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Abstract

Recently, it was demonstrated that one-loop energy shifts of spinning superstrings onAdS5 × S5 agree with certain Beth
equations for quantum strings at small effective coupling. However, the string result required artificial regularization
function. Here we show that this matching is indeed correct up to fourth order in effective coupling; beyond, we fi
contributions at odd powers. We show that these are reproduced by quantum corrections within the Bethe ansatz. T
also identify the “three-loop discrepancy” between string and gauge theory as an order-of-limits effect.
 2005 Elsevier B.V.Open access under CC BY license.
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The investigation of semiclassical spinning sup
strings onAdS5×S5 [1–4] 2 and their AdS/CFT duals
local operators ofN = 4 SYM in the thermodynamic
limit [6],3 has lead to a number of important insigh
into both theories. Progress in this subject went h
in hand with the discovery and development of in
grable structures inN = 4 SYM [9–12]and string the-

E-mail addresses: nbeisert@princeton.edu(N. Beisert),
tseytlin@mps.ohio-state.edu(A.A. Tseytlin).

1 Also at Imperial College, London and Lebedev Institu
Moscow.

2 See[5] for a review on semiclassical spinning strings.
3 See[7,8] for reviews onN = 4 gauge theory and the thermod

namic limit.
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ory onAdS5 ×S5 [13].4 The computations of the spin
ning string correspondence required powerful meth
which integrability could provide. Conversely, spi
ning strings were an ideal testing ground for the
methods.

The main tool for obtaining the spectrum of int
grable models is the Bethe ansatz. For gauge th
it was developed in[9,11,14–17]. The string coun-
terpart is a set of integral equations for classi
strings [18,19] and a proposal for the promotion
Bethe equations for quantum strings was made in[16,
17,20]. The comparison of the classical spectra of b
models has shown general agreement at the lea

4 See[7,8] for reviews on integrability of gauge theory and string
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two orders[6,17,18,21], but also lead to the discover
of a disagreement at third order[14],5 the so-called
“three-loop discrepancy”.6 Note that this mismatch i
not necessarily in conflict with the AdS/CFT corr
spondence[24] though, because order-of-limits effec
may spoil the (naive) comparison[14,15].

Recently, the precision tests of the quantum str
Bethe equations were performed by comparing th
prediction to one-loop effects in quantum string th
ory. String energiesE(λ,J ) admit an expansion
for large string tension

√
λ (or large ’t Hooft cou-

pling λ)

E(λ,J ) = √
λE(J ) + δE(J ) +O(1/

√
λ ),

(1)J = J/
√

λ.

Here,E is the classical string energy andδE is the one-
loop energy shift. The effective string tensionλ̃1/2 =
1/J (alias the effective spinJ ) can take any fixed
value. The comparison ofδE was performed in an
expansion in powers of the effective coupling 1/J .
Agreement atO(1/J 2) for the simplest class of spin
ning string solutions was found in[25,26]. This was
later generalized to the fullsu(2) sector [27]. Go-
ing to higher orders in 1/J , however, is problem
atic due to the appearance of divergent sums[28].
When these sums are regularized by the first reg
tor that might come to mind, namely by zeta-functio
the result does indeed agree with the Bethe ansa
O(1/J 6) [29]. This is a very good sign of the valid
ity of the Bethe ansatz, given that the computation
the result are rather complex. Merely the need to r
ularize within this conformal two-dimensional mod
appears artificial; the unexpanded sums do indeed
verge[30].

