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Abstract

Let S € M4(C) be a semigroup such that 1 is an eigenvalue of every s € S. It is shown
that S is reducible. A complete list of irreducible semigroups S C M3(C) with this spectral
property is given.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Irreducibility and other properties of semigroups of complex n x n matrices with
the property that 1 is an eigenvalue of every matrix have been studied in [2]. There
it was shown that for n = 3 and n > 5 there exist irreducible semigroups, and
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indeed groups, with this spectral property; the most natural examples being the spe-
cial orthogonal groups in odd dimensions or the image of a connected absolutely
simple algebraic group under the adjoint representation. While it is easy to see that
for n = 2 no such semigroup exists, the case n = 4 was left unanswered. The purpose
of this paper is to show that the same is true for n = 4. In the course of the proof,
some information on the structure of such semigroups in the n = 3 case is needed.
It was shown in [2] that every irreducible semigroup S C M3(C), such that 1 € o (s)
for every s € S, is conjugate to a subsemigroup of SO3(C). We sharpen this result,
giving a completely different proof. We refer the reader to [3,7] for the basic facts on
linear algebraic groups and their linear representations that are needed in this paper.

2. Semigroups of 3 x 3 matrices

The following result is a slight generalization of [2, Prop. 2.3]. For the sake of
completeness we give the whole proof.

Lemma 2.1. Let S C M, (C) be a semigroup such that 1 € o (s) for every s € S.
Assume that the Zariski closure S of S in M,,(C) contains an element of rank at most
two. Then S is reducible.

Proof. Observe that the condition that 1 is in the spectrum of every s in S is polyno-
mial, so it is preserved under Zariski closure. Since S is a semigroup (see [10, Thm.
1.2]) we may therefore assume that S is Zariski closed. Denote by / the semigroup
ideal in S of all matrices with minimal positive rank, say r. By the assumption,
r € {1,2}. If r = 1, then the trace is constant on /, namely tr(s) = 1 for all s € 1.
By Kaplansky’s theorem [13, Cor. 2.2.3], we conclude that 7 is reducible. Now [13,
Lem. 2.1.10] implies that S is reducible as well.

Consider the case r = 2. If for every s € I the multiplicity of 1 in o (s) is 2, then
tr(s) = 2 for all s € I which completes the proof as before. Otherwise, pick a € 1
with o (a) 2 {1, o}, where @ # 0, 1. Without loss of generality we may assume that
a is a diagonal matrix diag(1l, «, 0, ..., 0). Given s = (Sij)?,j=1 e Sand k € {1, 2},

the characteristic polynomial of a¥s is equal to
(3% — (11 + oFs)h 4+ aF (51182 — s12521))2" 2.
Since 1 € o (aks) we have
1= s11 4o (s11522 — s12521 — 522) =0
for k = 1, 2. Because o #+ 1 we conclude that s;; = 1 for every s € S. Then S is

reducible by [13, Cor. 2.1.6]. [

Theorem 2.2. Let S C M3(C) be an irreducible semigroup such that 1 € o (s) for
every s € S. Then det(s) = 1 for every s € S, S is conjugate to a subsemigroup of
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SO3(C) and is either a finite group, isomorphic to Wy, S4 or Ws, or the Zariski
closure of S in M3(C) is conjugate to SO3(C).

Proof. Let G be the Zariski closure of S in M3(C). By the previous lemma we
have G C GL3(C), so G is a linear algebraic group by [12, Thm. 3.18]. Let G° be
the connected component of the identity in G. We now have to consider two cases
according to whether G is trivial or not.

Assume that G is trivial. It follows that G = S is a finite group. Observe that
the centre Z(G) of G is trivial. Let H := {g € G; det(g) = 1}. We want to show
that G = H, so we assume the contrary. Observe that H is not trivial since G is not
abelian. Since H is a normal subgroup of G, it is either irreducible or abelian and
completely reducible by Clifford’s theorem (see [6]). Suppose that the latter is the
case. Then the space of column vectors decomposes as a sum of three non-isomor-
phic one-dimensional weight spaces N; @ N2 @ N3 under the action of H. Since G
permutes these spaces, there is a homomorphism ¢ : G — S3 with H C kerg. It
follows that img C &3 is an abelian group and therefore im¢g >~ Z3 since by Ito’s
theorem 3 divides [G : ker ¢] (see [6, Cor. 53.18]). Now, let g € G be such that
g ¢ kerg. It is easy to see that in the basis, corresponding to the decomposition
described above, g can be written as g = pd, where p is a permutation matrix cor-
responding to a cycle of length three and d = diag(w, B, y) is a diagonal matrix.
It follows that det(g) = afy and g> = afy I. Recall that the centre of G is trivial
which implies det(g) = 1; a contradiction.

