM, 9’(x) CA+(x). 
Since the class of all piecewise constant control functions are dense in & (in -- -- 
any reasonable topology), it follows that 9(x) = A+(x), where the bar denotes 
the topological closure in 9(X, Y)(x). 

If we let Y-l = {g-l: g E Y), then for each x E M, and each g E Y-l, 
x E Y(g(x)). Thus, Y-i(x) E A-(x) for each x E M. Completely analogously - -- 
to y, it follows that 9’-‘(x) + A-( x in the closure relative to the topology ) 
of 9(X, Y)(x). 

The next lemma shows the relationship between Y and the controllability 
of (X, Y). 

LEMMA 1. Let (X, Y) be a pair of vector fields such that 9(X, Y)(x) = M, 
for each x E M. If 9’(x) = Mf OY x belonging to a dense subset of M, then (X, Y) 
is controllable. 

Proof. If X and Y are such vector fields that 9(X, Y)(x) = Mz for each 
x EM, then for any neighborhood U of a point x both 9-‘(x) n U and 
y(x) n G contain open sets ([4]). -- 

Let x be a point in M such that 9’(x) = M, and let y E M. Let U be a neigh- 
borhood of y. Since y-i(y) n U contains an open set, it follows that there 
exists z E y(x) such that x E Y-l(y). Hence, z E A-(y), and therefore y E A(z). 
Thus, y E 9’(x). Therefore, 9’(x) = M for all x belonging to a dense set in M. 
We end this proof by showing that 9(x) = M for all x E M. 

Let x be an arbitrary point of M. If U is any neighborhood of x, then let V 
be an open set contained in 9(x) n U. Let y E V be such that Y(Y) = M. 
Since y E 9’(x) we have that Y(y) C 9’(x). Therefore, 9(x) = M. This ends 
the proof of the lemma. 
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LEMMA 2. Let 9 be the semi-group of ds&feomorphisms generated by the 
elements of the form etx, t 3 0, and esy where s E R. Then for each x E M, 
m 2 TM where the closure is relative to the submanifold topology of 99(X, Y)(x). 

-- 
Proof. It suffices to show that for each x E M, and each t E R, e”‘(x) E Y(x)_ 

Since our vector fields are analytic it follows that for each x there exists a neigh- 
borhood U of x such that 

et(X+uYy y) = etxet”Yez’t.u’( y) 

valid for small t and y E U, where 2 

(2) 

(i) is a vector field belonging to the derived algebra of X and Y, and 
where 

(ii) Z(t, 24) = 0(t2u). 

This is a consequence of the well known Cambell-HausdorfI formula. Let 
t be a given number. Let {tn} be any sequence such that t, > 0 and lim,,, t, = 0. 
Let 24, = t/tn . For each n, etJX+uJ)X E 9(x). Taking the limit of both sides 
in (2) we get that e”‘(z) E P’(x). Therefore, we have proved that ?@ C 9’(r). 

Using Lemma 1 and Lemma 2 it is very easy to prove the following basic 
controllability result. 

THEOREM 1. Let (X, X) be a pair of vector fields such that 

(i) 3(X, Y)(x) = M, for all x E M, 

(ii) the set of recurrent points of X is dense in M. 

Then, (X, Y) is controllable. 

A proof of this theorem is essentially a paraphrase of a similar theorem done 
in 131, and therefore we will omit it. 

The following is an immediate corollary of this theorem. 

COROLLARY 1. Let M = R”, and let X(x) = Ax where A is n x n matrix 
with real entries such that its eigenvalues are purely imaginary and distinct. 

Let Y be any vector $eld on M such that 9(X, Y)(x) = Rn for all x E Rn. 
Then (X, Y) is controllable. 

3. STABILIZABILIrY 

We begin this section by reviewing certain local results. If X and Y are given 
vector fields, then for each integer n = 0, 1,2,... define a vector field adkX(Y) 
as follows: 

&X(Y) = Y, 
adk+lX( Y) = [X, adkX( Y)]. 
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We will say that a pair of vector fields (X, Y) satisJ;es the ad-condition ;f the 
linear span of all vectors of the form adkX(Y)(x) is equal to M, at each x E M. 

If X and Y satisfy the ad-condition then for any E > 0, any x EM and any 
t > 0, etx(x) lies in the interior of the set of attainability generated by controls n 
with 1 u j < E. This follows from the fact that there exist n-smooth functions 
vr ,..., v, defined on [0, t] such that the rank of the differential of the map 

(‘1 ,*.-, %> + x(x, Qlet, + ... + %Vn , t) at or = l a = ... = Ed = 0 

is equal to the dimension of M. Hence, this map covers a neighborhood of 
etx(x). Here, x(x, eivr + ... + c,v, , t) denotes the trajectory of (1) through x 
generated by the control l rvr + ... + E,V, . 

