## Available online at www.sciencedirect.com



# On semigroups of matrices with eigenvalue 1 in small dimensions 

Janez Bernik ${ }^{\text {a,*, Jan Okniński }}{ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia<br>${ }^{\mathrm{b}}$ Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland<br>Received 15 July 2004; accepted 6 March 2005<br>Available online 22 April 2005<br>Submitted by T.J. Laffey

## Abstract

Let $S \subset M_{4}(\mathbb{C})$ be a semigroup such that 1 is an eigenvalue of every $s \in S$. It is shown that $S$ is reducible. A complete list of irreducible semigroups $S \subset M_{3}(\mathbb{C})$ with this spectral property is given.
© 2005 Elsevier Inc. All rights reserved.
Keywords: Matrices with eigenvalue 1; Groups and semigroups of matrices; Reducibility

## 1. Introduction

Irreducibility and other properties of semigroups of complex $n \times n$ matrices with the property that 1 is an eigenvalue of every matrix have been studied in [2]. There it was shown that for $n=3$ and $n \geqslant 5$ there exist irreducible semigroups, and

[^0]indeed groups, with this spectral property; the most natural examples being the special orthogonal groups in odd dimensions or the image of a connected absolutely simple algebraic group under the adjoint representation. While it is easy to see that for $n=2$ no such semigroup exists, the case $n=4$ was left unanswered. The purpose of this paper is to show that the same is true for $n=4$. In the course of the proof, some information on the structure of such semigroups in the $n=3$ case is needed. It was shown in [2] that every irreducible semigroup $S \subset M_{3}(\mathbb{C})$, such that $1 \in \sigma(s)$ for every $s \in S$, is conjugate to a subsemigroup of $\mathrm{SO}_{3}(\mathbb{C})$. We sharpen this result, giving a completely different proof. We refer the reader to [3,7] for the basic facts on linear algebraic groups and their linear representations that are needed in this paper.

## 2. Semigroups of $\mathbf{3 \times 3}$ matrices

The following result is a slight generalization of [2, Prop. 2.3]. For the sake of completeness we give the whole proof.

Lemma 2.1. Let $S \subset M_{n}(\mathbb{C})$ be a semigroup such that $1 \in \sigma(s)$ for every $s \in S$. Assume that the Zariski closure $\bar{S}$ of $S$ in $M_{n}(\mathbb{C})$ contains an element of rank at most two. Then $S$ is reducible.

Proof. Observe that the condition that 1 is in the spectrum of every $s$ in $S$ is polynomial, so it is preserved under Zariski closure. Since $\bar{S}$ is a semigroup (see [10, Thm. 1.2]) we may therefore assume that $S$ is Zariski closed. Denote by $I$ the semigroup ideal in $S$ of all matrices with minimal positive rank, say $r$. By the assumption, $r \in\{1,2\}$. If $r=1$, then the trace is constant on $I$, namely $\operatorname{tr}(s)=1$ for all $s \in I$. By Kaplansky's theorem [13, Cor. 2.2.3], we conclude that $I$ is reducible. Now [13, Lem. 2.1.10] implies that $S$ is reducible as well.

Consider the case $r=2$. If for every $s \in I$ the multiplicity of 1 in $\sigma(s)$ is 2 , then $\operatorname{tr}(s)=2$ for all $s \in I$ which completes the proof as before. Otherwise, pick $a \in I$ with $\sigma(a) \supseteq\{1, \alpha\}$, where $\alpha \neq 0,1$. Without loss of generality we may assume that $a$ is a diagonal matrix $\operatorname{diag}(1, \alpha, 0, \ldots, 0)$. Given $s=\left(s_{i j}\right)_{i, j=1}^{n} \in S$ and $k \in\{1,2\}$, the characteristic polynomial of $a^{k} s$ is equal to

$$
\left(\lambda^{2}-\left(s_{11}+\alpha^{k} s_{22}\right) \lambda+\alpha^{k}\left(s_{11} s_{22}-s_{12} s_{21}\right)\right) \lambda^{n-2}
$$

Since $1 \in \sigma\left(a^{k} s\right)$ we have

$$
1-s_{11}+\alpha^{k}\left(s_{11} s_{22}-s_{12} s_{21}-s_{22}\right)=0
$$

for $k=1,2$. Because $\alpha \neq 1$ we conclude that $s_{11}=1$ for every $s \in S$. Then $S$ is reducible by [13, Cor. 2.1.6].