It follows that the group H is irreducible. Observe that the conditions det(h) = 1
and 1 € o (h) forevery h € H together imply that tr(h) € R forevery i € H because
H is finite. The trace is also real on the (simple) R-subalgebra A C M3(C) spanned
by H. Since H C M3(C) is irreducible we have A ®g C = M3(C) so A is a central
simple R-algebra. For dimensional reasons it follows that A is isomorphic to M3(R),
whence conjugate to M3(R) by Skolem—Noether theorem. So we may assume, after
conjugation, that H is contained in M3(R). It is well known that every finite (com-
pact) group of invertible real matrices is conjugate to a group of real orthogonal
matrices (see [6]). This, combined with the fact that det(h) = 1 for every h € H,
allows us to assume, again after conjugation, that H is contained in SO3(R). It is
well known (see [9, Chapter 15]) that H is then isomorphic to one of the following
groups: Wy, Sy or As. Observe also, that the natural homomorphism G — Aut(H)
is injective. We now consider the three possible cases. If H is isomorphic to 21y, then
G is either isomorphic to 24 and therefore G = H or G is isomorphic to Sy (see
[11]). In the second case we observe that of the two non-equivalent representations
of &4 of degree three only the one, say 7, with the property det(7(g)) = 1 for every
g € ©4 has the property that 1 € o (r(g)) for every g € 4. It then follows G = H
by the definition of the group H. If H is isomorphic to Sy, then G = H since every
automorphism of S is inner. Finally, if H is isomorphic to 25, then G = H since
there is no irreducible representation of S5 of degree three. This completes the proof
in the case where GV is trivial.
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If G is not trivial, then it is clearly a reductive group by Clifford’s theorem
and can be written as an almost direct product of its central torus 7 and its de-
rived subgroup H = (G, G%), where both T and H are normal in G. We want
to show that T is trivial, so we assume the contrary. Since 7 is not central in G,
the space of column vectors N decomposes as the sum of three one-dimensional
weight spaces N = N| @ N, @ N3, with the corresponding characters y; : T — C*
non-trivial and mutually distinct. But there exists # € T, such that x(¢) # 1 for
every non-trivial character y of 7 (see [3, Prop. 8.8]). It follows that 1 ¢ o (¢); a
contradiction. Therefore, G is a semisimple group. For dimensional reasons, the
only two possibilities are that G° is of type A, and therefore equal to SL3(C) or
that G is of type A; and therefore isomorphic, and even conjugate, to SO3(C).
The first possibility is ruled out by the spectral condition on G, therefore G is
isomorphic to SO3(C). Again we consider the natural morphism G — Aut(GY) of
algebraic groups, which is clearly injective. Since every (algebraic) automorphism
of SO3(C) is inner (see [3]), it follows that G = GV is conjugate to SO3(C) as
claimed. O

We record the following immediate corollary of this theorem.

Corollary 2.3. Let S C M3(C) be an irreducible semigroup, such that 1 € o (s) for
alls € S. Then everys — I, s € S, has either rank two or zero.

3. Semigroups of 4x4 matrices

The purpose of this section is to show that every semigroup S C M4(C) such that
1 € o(s) for every s € S is reducible. We first consider the possibility that S is a
finite simple group of invertible matrices.

Lemma 3.1. Let G C GL4(C) be an irreducible finite group such that 1 € o (g) for
every g € G. Then G is not simple.

Proof. After checking the list of all possible finite simple groups with an irreducible
character of degree 4 (see [1,8]) and using the isomorphisms of finite simple groups
of small order (see [5]) it follows that, up to isomorphism, the only finite simple
group with an irreducible character of degree 4 is the alternating group s and this
character is unique. Let = denote the corresponding representation of 2[5 and let
a € Us be any element of order 5. It is easy to see that 1 ¢ o (7 (a)). O

Next we consider the possibility that S is a finite group of invertible matrices.

Proposition 3.2. Let G C GL4(C) be a finite group such that 1 € o(g) for every
g € G. Then G is reducible.
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Proof. Assume that there exist irreducible finite groups in G L4(C) such that 1 is an
eigenvalue of every element. Let G be such a group with the minimal possible order.
By the above lemma G is not simple, so it contains a non-trivial maximal normal
subgroup H. By our assumptions H cannot act irreducibly.

