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Abstract 

A new concept-learning method called CLIP (concept learning from inference patterns) is 
proposed that learns new concepts from inference patterns, not from positive/negative examples 
that most conventional concept learning methods use. The learned concepts enable an efficient 
inference on a more abstract level. We use a colored digraph to represent inference patterns. The 
graph representation is expressive enough and enables the quantitative analysis of the inference 
pattern frequency. The learning process consists of the following two steps: ( 1) Convert the 
original inference patterns to a colored digraph, and (2) Extract a set of typical patterns which 
appears frequently in the digraph. The basic idea is that the smaller the digraph becomes, the 
smaller the amount of data to be handled becomes and, accordingly, the more efficient the 
inference process that uses these data. Also, we can reduce the size of the graph by replacing 
each frequently appearing graph pattern with a single node, and each reduced node represents 
a new concept. Experimentally, CLIP automatically generates multilevel representations from a 
given physical/single-level representation of a carry-chain circuit. These representations involve 
abstract descriptions of the circuit, such as mathematical and logical descriptions. 

1. Introduction 

Human beings use various abstract concepts, such as logic and mathematics, to ac- 
quire new knowledge. These concepts are crucial to achieve scientific and technical 
breakthroughs. We also use various concepts in daily life. For example, we sometimes 
complain, He is too stubborn CO negotiate. In this case, stubborn represents a certain 
characteristic of the person, and we can deduce some conclusion, such as Find another 
person to discuss the problem, without considering the details. 

How do human beings acquire these “concepts”? 

* Corresponding author. 
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Cin 

Fig. I. Carrychain circuit 

Finding some answer to this question and representing it on a computer system is an 
important theme in artificial intelligence. 

To examine this question in more detail, we use qualitative simulation traces as an 

example of the concept utilization. Fig. 1 shows a carry-chain circuit [9] which is part 
of the CPU, and Fig. 2 shows the qualitative simulation [4] results of its behavior, 

i.e., the changes in current, voltage, etc. Note that Figs. 2(a), 2(b) and 2(c) show 
the same information, all displaying the dependency among the data, with the only 
difference among them being in the layout of the data. In Fig. 2(a), the location of 

each datum is randomly generated, and the arrows display how a datum is calculated 
from other data. In Fig. 2(b), the spatial allocation of the data is selected by hand. 
The X-axis is sorted using the time-step information from the simulation along with 

mythical causality [4], and the Y-axis is sorted using the name of the data. In other 
words, Fig. 2(b) uses some knowledge about qualitative simulation to lay out the data 
shown in Fig. 2(a). Fig. 2(c) also uses specific knowledge about the carry-chain circuit, 

here, the NOT circuit data are located in the upper portion of the figure, and the NOR 
circuit data are located below. 

Which jigure is best.7 

We think Fig. 2(c) is the best figure. It seems to be the best in various situations, e.g., 
to explain the data dependency between the data or to memorize the whole structure. We 
cannot imagine a situation in which Fig. 2(a) is the best to use. Although the data that 

Fig. 2 shows are for the physical behavior of circuits, such as the changes in voltages 
and currents, we seem to use abstract-level concepts, such as the behavior of NOR/NOT 
circuits, in understanding the figure. Here, we use abstract-level concepts to leave out 
unnecessary details by giving a new concept name to the aggregation of phenomena, 
and abstract-level concepts are crucial to understand this complex figure by reducing 
complexity. 

Based on the above introspection, we assume that 

A concept is something which makes inference easiel; 
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(a) Naive Inference Pattern (b) Sorted by 
Qualitative Reasoning Knowledge 

(c) Sorted by Circuit Knowledge 

Fig. 2. Example of concept usage. 
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and propose a new concept-learning method, concept learning from inference patterns 
(CLIP). To find new concepts that satisfy this assumption, CLIP analyses inference 

processes and tries to extract typical patterns from them. Each extracted pattern corre- 

sponds to a new abstract concept by use of which inference is made efficient due to the 
reduced complexity. CLIP’s most important characteristic is that it does not require any 

prespecified knowledge about abstract concepts. For example, CLIP analyses qualitative 
simulation traces of the physical behavior (i.e., the changes in voltage and current) of 
the digital circuits, and finds the logical concepts, such as NOR and NOT, without being 

provided any knowledge about logic. Here, the concepts NOR and NOT are generated 
to achieve an efficient inference. 