Theorem 2.2. Let $S \subset M_{3}(\mathbb{C})$ be an irreducible semigroup such that $1 \in \sigma(s)$ for every $s \in S$. Then $\operatorname{det}(s)=1$ for every $s \in S, S$ is conjugate to a subsemigroup of
$\mathrm{SO}_{3}(\mathbb{C})$ and is either a finite group, isomorphic to $\mathfrak{H}_{4}, \mathfrak{S}_{4}$ or $\mathfrak{A}_{5}$, or the Zariski closure of S in $\mathrm{M}_{3}(\mathbb{C})$ is conjugate to $\mathrm{SO}_{3}(\mathbb{C})$.

Proof. Let $G$ be the Zariski closure of $S$ in $M_{3}(\mathbb{C})$. By the previous lemma we have $G \subset G L_{3}(\mathbb{C})$, so $G$ is a linear algebraic group by [12, Thm. 3.18]. Let $G^{0}$ be the connected component of the identity in $G$. We now have to consider two cases according to whether $G^{0}$ is trivial or not.

Assume that $G^{0}$ is trivial. It follows that $G=S$ is a finite group. Observe that the centre $Z(G)$ of $G$ is trivial. Let $H:=\{g \in G ; \operatorname{det}(g)=1\}$. We want to show that $G=H$, so we assume the contrary. Observe that $H$ is not trivial since $G$ is not abelian. Since $H$ is a normal subgroup of $G$, it is either irreducible or abelian and completely reducible by Clifford's theorem (see [6]). Suppose that the latter is the case. Then the space of column vectors decomposes as a sum of three non-isomorphic one-dimensional weight spaces $N_{1} \oplus N_{2} \oplus N_{3}$ under the action of $H$. Since $G$ permutes these spaces, there is a homomorphism $\varphi: G \rightarrow \mathfrak{E}_{3}$ with $H \subset \operatorname{ker} \varphi$. It follows that $\operatorname{im} \varphi \subset \mathbb{S}_{3}$ is an abelian group and therefore $\operatorname{im} \varphi \simeq \mathbb{Z}_{3}$ since by Ito's theorem 3 divides $[G: \operatorname{ker} \varphi$ ] (see [6, Cor. 53.18]). Now, let $g \in G$ be such that $g \notin \operatorname{ker} \varphi$. It is easy to see that in the basis, corresponding to the decomposition described above, $g$ can be written as $g=p d$, where $p$ is a permutation matrix corresponding to a cycle of length three and $d=\operatorname{diag}(\alpha, \beta, \gamma)$ is a diagonal matrix. It follows that $\operatorname{det}(g)=\alpha \beta \gamma$ and $g^{3}=\alpha \beta \gamma I$. Recall that the centre of $G$ is trivial which implies $\operatorname{det}(g)=1$; a contradiction.

It follows that the group $H$ is irreducible. Observe that the conditions $\operatorname{det}(h)=1$ and $1 \in \sigma(h)$ for every $h \in H$ together imply that $\operatorname{tr}(h) \in \mathbb{R}$ for every $h \in H$ because $H$ is finite. The trace is also real on the (simple) $\mathbb{R}$-subalgebra $A \subset M_{3}(\mathbb{C})$ spanned by $H$. Since $H \subset M_{3}(\mathbb{C})$ is irreducible we have $A \otimes_{\mathbb{R}} \mathbb{C}=M_{3}(\mathbb{C})$ so $A$ is a central simple $\mathbb{R}$-algebra. For dimensional reasons it follows that $A$ is isomorphic to $M_{3}(\mathbb{R})$, whence conjugate to $M_{3}(\mathbb{R})$ by Skolem-Noether theorem. So we may assume, after conjugation, that $H$ is contained in $M_{3}(\mathbb{R})$. It is well known that every finite (compact) group of invertible real matrices is conjugate to a group of real orthogonal matrices (see [6]). This, combined with the fact that $\operatorname{det}(h)=1$ for every $h \in H$, allows us to assume, again after conjugation, that $H$ is contained in $\mathrm{SO}_{3}(\mathbb{R})$. It is well known (see [9, Chapter 15]) that $H$ is then isomorphic to one of the following groups: $\mathfrak{A}_{4}, \mathfrak{S}_{4}$ or $\mathfrak{A}_{5}$. Observe also, that the natural homomorphism $G \rightarrow \operatorname{Aut}(H)$ is injective. We now consider the three possible cases. If $H$ is isomorphic to $\mathfrak{H}_{4}$, then $G$ is either isomorphic to $\mathfrak{U}_{4}$ and therefore $G=H$ or $G$ is isomorphic to $\mathfrak{\Im}_{4}$ (see [11]). In the second case we observe that of the two non-equivalent representations of $\Theta_{4}$ of degree three only the one, say $\pi$, with the property $\operatorname{det}(\pi(g))=1$ for every $g \in \mathfrak{S}_{4}$ has the property that $1 \in \sigma(\pi(g))$ for every $g \in \mathfrak{S}_{4}$. It then follows $G=H$ by the definition of the group $H$. If $H$ is isomorphic to $\mathfrak{S}_{4}$, then $G=H$ since every automorphism of $\mathfrak{S}_{4}$ is inner. Finally, if $H$ is isomorphic to $\mathfrak{A}_{5}$, then $G=H$ since there is no irreducible representation of $\mathfrak{S}_{5}$ of degree three. This completes the proof in the case where $G^{0}$ is trivial.