In this Letter we investigate the divergent su
carefully and find that one can make sense of th
This allows us to compute the coefficients of the
pansion of the one-loop energy shiftδE. We find that
zeta-function regularization actually produces the c
rect coefficients of 1/J 4 and 1/J 6. However, we find
additional contributions atodd powers of 1/J starting

5 See also[22] for a closely related effect in the near pla
wave/BMN correspondence.

6 See[23] for reviews on the comparison between semiclass
spinning strings and gauge theory.
t

at O(1/J 5) = O(λ5/2/J 5).7 This may appear disas
trous for the quantum string Bethe ansatz, which d
not produce such terms, and for the comparison
gauge theory, due to the unexpected fractional p
ers ofλ. Nevertheless, quite the contrary is true:
the one hand, we will demonstrate that these con
butions allow us to determine quantum corrections
the Bethe equations themselves. That this is poss
at all is non-trivial and therefore makes us more c
fident of the Bethe ansatz for quantum strings. On
other hand, they can be interpreted as large-λ effects
which might repair the disagreement between str
and gauge theory when interpolated down to smaλ.
Here we even see some quantitative confirmation
this idea.

Let us now reinvestigate the one-loop energy s
of a circular spinning string onAdS3×S1 in string the-
ory. The classical solution was found in[32] and quan-
tum corrections to the energy were computed in[28].
We will use the notation of[25,29], i.e.,k is the mode
number,m is the winding number forS1 andn is the
mode number of the fluctuation. The spinS on AdS3
and the spinJ onS1 are related bySk + Jm = 0. The
energy shift is given by the generic formula

(2)δE =
∞∑

n=−∞
e(n),

wheree(n) is the sum of contributions of bosonic an
fermionic fluctuations with given mode numbern. The
expressione(n) can be found in[25,28,29], we recall
it in (A.1) in Appendix A.

We first expand for largeJ at fixedn and denote
the result byesum(n). It then turns out that startin
from O(1/J 4) the sum ofesum(n) diverges due to
contributions with positive powers ofn.8 Let us there-
fore split the result into a regular partesum

reg (n) with

contributions ofO(1/n2) and a singular partesum
sing(n)

polynomial inn. The expressions are lengthy and
present them in Eqs.(A.8), (A.9) in Appendix A.

7 Similar observations are made in[31]. There, systematic ana
lytic methods of handling sums and of computing corrections w
developed on several examples. Their methods may be more su
to understand potential exponential corrections beyond the pert
tion series.

8 We sum order by order in 1/J . Technically, the divergencies a
caused by an order-of-limits effect.
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Clearly, the sum of the regular part converges wh
the sum of the singular part, an even polynomial, gi
identically zero when regularized by zeta-functio
For small values ofn our answer appears fine, but t
large-n behavior is incompatible with the expansio
This problem is not unexpected as we have assu
n to be fixed while takingJ large. This very assump
tion conflicts with the nature of the sum which go
overall modesn.

Let us now attempt to improve the approxim
tion for large values ofn. For this we setn = J x

and expand for largeJ . The resulting expression
given in (A.5) in Appendix A. In this case, the en
ergy shift should be approximated by the integral
J dx eint(x). Once again, we find a problem: The i
tegrand diverges atx = 0, as was already noticed fo
a similar solution onR × S3 in [30], and the inte-
gral cannot be performed. To see more clearly w
happens, we separate the integrand into a regular
eint

reg(x) which is smooth atx = 0 and a singular par

eint
sing(x) with strictly positive powers of 1/x. The sin-

gular part is given in Eq.(A.6) in Appendix A. De-
spite the singularities atx = 0, let us note thateint(x)

has the correct asymptotics at largen, cf. (A.7); its
expansion agrees quantitatively with the asymp
ics of e(J x). Apparently, hereeint(x) approximates
e(n) well at large values ofn = J x, but not at small
ones.

The divergencies at largen in the first approach ar
traded in for divergencies at smalln in the second one
We might therefore try to combine the two approach
useesum(n) for smalln andeint(x) for largen. As we
will see, this can be done. Moreover, we do not e
need a cut-off to separate between the two regimes
stead we make use of the following observation: T
singular part in one regime seems to equal the re
lar part in the other regime:eint

sing(x) = esum
reg (J x) and

esum
sing(n) = eint

reg(n/J ). This property can be confirme
by expanding the regular part after interchangingn

andJ x.9 We thus find10

9 In physicist’s terms:resumming one singular part yields th
other regular part.
10 Note thateint

sing andesum
reg have positive powers ofx,n while esum

sing

and eint
reg have strictly negative ones. Consequently, we might

derstand this split as a Laurent expansion inn and a subsequen
separation into positive and strictly negative powers.
t

e(n) = esum
reg (n) + eint

reg(n/J )

(3)= esum
sing(n) + eint

sing(n/J ).