A slight modification of the preceding argument shows that x is contained 
in the interior of the set of points which can be steered to etXx in positive time 
along the trajectories of (1) generated by controls u with 1 u 1 < E. 

In particular, if x EM is such that X(x) = 0, then as is well known from 
the linear theory, the ad-condition is equivalent to b, Ab,..., An-lb being linearly 
independent where b = Y(x) and where A is the matrix with entries (aXi/axj)(x). 

We now address the question of existence of stabilizing controls. If f is any 
smooth function on M, let 2 = X + f Y. If x E M is such that X(x) = 0 
and f(x) = 0 then a necessary condition for asymptotic stability of 2 at x 
is that its differential dZ at x have eigenvalues with negative real parts. If in 
addition (X, Y) satisfies the ad-condition then it follows from the linear theory 
that the spectrum of 2 at x can be completely controlled for different choices 
of df, and hence we have local stabilizability. 

Easy examples show that in general local stabilizability does not extend 
globally. The following theorem however gives conditions under which (X, Y) 
is globally stabilizable. 

THEOREM 2. Let M = R” and let X(x) = Ax where A is n x n matrix 
whose spectrum consists of n distinct imaginary eigenvalues. If Y is any vector 
field on M such that (X, Y) satisjies the ad-condition for all x # 0 then (X, Y) 
is globally stabilizable at x = 0. 

Proof. Since A has purely imaginary spectrum, then there exists a basis 
in respect to which A is skew-symmetric. Therefore, there is no loss of generality 
in assuming that A is skew-symmetric. Let f(x) = -(x, Y(x)) where ( , ) 
denotes the inner product in Rn, and let Z = X + f Y. 

If XER~, then 

etZx 11 = 
d 

et=(x), dt etZx 
> 

= (etzx, Z(etzx)) 

= (etzx, Aetzx> + f (etzx)(etzx, Y(e”“x)> 
= f (etzx)(etzx, Y(etzx)) 
= -f (etzx)2 < 0 for all t > 0. 
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If we let G = (x: f(x) = 0) then by LaSalle’s invariance theorem [2, p. 661 
all integral curves of Z will tend to the largest subset of Sz which is invariant 

under 2. 
If we denote by E this invariant subset of G?, the proof will be finished if 

we show that E = (0). 

Let x E E. Since etZx E E for all t we have thatf(etzx) = 0. Hence, etZx = eAtx. 
Thus, it follows that (etAx, Y(etAx)) 3 0 for all t. The successive differentiation 
of the above curve at t = 0 shows that x is orthogonal to all vectors of the form 

adkX(Y)x, k = 0, l)... . Since (X, Y) satisfies the ad-condition, it follows that 
x = 0. Thus, E = {0} and hence f is the global stabilizing control at x = 0. 

The proof is now complete. 
In view of Corollary 1, the preceding theorem shows a connection between 

controllability and stabilizability. It also suggests the extent of such a connection 
because the results of the preceding theorem also hold when A has eigenvalues 
with non-positive real parts. However, in such a case there exist many pairs 
(X, Y) which are not controllable. 

4. EXAMPLES 

In the first example we characterize controllability in Ra of pairs of vector 
fields given by matrices with real and distinct eigenvalues. 

EXAMPLE 1 (controllability of matrices with real and distinct eigenvalues). 
Let M = R2/{0}, and let X(x) = Ax and Y(x) = Bx where A and B are real 
matrices of dimension 2. Without loss of generality we assume that B is diagonal. 

For a continuous control u(t), let v(t) = $ u(s) ds. If we denote by y(t) = 

e--v(t)Bx(t) where x(t) is a trajectory- of (l), then y(t) satisfies the following 
differential equation: 

$ = (e-v(t)BAeV(t)B) y(t). 

If 

then the components yi and ya of y satisfy: 

f!?!J. = a 
dt l1 

x(t) + a, edvy (t) 2 2 

and 
dy, 
dt = a2P%(r) + aa2y2(t), 

where d = b, - b, . 
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If we multiply dy,/dt by yz , dyz/dt by yr , and then add the results, we get: 

$ (nr2) = (all + a22) yly2 + a12edV22 + ~21e-dvy12. 

The variation of parameters method yields: 

Y&> Y2W 

=e at 
[( 

y,(O) y,(O) + al2 
s 

t e-aseducsJy2z(s) ds + uzl 1’ e-dzi(s)y12(s) ds)], 
0 0 

where a = a,r + ua2 . 
There are two cases to consider. 

(i) If both a2r and ai2 are non-negative, then yl(t)y2(t) 3 0 whenever 
yl(0)y2(O) 3 0 for all t > 0 no matter what ~1 is chosen. Analogously, when 
u2r and ur2 are both non-positive yl(t)y2(t) 3 0 whenever yl(0)y2(O) 3 0 
for all t < 0. 