If $G^{0}$ is not trivial, then it is clearly a reductive group by Clifford's theorem and can be written as an almost direct product of its central torus $T$ and its derived subgroup $H=\left(G^{0}, G^{0}\right)$, where both $T$ and $H$ are normal in $G$. We want to show that $T$ is trivial, so we assume the contrary. Since $T$ is not central in $G$, the space of column vectors $N$ decomposes as the sum of three one-dimensional weight spaces $N=N_{1} \oplus N_{2} \oplus N_{3}$, with the corresponding characters $\chi_{i}: T \rightarrow C^{*}$ non-trivial and mutually distinct. But there exists $t \in T$, such that $\chi(t) \neq 1$ for every non-trivial character $\chi$ of $T$ (see [3, Prop. 8.8]). It follows that $1 \notin \sigma(t)$; a contradiction. Therefore, $G^{0}$ is a semisimple group. For dimensional reasons, the only two possibilities are that $G^{0}$ is of type $A_{2}$ and therefore equal to $S L_{3}(\mathbb{C})$ or that $G^{0}$ is of type $A_{1}$ and therefore isomorphic, and even conjugate, to $\mathrm{SO}_{3}(\mathbb{C})$. The first possibility is ruled out by the spectral condition on $G^{0}$, therefore $G^{0}$ is isomorphic to $\mathrm{SO}_{3}(\mathbb{C})$. Again we consider the natural morphism $G \rightarrow \operatorname{Aut}\left(G^{0}\right)$ of algebraic groups, which is clearly injective. Since every (algebraic) automorphism of $\mathrm{SO}_{3}\left(\mathbb{C}\right.$ ) is inner (see [3]), it follows that $G=G^{0}$ is conjugate to $\mathrm{SO}_{3}(\mathbb{C}$ ) as claimed.

We record the following immediate corollary of this theorem.
Corollary 2.3. Let $S \subset M_{3}(\mathbb{C})$ be an irreducible semigroup, such that $1 \in \sigma(s)$ for all $s \in S$. Then every $s-I, s \in S$, has either rank two or zero.

## 3. Semigroups of $4 \times 4$ matrices

The purpose of this section is to show that every semigroup $S \subset M_{4}(\mathbb{C})$ such that $1 \in \sigma(s)$ for every $s \in S$ is reducible. We first consider the possibility that $S$ is a finite simple group of invertible matrices.

Lemma 3.1. Let $G \subset G L_{4}(\mathbb{C})$ be an irreducible finite group such that $1 \in \sigma(g)$ for every $g \in G$. Then $G$ is not simple.

Proof. After checking the list of all possible finite simple groups with an irreducible character of degree 4 (see $[1,8]$ ) and using the isomorphisms of finite simple groups of small order (see [5]) it follows that, up to isomorphism, the only finite simple group with an irreducible character of degree 4 is the alternating group $\mathfrak{H}_{5}$ and this character is unique. Let $\pi$ denote the corresponding representation of $\mathfrak{A}_{5}$ and let $a \in \mathfrak{A}_{5}$ be any element of order 5 . It is easy to see that $1 \notin \sigma(\pi(a))$.

Next we consider the possibility that $S$ is a finite group of invertible matrices.
Proposition 3.2. Let $G \subset G L_{4}(\mathbb{C})$ be a finite group such that $1 \in \sigma(g)$ for every $g \in G$. Then $G$ is reducible.