Therefore, there is no need to consider the sing
parts at all; to obtain the energy shift it suffices to co
sider the regular parts11

δE =
∞∑

n=−∞
e(n)

(4)=
∞∑

n=−∞
esum

reg (n) +
∞∫

−∞
J dx eint

reg(x).

The sum ofesum
reg (n) is known, it is the zeta-function

regularized sum in[29]. The integral however yields
non-trivial contribution

(5)

∞∫
−∞

J dx eint
reg(x) = − (k − m)3m3

3J 5
+O

(
1/J 7).

It is somewhat surprising to see that the integra
eint

reg(x), cf. (A.5), (A.6), starts atO(1/J 4), but its inte-
gral vanishes at this order. Nevertheless, this is me
an exception, the integral does not vanish at highe
ders. While all the contributions fromesum

reg (n) are at
even powers of 1/J , the new contributions are at od
powers. Put differently, the first new term is at ord
λ5/2/J 5.

The new term in(5) contradicts the naive expect
tion that the expansion goes in integer powers ofλ and
1/J [33] and thus can be directly compared to p
turbative gauge theory. It also contradicts the simp
version of the Bethe ansatz for quantum strings[16,17,
20]which does not produce such terms[29]. Neverthe-
less, the appearance of such terms leads to a na
proposal of how to establish the agreement betw
the gauge and string theory results.

First of all, the one-to-one comparison of pert
bative string theory to perturbative gauge theory
suggestive but seemingly plagued by order-of-lim
effects. On top of the well-known disagreement of c
efficients, the “three-loop discrepancies”[14,22], here
we find that also thestructure of the expansion is
different in both limits. This is not in conflict with

11 The integral is merely an approximation to the sum. We howe
did not find any corrections polynomial in 1/J by improving the
integrand using the Euler–Maclaurin formula as in[33].
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AdS/CFT; it merely invalidates attempts to compa
perturbatively.

Let us assume the AdS/CFT correspondence ho
Then the exact energyE should be some interpo
lating function between the perturbative string th
ory expression at largeλ and the perturbative gaug
theory at smallλ. Now we note that the new term
at O(1/J 5) is accompanied by an old term at t
same order in 1/J coming from the expansion o
the classical string energy atO(

√
λ/J 5). The former

should be considered as a quantum correction to
latter. We might combine these two terms with high
loop corrections into some functionf5(λ)

√
λ/J 5 of

the coupling. At largeλ the functionf5(λ) admits
an expansion in powers of 1/

√
λ starting atO(1);

here we merely see the first two terms. At sm
λ we expectf5(λ) to have a regular expansion
λ. In between, it should interpolate betweenf5(∞)

and f5(0). Similar effects have been observed
the related context of plane wave string field the
in [34].

In fact, it is precisely this term,O(
√

λ/J 5) in
string theory andO(λ3/J 5) in gauge theory, at which
the three-loop discrepancy starts[14]. Put differently,
we findf ′

p(∞) �= 0 precisely for that value ofp where
fp(∞) �= fp(0). This might be a sign that the mis
match will be resolved by an interpolation betwe
strong and weak coupling.12 Below, we will present
some quantitative evidence for this qualitative sta
ment.