Another important characteristic of CLIP is that it also generates a set of rules to 

interpret new concepts, and these interpretation rules enable abstract-level inference. 
This distinguishes CLIP from conventional concept learning methods, such as that in 

[ 31, which do not aim to make inference at the abstract level. 
The rest of the paper is organized as follows: Section 2 outlines the basic idea of 

CLIP and the algorithm for extracting typical patterns, and Section 3 presents experi- 

mental results. Section 4 analyses the factors which affect the generated concepts and 
their structures with additional experimentation. Then, Section 5 examines related work, 
Section 6 discusses future issues, and Section 7 summarizes the results, 

2. Concept learning based on colored digraph representation 

CLIP analyzes the sample inference traces and extracts patterns in such a way that 

the new patterns can be used to make the inference more efficient. The learning process 
is outlined as follows: 

l First, sample traces of the inference are converted into a colored digraph. We use 
a colored digraph to represent inference traces. Each graph node represents the 
data referred to or produced by the inference, and the direction of the graph edge 
represents the direction of the inference. Each node has two kinds of color. The 

tirst color corresponds to the identifier of the inference rule that is used to calculate 
the value of the data, and the second color corresponds to the value itself. In the 
circuit domain, the first color corresponds to the circuit equation number (more 
precisely, the identifier of the interpretation rule that is used to interpret the circuit 
equation), and the second color corresponds to the value of the voltage, current, etc. 

This graph representation enables the quantitative analysis of the inference pattern 
frequency. 

l Next, based on the frequency analysis of the inference pattern, a parallel-search 
algorithm extracts a set of typical patterns which frequently appear in the digraph. 

The basic idea is: 
l We can reduce the size of the graph by replacing each frequently appearing graph 

pattern with a single node. Any pattern that appears often in an inference process 
probably represents an important concept. 

l The size of the graph corresponds to the amount of data referred to or produced by 
the inference engine. Accordingly, as the graph converted from the inference traces 
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Fig. 3. CLIP: concept learning from inference patterns. 

becomes smaller, the inference becomes easier. 
Fig. 3 summarizes this idea. The upper left part of Fig. 3 shows a simple digital circuit, 
and the lower part shows the inference trace that analyzes the physical behavior of 
the circuit. The graph edge in the lower part shows the data dependency. The numeral 
in each node indicates which of the interpretation rules (see Section 3.2) is used in 
that node to derive the value of the variable (vi, lit Qi+ etc.) attached to the node. For 
example, the value of the voltage VI is calculated from the electric charge Ql using 
Rule 2 in Fig. 3, and the value of the current I1 is calculated from voltages Vj and V,, 
using Rule 3. CLIP analyzes this inference trace and extracts typical patterns, such as 
The rule sequence 2, 3 and 4 is frequently used befare Rule I, from the graph. 

CLIP’s output for this case is summarized in the upper right part of Fig. 3. Here, 
the new inference Rule 5 is used to calculate the electric charge Qz from Ql, and the 
smaller amount of data in the inference process decreases the cost of the inference. 
Furthermore, the correspondence of the new Rule 5 and the original rule sequence 1, 
2, 3 and 4 can be used to restore the original information involved in the lower graph 
from the upper right graph. 

Note that the pattern found by CLIP corresponds to the new abstract concepts which 
are not explicitly represented in the original graph. In Fig. 3, the lower part of the graph 
represents the inference process about the physical quantities, such as the voltage and 
the current, and the upper right graph represents the inference process about the logical 
values (here, [H/L] corresponds to [True/False] ). The lower part of the graph does 
not have any explicit information about logical behaviors. 

The extraction of patterns is solely based on finding repetitions of inference pat- 
terns in a colored graph, and no semantics are considered. This makes CLIP domain- 
independent. ’ 

* See. [ 171 for a recent study on other aspects and other application domains of CLIP. 
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Inference Pattern 

Colored Digraph. 

Diqraph in Tab!e 

Fig. 4. Inference pattern, colored digraph and representation. 

2.1. Colored digraph representation 

In the following discussion, we use qualitative reasoning traces as the input inference 
traces. The qualitative reasoning system we used employs the entity-relationship model 

[2] to represent the target object. For an electric circuit, the entity is a physical datum, 
such as the voltage or the current at a node, and the relationship between the entities 
is a circuit equation that describes the relationships of the physical data. The inference 

is performed by interpreting the relationship, i.e., the circuit equation, and calculating 
new values of the physical data. We also use a set of interpretation rules to describe 
how to use the circuit equations in calculating a new value for each datum. These rules 

describe the inference method for qualitative simulation. 
Fig. 4 shows an inference pattern, the corresponding colored digraph representation, 

and the table representation used to implement the CLIP program. In Fig. 4, the value of 
Data (I), i.e., V, is calculated from the value of Data (m) and Data (n) using Rule (L). 
Data (m) corresponds to Node (m), and the color of the node, Color(R), identifies 
the interpretation rule used to calculate the data value. Here, the incoming edges are 

ordered, and this edge position is also stored. (See Sections 2.2.1 and 3.3 for how to 
use the information about the edge position.) 