Proof. Assume that there exist irreducible finite groups in $G L_{4}(\mathbb{C})$ such that 1 is an eigenvalue of every element. Let $G$ be such a group with the minimal possible order. By the above lemma $G$ is not simple, so it contains a non-trivial maximal normal subgroup $H$. By our assumptions $H$ cannot act irreducibly.

Suppose that $H$ is not abelian. By Clifford's theorem the space of column vectors decomposes as $V_{1} \oplus V_{2}$ for some subspaces $V_{1}, V_{2}$ of dimension 2 , on which $H$ acts irreducibly. Let $\pi_{1}, \pi_{2}$ be the corresponding representations. If $H^{\prime}$ is the derived subgroup of $H$ then for $h \in H^{\prime}$ we have $1 \in \sigma\left(\pi_{i}(h)\right), i=1,2$, if and only if $\pi_{i}(h)=I_{2}$. So every element $h \in H^{\prime}$ is either of the form $\pi_{1}(h) \oplus I_{2}$ or $I_{2} \oplus \pi_{2}(h)$. Now, by our assumptions there exist $h_{i} \in H^{\prime}, i=1,2$, such that $\pi_{i}\left(h_{i}\right) \neq I_{2}$. But then $h=h_{1} h_{2} \in H^{\prime}$ does not have eigenvalue 1 ; a contradiction. This shows that $H$ must be abelian.

It is well known [14, Lemma 1.12] that the simple group $G / H$ embeds into $\mathfrak{\Im}_{r}$ for some $r \leqslant 4$ in this case. Hence $G / H$ is isomorphic either to $\mathbb{Z}_{2}$ or $\mathbb{Z}_{3}$. On the other hand 4 divides [ $G: H$ ] by Ito's theorem, see [6, Cor. 53.18]; a contradiction.

We now consider the possibility that the semigroup $S$ contains an element of rank at most three.

Proposition 3.3. Let $S \subset M_{4}(\mathbb{C})$ be a semigroup such that $1 \in \sigma(s)$ for every $s \in S$. Assume that $S$ contains an element of rank at most three. Then $S$ is reducible.

Proof. Again, we can assume that $S$ is Zariski closed in $M_{4}(\mathbb{C})$. We want to show that $S$ is reducible, so we assume the contrary. Then the ideal $I \subset S$ of elements of rank at most three is irreducible as well, so we may assume $S=I$. It then follows from Lemma 2.1 that every $s \in S$ has rank three. Let $J \subset S$ be the kernel of $S$, which exists by $[12,3.28]$ and is completely simple. In fact we get $S=J$, see [10, Thm. 3.5]. We identify $S$ with its Rees matrix presentation $\mathscr{M}(G, X, Y ; P)$, where $X, Y$ are non-empty (possibly infinite) sets, $G$ is a maximal subgroup of $S$ and $P=\left(p_{i j}\right)$ is a $Y \times X$ sandwich matrix with entries in $G$. So $G \subseteq e M_{4}(\mathbb{C}) e$ for an idempotent $e$ of rank 3 which is the identity of $G$, whence $G$ is a subgroup of $G L_{3}(\mathbb{C})$. Let $\bar{P}$ be the matrix over $\mathbb{C}$ obtained by erasing the matrix brackets in every entry of the matrix $P$. It is known that irreducibility of $S$ is equivalent to the condition $\operatorname{rk}(\bar{P})=4[10$, Thm. 4.26]. Therefore, there exists a $2 \times 2$ submatrix $Q$ of $P$ such that $\operatorname{rk}(\bar{Q})=4$. Say

$$
Q=\left(\begin{array}{cc}
p_{i m} & p_{i n} \\
p_{j m} & p_{j n}
\end{array}\right)
$$

Let $T \cong \mathscr{M}(G, 2,2 ; Q)$ be the corresponding subsemigroup of $S$. In other words, $T$ consists of all elements $(g, \alpha, \beta) \in \mathscr{M}(G, X, Y ; P)$ such that $\alpha \in\{m, n\}, \beta \in$ $\{i, j\}$. By the criterion used above, $T$ also is irreducible. Hence, replacing $S$ by $T$ we may assume that $S=T$, whence $P=Q$ and $|X|=|Y|=2$. It is well known that $P$ may be normalized in such a way that every entry in the first row and every
entry in the first column of $P$ is the identity matrix, see [4, Cor. 3.17]. Notice that $G=e S e$ is an irreducible subgroup of $G L_{3}(\mathbb{C})$. As shown in Corollary 2.3, the rank of $p_{22}-I$ is either 0 or 2 . Therefore, $\bar{P}$ has rank 3 or 5 . This contradiction completes the proof of the proposition.