How can the new contribution be interpreted in t
quantum string Bethe ansatz[16,17,20]? According to
the sophisticated analysis in[29], the expansion ofδE
is in even powers of 1/J , at least up toO(1/J 6). Here
we go back to the original proposal of the string Be
equations in[20]. Arutyunov, Frolov and Staudacher
proposal was to modify the gauge Bethe equations
an additional phase shift for the interchange of two
citations13

12 Similar qualitative statements appeared in[14,15,20,23,35], see
also[34].
13 In the proposal of[20], the interpolating functions could als
depend on spinJ or lengthL. This might seem somewhat unnatu
from a Bethe ansatz/spin chain/S-matrix point of view. Furtherm
it is not clear how to defineL in string theory. Indeed, we will no
need dependence onL.
θ(pk,pj )

= 2
∞∑

r=2

cr(λ)
(
λ/16π2)r

(6)× (
qr(pk)qr+1(pj ) − qr+1(pk)qr(pj )

)
.

This dressing phaseθ depends on the momentap
of the excitations through their conserved chargesqr .
The undetermined functionscr(λ) should approach 1
at λ → ∞ to obtain the correct classical limit. If the
interpolate to 0 atλ = 0, the Bethe equations migh
even agree with the correct gauge result. Apart fr
these two limits, we know no further constraints
the cr yet. In [29] it was assumed that the functio
cr(λ) = 1 are exact, i.e., they do not receive stri
quantum corrections; that led to an expansion of
string energy in even powers of 1/J .

Let us now see whether we can re-establish ag
ment with one-loop string theory by correctingc2 =
1+ ε. We thus add an overall phase to the Bethe eq
tions14

(7)

2ε
(
λ/16π2)(r+s−1)/2(

qr(pk)qs(pj ) − qs(pk)qr(pj )
)
.

We solve the Bethe equations for thesl(2) sector in
the thermodynamic limit with all mode numbers co
ciding. This is the one-cut solution studied in[19,25,
26,29] corresponding to the above circular spinni
string. The equations can be solved by the stand
trick of turning them into a quadratic equation for
resolvent. We then find that the classical energy sh
by15

(8)δE = 4ε
Qr+1Qs −QrQs+1

(4π)r+s+1E +O
(
ε2).

HereQr are the conserved charges of the solution
defined in[15], here they are normalized to scale
O(1/J r−1), cf. [37]. We find for the energy shift with
r = 2 ands = 3

(9)δE = ε
(k − m)3m3

16J 5
+O

(
1/J 7).

14 We generalize the form of the corrections to include two unc
related chargesqr andqs . This appears to be the most general fo
for Bethe equations for certain types of spin chains[36]. We thank
T. Klose and M. Staudacher for discussions.
15 This is the result for thesu(2) Bethe equations. The result fo
sl(2) is similar.
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Remarkably, this is in structural agreement with(5).
When we set in(6)

(10)c2(λ) = 1− 16

3
√

λ
+O(1/λ)

the Bethe equations reproduce the correct string
sult for our class of circular solutions parametriz
by k, m.

In fact, one can easily convince oneself that
leading discrepancy between classical string ener
Es and gauge theory energies in the thermodyna
limit Eg is obtained from(9) for ε = 1. The genera
prediction for theO(λ5/2) contribution of an arbitrary
solution is thus−16

3 (Es − Eg)/
√

λ. So our finding is
completely consistent with the idea thatc2 interpolates
between 1 at strong coupling and 0 at weak coupl
This suggests a natural resolution of the apparent
agreement between the string and gauge theory re
at orderλ3 from a string perspective.

Conversely, each effect should have a counter
on the other side of the duality. How can the d
agreement be reduced from a gauge theory poin
view? This depends crucially on how the functio
cr(λ) approach zero nearλ = 0. For an exponentia
decline, such asc2(λ) = exp(−16

3 /
√

λ ), we would see
no effects in perturbative gauge theory at all. Anot
possibility is thatcr(λ) ∼ λL, whereL is the length
of the state.16 This behavior might be associated
“wrapping effects”[15], special types of correction
which start when the range of the Hamiltonian exce
the length of the state.17 If, however,cr(λ) ∼ λa with
some fixeda, then the scaling behavior in the therm
dynamic limit (as well as BMN-scaling[39]) would
break down. Proper scaling was a central assump
in the construction of higher-loop gauge theory res
(see[7] for a review), but has only been confirmed ri
orously up toO(λ3) [12,40].18