Suppose that H is not abelian. By Clifford’s theorem the space of column vec-
tors decomposes as V| & V» for some subspaces Vi, V2 of dimension 2, on which
H acts irreducibly. Let 71, 75 be the corresponding representations. If H' is the
derived subgroup of H then forh € H' we have 1 € o (m;(h)),i = 1, 2, if and only if
7;i(h) = . So every element i € H' is either of the form 771 (h) @ I or I & w2 (h).
Now, by our assumptions there exist h; € H', i = 1, 2, such that m; (h;) # I>. But
then i = h1hy € H' does not have eigenvalue 1; a contradiction. This shows that H
must be abelian.

Itis well known [14, Lemma 1.12] that the simple group G/H embeds into &, for
some r < 4 in this case. Hence G/H is isomorphic either to Z; or Z3. On the other
hand 4 divides [G : H] by Ito’s theorem, see [6, Cor. 53.18]; a contradiction. [

We now consider the possibility that the semigroup S contains an element of rank
at most three.

Proposition 3.3. Let S C M4(C) be a semigroup such that 1 € o (s) foreverys € S.
Assume that S contains an element of rank at most three. Then S is reducible.

Proof. Again, we can assume that S is Zariski closed in M4(C). We want to show
that S is reducible, so we assume the contrary. Then the ideal / C S of elements of
rank at most three is irreducible as well, so we may assume S = /. It then follows
from Lemma 2.1 that every s € § has rank three. Let J C S be the kernel of S, which
exists by [12, 3.28] and is completely simple. In fact we get S = J, see [10, Thm.
3.5]. We identify S with its Rees matrix presentation .# (G, X, Y; P), where X, Y
are non-empty (possibly infinite) sets, G is a maximal subgroup of S and P = (p;;)
is a Y x X sandwich matrix with entries in G. So G € eM4(C)e for an idempotent
e of rank 3 which is the identity of G, whence G is a subgroup of GL3(C). Let P be
the matrix over C obtained by erasing the matrix brackets in every entry of the matrix
P. It is known that irreducibility of S is equivalent to the condition rk(P) = 4 [10,
Thm. 4.26]. Therefore, there exists a 2x2 submatrix Q of P such that rk(a) =4,

Say
_ [ Pim Pin
Q <pjm pjn) '
Let T=./(G, 2, 2; Q) be the corresponding subsemigroup of S. In other words,
T consists of all elements (g, «, B) € # (G, X,Y; P) such that « € {m,n}, B €
{i, j}. By the criterion used above, T also is irreducible. Hence, replacing S by T

we may assume that S = T, whence P = Q and |X| = |Y| = 2. It is well known
that P may be normalized in such a way that every entry in the first row and every
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entry in the first column of P is the identity matrix, see [4, Cor. 3.17]. Notice that
G = eSe is an irreducible subgroup of G L3(C). As shown in Corollary 2.3, the rank
of por — I iseither O or 2. Therefore, P has rank 3 or 5. This contradiction completes
the proof of the proposition. [

We are now in a position to prove the main result of this paper.

Theorem 3.4. Let S C M4(C) be a semigroup such that 1 € o (s) for every s € S.
Then S is reducible.

Proof. Assume that S is irreducible and let G be the Zariski closure of S in M4(C).
By the previous proposition we have G C G L4(C), so G is a linear algebraic group
by [12, Thm. 3.18]. Clearly, G is irreducible and 1 € o(g) for every g € G. Let
G denote the connected component of the identity in G. If it were trivial, then G
would be an irreducible finite group, but this is impossible by Proposition 3.2. So
we may assume that G° is not trivial. Since it is a normal subgroup of G, Clif-
ford’s theorem implies that G is a reductive group. As such, it is an almost direct
product of its central torus 7 and its derived group H = (G, G") which is semi-
simple, where both 7 and H are normal in G. Assume that T is not trivial. Since
T is not central in G, the space N of column vectors decomposes under the action
of T either as the sum of two weight spaces N = Nj @ N, or as the sum of four
weight spaces N = N1 @ - - - & N4, where in both cases the corresponding charac-
ters x; : T — C* are non-trivial and mutually distinct. But, again, there exists z € T,
such that x () # 1 for every non-trivial character y of 7. It follows that 1 ¢ o (¢); a
contradiction. Therefore, G° = H is a semisimple group. We now consider different
possibilities for G°. If it acts completely reducibly on N, then for dimensional rea-
sons GV is either of type Aj or A + Aj. In either case there exists a g € G such
that 1 ¢ o(g); a contradiction. If it acts irreducibly on N, then the possible types for
GOare Ay, Ay + Ay, Az and Bj. Again, it is easy to see that in each case there exists
an element g € G such that 1 ¢ o (g); a contradiction. [J
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