We are now in a position to prove the main result of this paper.
Theorem 3.4. Let $S \subset M_{4}(\mathbb{C})$ be a semigroup such that $1 \in \sigma(s)$ for every $s \in S$. Then $S$ is reducible.

Proof. Assume that $S$ is irreducible and let $G$ be the Zariski closure of $S$ in $M_{4}(\mathbb{C})$. By the previous proposition we have $G \subset G L_{4}(\mathbb{C})$, so $G$ is a linear algebraic group by [12, Thm. 3.18]. Clearly, $G$ is irreducible and $1 \in \sigma(g)$ for every $g \in G$. Let $G^{0}$ denote the connected component of the identity in $G$. If it were trivial, then $G$ would be an irreducible finite group, but this is impossible by Proposition 3.2. So we may assume that $G^{0}$ is not trivial. Since it is a normal subgroup of $G$, Clifford's theorem implies that $G^{0}$ is a reductive group. As such, it is an almost direct product of its central torus $T$ and its derived group $H=\left(G^{0}, G^{0}\right)$ which is semisimple, where both $T$ and $H$ are normal in $G$. Assume that $T$ is not trivial. Since $T$ is not central in $G$, the space $N$ of column vectors decomposes under the action of $T$ either as the sum of two weight spaces $N=N_{1} \oplus N_{2}$ or as the sum of four weight spaces $N=N_{1} \oplus \cdots \oplus N_{4}$, where in both cases the corresponding characters $\chi_{i}: T \rightarrow \mathbb{C}^{*}$ are non-trivial and mutually distinct. But, again, there exists $t \in T$, such that $\chi(t) \neq 1$ for every non-trivial character $\chi$ of $T$. It follows that $1 \notin \sigma(t) ;$ a contradiction. Therefore, $G^{0}=H$ is a semisimple group. We now consider different possibilities for $G^{0}$. If it acts completely reducibly on $N$, then for dimensional reasons $G^{0}$ is either of type $A_{1}$ or $A_{1}+A_{1}$. In either case there exists a $g \in G^{0}$ such that $1 \notin \sigma(g)$; a contradiction. If it acts irreducibly on $N$, then the possible types for $G^{0}$ are $A_{1}, A_{1}+A_{1}, A_{3}$ and $B_{2}$. Again, it is easy to see that in each case there exists an element $g \in G^{0}$ such that $1 \notin \sigma(g)$; a contradiction.

## References

[1] A. Balog, C. Bessenrodt, J. Olsson, K. Ono, Prime power degree representations of the symmetric and alternating groups, J. Lond. Math. Soc. 64 (2) (2001) 344-356.
[2] J. Bernik, R. Drnovšek, T. Košir, M. Omladič, H. Radjavi, Irreducible semigroups of matrices with eigenvalue one, Semigroup Forum 67 (2003) 271-287.
[3] A. Borel, Linear algebraic groups, in: Graduate Texts in Mathematics, second ed., vol. 126, Sprin-ger-Verlag, New York, 1991.
[4] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, vol. I, American Mathematical Society, Providence, 1961.
[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[6] C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, 1962.
[7] R. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 1998.
[8] G. Malle, A.E. Zalesskiǐ, Prime power degree representations of quasi-simple groups, Arch. Math. 77 (2001) 461-468.
[9] P.M. Neumann, G.A. Stoy, E.C. Thompson, Groups and Geometry, Oxford University Press, Oxford, 1994.
[10] J. Okniński, Semigroups of Matrices, World Scientific, Singapore, 1998.
[11] D.S. Passman, Permutation Groups, Benjamin, New York, 1968.
[12] M.S. Putcha, Linear algebraic monoids, in: Lond. Math. Soc. Lecture Note Series, vol. 133, Cambridge University Press, Cambridge, 1988.
[13] H. Radjavi, P. Rosenthal, Simultaneous Triangularization, Springer-Verlag, New York, 2000.
[14] B.A.F. Wehrfritz, Infinite Linear Groups, Springer-Verlag, Berlin, 1973.


[^0]:    ${ }^{4}$ The work of the first author was supported in part by the Ministry of Education, Science and Sport of Slovenia. The work of the second author was supported by a KBN research grant (Poland).

    * Corresponding author.

    E-mail addresses: janez.bernik@fmf.uni-lj.si (J. Bernik), okninski@mimuw.edu.pl (J. Okniński).

    0024-3795/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
    doi:10.1016/j.laa.2005.03.006