16 This would, however, be in contradiction with the philosophy
a length-independent S-matrix.
17 Alternatively, theasymptotic Bethe ansatz might break down
this order and needs to be replaced by something structurally d
ent from a Bethe ansatz, see e.g.,[38].
18 The dispersion relation would still preserve scaling as wel
most parts of the S-matrix. Only a global phase would violate pro
scaling. A first guessc2(λ) ∼ λ would imply scaling violations in
gauge theory at four loops, just slightly beyond our current horiz
Intriguingly, such scaling violations have been observed in the p
Of course, the interpolating functions of the stri
Bethe ansatz, e.g.,(10), must be universal and hol
for all other solutions in any sector as well[16,17].
We can thus predict the contributions at odd pow
of 1/J from the Bethe equations. To see this, let
repeat the above analysis in a different sector, fo
circular string onR × S3 [3]. This corresponds to th
su(2) single-cut solution of[18,42].19 We restrict to
the “half-filling” point (J1 = J2 = J/2), where most
expressions simplify. For the corrections at odd po
ers of 1/J we appear to find, using the expressio
in [30]20,21,22

∞∫
−∞

J dx eint
reg(x)

= m2√
J 2 + m2

+ 2J 2√
J 2 + m2

log
J 2

J 2 + m2

(11)− J 2 − m2

2
√
J 2 + m2

log
J 2 − m2

J 2 + m2
.

This agrees with the Bethe equations whenc2 is as in
(10).23 We have also performed a numerical compa
son between the exact sum and our expansion of it
setm = 1 and sum up to|n| = 5000 forJ between
3 and 10. The coefficients of the 1/J expansion are
evaluated numerically up toO(1/J 9). The results of
both approaches agreed up to about 10−7. If, however,
we eliminate the odd powers in 1/J from the expan-
sion, the matching is reduced to about 10−4. This is a
clear verification of the presence of the odd powers
1/J in the expansion.

wave matrix model[41]. This latter fact does not necessarily ha
implications forN = 4 SYM.
19 This solution is unstable due to tachyonic modes at smalln <

2m (IR). Here we consider corrections which are associated to l
mode numbers (UV) and thus unaffected by the instability.
20 This result is independent of way periodicity is handled
fermions, cf.[3,30] vs. [25,32].
21 This result can also be obtained from string theory with an
finite world sheet confirming that the origin of the contribution i
local quantum effect rather than a finite-size effect.
22 Comparing[32] and [42] we expect−m3(k − m)3/3J 5 +
O(1/J 7) for the generic case. Herek = 2m.
23 A preliminary analysis using(8) yields the leading correction
for the highercr (λ). The coefficients forc2 . . . c6 seem to be:
−16/3, −16/3, −184/15, −182/15, −3268/175, . . . without an
apparent pattern.
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There are other cases for which one might co
pute these odd contributions. For instance, there
further one-cut solutions which should be easily
cessible, such as solutions onR × S5 [2,3,43]. These
are interesting because they add “flavor” to the Be
equations. One could also try to generalize to tw
cut solutions, such as the folded string[4,6], but these
are more involved due to their elliptic nature. An e
pansion around an algebraic solution along the li
of [44] might simplify the analysis.

The universality of the Bethe ansatz also pred
the existence of these types of corrections in the n
plane wave limit ofAdS5×S5. There, the first terms o
fractional order inλ would occur atO(λ5/2/J 7) rep-
resenting a 1/J 2 effect. At second order in 1/J a sum
over intermediate channels appears and this may
come divergent when first expanding inλ′ = λ/J 2.24

Partial results were obtained in[45]. Once the exac
expressions for finiteλ′ are known, the regularizatio
of the sum might proceed in a similar way as abo
and the result should be compared to the Bethe an
For instance, in thesu(2) sector, the leading differ
ence between gauge and string theory in the near p
wave limit is given by the general formula derive
from the results in[20]

Es − Eg

(12)= − λ3

16J 7

M∑
k,j=1

n2
kn

2
j (nk − nj )

2 +O
(
λ4/J 9).