In this case, the set of points which can be reached via the trajectories of (1) 
starting from 

x= Xl 

( 1 x2 
with x1x2 > 0 

is contained in the quadrant which contains x, while in the second case the set 
of points which can be steered to x is contained in the quadrant which contains x. 

Therefore in either case the control system described by (1) is not controllable. 
In particular, from the above, it follows that when A and B are symmetric 
2 x 2 matrices the resulting linear system is never controllable. The condition 
that ur2u2r > 0 is stable under small perturbations of the entries of A, hence 
the preceding argument shows that there is an open subset of 2 x 2 linear 
systems which are not controllable. 

(ii) Here we assume that a r2 a 21 < 0. It then follows by direct computation 
there exists a value u such that A + uB has complex roots. This implies that 
there exists an admissible trajectory of (I), namely e(A+uE)t(X), which cuts all 
the trajectories of B, and this in turn implies controllability of (1). 

For higher dimensions not only that this method breaks down, but there 
seems not to be any simple characterization of controllability. An account of 
this theory will appear in a joint paper of V. Jurdjevic and I. Kupka. 

EXAMPLE 2 (case of a controllable but not stabilizable system). Here 

M = R2, X(x) = 1 i y ( x and Y(x) = 1 x:2 I. 

505128/3-6 
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The components x, and xa of trajectories of (1) satisfy: 

dxl- 
dt 

- 4x, + u(t) x22, $ = x2 + u(t). 

This system can be solved explicitly to yield: 

xl(t) = q + $ Jot e-8v3(s) ds, x,(t) = &v(t), 

where v(t) = J-i e-%(s) ds. 
As u varies over all piecewise continuous functions on [0, t], t > 0 the range of 

e4t t 

- s ecsv3(s) ds 
3 0 

etv( t) 

covers all of R2. 
Thus, any point of R2 can be reached via the trajectories of (1) which originate 

from the origin. 
A completely similar argument applied to functions on [-t, 0] shows that 

all points of R2 can be steered to the origin in time t. Thus, (X, Y) is controllable 
in R2. 

However, 2 = X + f Y is not asymptotically stable at x = 0 no matter 
what scalar function f is chosen. For if f is any smooth function on R2 such 
that f (0) = 0, then the differential of 2 at x = 0 is given by: 

I 
4 0 

g (0) 1 + g (0) - 

The above matrix has 4 as its eigenvalue independently off, and therefore 
no stability is possible. 

EXAMPLE 3 (a LiCnards equation example). If we let X and Y be matrix 
vector fields in R2 given by 

X(x) = 1 “1 i ( x and Y(x) = 1 y 8 1 x 

then it is easy to check that X and Y satisfy the ad-condition at all points of 
M = R2/{0}. Hence, the pair (X, Y) is controllable on M, and the origin is 
globally stabilizable. The choice of feedback function f (x) = -(x, Y(x)) = --x1x2 
results in: 

6 
x = x2, dx,- dt - -x1 - x2x12. 
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This system is equivalent to (d2x,/dt2) + x,(t)2(dx,/dt) + xi(t) = 0, which is a 
specific case of LiCnards equation. It is well known that such equation is 
asymptotically stable. 

It might be interesting to note that the above pair (X, Y) cannot be stabilized 
by means of a constant control function because the spectrum of A + UB 
contains at least one eigenvalue with non-negative real part, no matter what u 
is chosen. 

EXAMPLE 4 (Van Der Pol’s equation and practical stability). Let X and Y 
be matrix vector fields in R2 given by 

X(x) = 1 “1 : 1 x and Y(x) = / !ll i 1 x. 

It is easy to check that (X, Y) satisfies the ad-condition at all points of M = 
R2/{O}, and that it is controllable in M. However, (X, Y) is not stabilizable 
at the origin because the differential of 2 = X +fY at the origin always 
contains an eigenvalue with a positive real part. If we set f(x) = 
(Y - /3(x * Y(Z)) = 01 - /3+~ where a. and j3 are positive constants, then the 
system dx/dt = X(x) +f(x) ‘Y(x) is equivalent to: 

d2x, 
--p (t) + $ (/lx,2 - 1) + (1 - a) x,(t) 5 0. 

This equation is a specific case of Van Der Pol’s equation. It is well known 
that such an equation has a limit cycle to which all solutions tend (see, for 
instance, [2]), Moreover, by choosing 01 sufficiently close to 1 and by choosing j3 
sufficiently large, this cycle can be deformed to any neighborhood of the origin. 
Thus, in this case, following LaSalle and Lefschetz [2], the pair (X, Y) might 
be called practically globally stabilizable. Perhaps in this context controllability 
is more related to such a notion than to asymptotic stability. 
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