Here, M is the number of excitations andnk are
their mode numbers (which are allowed to co
cide). TheO(λ5/2/J 7) contribution is predicted to b
−16

3 (Es − Eg)/
√

λ.
One might also wonder how to obtain the odd po

ers in 1/J in the fast string expansion of[46].25 Here,
one expands in 1/J at the level of the classical ac
tion. Therefore, one can possibly obtain only the su
mandsesum(n) expanded at finite mode numbern. As
we have demonstrated, the integrandeint(x) may be
recovered fromesum(n). However, this requires resum
ming of all orders and thus the odd powers in 1/J are

24 A similar problem has been observed in the context of pl
wave string field theory in[34] when the expansion for smallλ′ =
λ/J2 is done prior to summing.
25 See[23] for a review of the fast string expansion.
.

non-perturbative contributions in this effective fie
theory.

There are many aspects which deserve further
vestigation. For instance, it would be important
understand how to disentangle finite-size (1/J ) and
finite-tension (1/

√
λ ) effects: We have interpreted th

odd powers in 1/J as quantum corrections to classic
contributions. They correspond to 1/

√
λ corrections to

the Bethe equations. Also, when extrapolating to p
turbative gauge theory, these terms should go away
the other hand, the corrections at even powers in 1/J
remain and can be compared to gauge theory. Th
they correspond to finite-size (1/J ) corrections to the
thermodynamic limit. If we knew how to disentang
them, we could focus only on finite-tension effects a
find higher loop corrections to the Bethe equations26

Another direction to proceed would be to gen
alize the findings of[27] to finite 1/J . At O(1/J 2)

it was shown in generality that the one-loop ene
shift equals a regularized sum over fluctuation en
gies. As above, the regularization should be equiva
to adding quantum corrections to the Bethe equati
Now, the fluctuation energies and the energy shift
both be computed from the Bethe equations. By co
paring the two, one should thus be able to derive
complete one-loop quantum corrections as a con
tency requirement of the Bethe ansatz framework w
quantum mechanics.

In conclusion, we have found new effects in t
small effective coupling expansion of the one-lo
energy shift(5); these might be interpreted as a re
olution of the three-loop puzzle. We have also deriv
parts of the first quantum correction to the string sc
tering phase. This is given by the interpolating fun
tion (10) for the dressing phaseθ within the string
Bethe ansatz. It would be important to understand h
this phase behaves for finite values ofλ, not just for
small or strong coupling. In view of many exact r
sults for scattering phases in sigma models, e.g.,[47]
(see also[35] in the present context), this is not a hop
less goal. Also, the above argument of self-consis
quantum corrections seems suggestive in this di
tion.

26 Related issues and ideas have been discussed in[35] which
might be useful in this respect.
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Appendix A

Here we present some lengthy expressions wh
arise in the sum over frequenciese(n). The exact ex-
pression fore(n) is given in[25,28,29]

e(n) = 1

4κ
(ω1 + ω2 − ω3 − ω4) + 1

κ

√
n2 + κ2

+ 2

κ

√
n2 +J 2 − m2

− 2

κ

√
(n − γ )2 + 1

2

(
κ2 +J 2 − m2

)

(A.1)− 2

κ

√
(n + γ )2 + 1

2

(
κ2 +J 2 − m2

)
.

Here the first two terms correspond to bosonic fl
tuations alongAdS5, the third to bosonic fluctuation
alongS5 and the remaining two to fermionic fluctu
tions. The frequenciesω1, . . . ,ω4 are the solutions to
the quartic equation

(
ω2 − n2)2 − 4Jmκ2ω2

k
√

κ2 + k2

(A.2)

− 4

(
1− Jm

k
√

κ2 + k2

)(
ω

√
κ2 + k2 − kn

)2 = 0
ordered in magnitude from largest to smallest. T
shift γ is given by

(A.3)γ = κm√
κ2 + k2

κ2 −J 2 + k2

κ2 −J 2 + m2

and, finally,κ is determined by the equation

(A.4)
(
κ2 −J 2 − m2)√κ2 + k2 + 2J km = 0.

When we expand for largeJ assumingn = J x to
be of the orderJ , we obtain

eint(x) = (k − m)2

32J 4x2(1+ x2)7/2

× [−16m2 + (−3k2 + 14km − 75m2)x2

+ (
12k2 − 32km + 60m2)x4

+ (−16km − 16m2)x6]

+ (k − m)2

256J 6x4(1+ x2)11/2

× [(−256km3 + 256m4)
+ (

64k2m2 − 1536km3 + 1344m4)x2

+ (
15k4 − 248k3m + 1118k2m2

− 4624km3 + 2907m4)x4

+ (−180k4 + 1420k3m − 2168k2m2

− 3204km3 + 2276m4)x6

+ (
120k4 + 568k3m − 1892k2m2

− 1728km3 + 1076m4)x8

+ (
224k3m − 688k2m2 − 736km3

+ 368m4)x10

+ (
64k3m − 128k2m2 − 128km3

(A.5)+ 64m4)x12] +O
(
1/J 8).

Its singular part is given by

eint
sing(x) = − (k − m)2m2

2J 4x2
− (k − m)3m3

J 6x4

+ (k − m)2m2

4J 6x2

(
k2 − 2km − m2)

(A.6)+O
(
1/J 8).

We also state the large-n asymptotics ofeint(x) which
is agreement withe(J x)
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hep-

ep-

664
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543

04)

ep-

75,
eint(x) = − (k − m)2(k + m)m

x3

×
(

− 1

2J 4
+ k2 − 3km + m2

4J 6
+O

(
1/J 8))

(A.7)+O
(
1/x4).

Now we assumen to be fixed and expand. The re
ular part in this case was found in[29]

esum
reg (n) = (n4 − 4(k − m)mn2)1/2

4J 2

− 1

4J 2

[
n2 + (−2km + 2m2)]

− (n4 − 4(k − m)mn2)−1/2

16J 4

× [
n6 + (

6k2 − 22km + 12m2)n4

+ (−20k3m + 80k2m2

− 84km3 + 24m4)n2]

+ 1

16J 4

[
n4 + (

6k2 − 20km + 10m2)n2

+ (−8k3m + 30k2m2 − 28km3 + 6m4)]

+ (n4 − 4(k − m)mn2)−3/2

32J 6

× [
n12 + (

15k2 − 44km + 25m2)n10

+ (
15k4 − 218k3m + 603k2m2

− 556km3 + 164m4)n8

+ (−106k5m + 1068k4m2 − 3128k3m3

+ 3796k2m4 − 2014km5 + 384m6)n6

+ (
180k6m2 − 1656k5m3

+ 5256k4m4 − 7744k3m5

+ 5684k2m6 − 1960km7 + 240m8)n4]

− 1

32J 6

[
n6 + (

15k2 − 38km + 19m2)n4

+ (
15k4 − 128k3m + 279k2m2

− 202km3 + 44m4)n2

+ (−16k5m + 120k4m2 − 282k3m3

+ 262k2m4 − 94km5 + 10m6)]
(A.8)+O

(
1/J 8)
and the singular part reads

esum
sing(n) = − (k − m)2

32J 4

(
3k2 − 16km + 19m2)

+ (k − m)2n2

64J 6

(
45k2 − 162km + 153m2)

+ (k − m)2

256J 6

(
15k4 − 248k3m + 766k2m2

(A.9)− 752km3 + 91m4) +O
(
1/J 8).

It can be verified thateint
sing(x) = esum

reg (J x) and

esum
sing(n) = eint

reg(n/J ), at least as far as the expansi
goes.
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