Fig. 5 shows partial results of qualitative simulation for a carry-chain circuit. The 
left-side graph shows the interpretation rule used to calculate the value of the data and 
the data dependency between the data. The right-side graph shows the qualitative values 
of the data. 

Similarly to Fig. 2(c), the X-axis is sorted using the time-step information from the 
simulation along with mythical causality, and the Y-axis is sorted using the name of the 
data. The leftmost names, e.g., v-op, i-c-oppd, etc., are the names of the data. The color 
of the graph node (*, 0, etc. in Fig. 5) in the left-side indicates the interpretation rule 
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Fig. 5. Sample input digraph. 

used to calculate the value of the data, and the arrows show the dependency between 

the data. The qualitative values shown in the right-side are: [ +] , [ 01, [-I, [s+] (small 

+), [vs+](very small +), [s-_I, and [vs-_I. 
This graph contains the information about data dependency, as well as information 

about how the interpretation rules calculate the output values from inputs. For example, 

the upper-most part of Fig. 5 shows that: the initial value of the voltage v-op is [0] 
(first line, first value), and the current i-c-oppd (the second line of the figure), i-e-oppu 
(the 34th line) and the interpretation rule El are used to calculate the next value ( [s+] : 
first line, second value) of v-op. 

In Fig. 5, the interpretation rule 0 (qualitative inference rule about the additive 
relationship) is used nine times. By analyzing the values of the variables in each 
of these occurrences, we can extract a qualitative inference rule about the additive 
relationship. In this case, the extracted rule is a subset of the additive relationship, 

I.e., “[vs-]+[s+]+[s+]“, “[O]+[s+]+[s+]“, and “[-]+[s+]-[-I”, and the 

missing relationship such as “[ --I + [ 0] + [ -1” is not necessary for the inference that 

corresponds to the input graph. 
The same technique can be applied to extract larger patterns, and this is what CLIP 

basically does. We can use the graph shown in Fig. 5 as the input graph. Since different 
traces are obtained for different initial values for the same circuit, there can be more 
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than one trace. CLIP can take as many graphs as necessary. Hereafter, we call these 
graphs collectively an input graph, i.e., the input graph can be a single large graph or a 

collection of small graphs. 
The CLIP user may select a subset of a graph to be processed by CLIP It may help 

to speed up learning by decreasing the amount of data. However, such preprocessing is 

not crucial to CLIP because it learns new concepts from a graph that represent certain 
characteristics of the environment, and thus, examples are embedded in the graph. 

Note that the spatial allocations of the nodes are carefully selected by hand on the 

basis of readability alone in Fig. 5. CLIP uses only topological information and does 

not have the benefit of visual information. In other words, CLIP only uses information 
involved in Fig. 2(a), and does not use domain-specific knowledge such as knowledge 
about the carry-chain circuit. 

2.2. Algorithm for finding typical patterns 

After the learning problem is encoded as a colored digraph, the key step is to extract 
typical patterns. (See Fig. 6.) Each pattern is interpreted in two ways: as an EBL macro 
rule, and as an interpretation rule. (See Section 3.2 for details.) In this section, we 
describe in detail the algorithm, called CLIP, for performing this task. CLIP is a beam- 
search algorithm, amenable to parallel implementation, that searches for typical patterns 

in the colored digraph. The objective is to find typical patterns that help rewrite the 
graph. In order to assist in the choice of desirable typical patterns, a selection criterion 
for comparing alternative rewritten graphs is provided to the CLIP algorithm. The search 
procedure focuses on obtaining a reasonably good solution, not necessarily the optimal 

one. 
Two different data structures, View and Pattern, are used to store the set of candidate 

patterns. Here, a Pattern stores a single pattern, and a via0 stores a set of patterns.2 In 
the digital circuit domain, Pattern stores a graph pattern that corresponds to a certain 
circuit behavior, e.g., behavior of NOR and NOT. viav stores a set of these Patterns. 

The method involves three basic operations: Pattern Modijcation, Pattern Combina- 

tion and View Selection. It starts with N views, and iteratively extends the patterns in 
the view by the first two operations (the old patterns are also retained) _ Here, N is an 
input parameter to specify the beam search width. In each iteration, the input graph is 
rewritten using patterns in each view and only the good views are retained. The heart 
of the CLIP procedure involves iteratively performing these basic operations. 

2.2.1. Pattern Modification 

In Pattern Modijcation, first a view is selected and the digraph is rewritten according 
to the patterns in the selected view. Each occurrence of the pattern in the input graph 
is replaced by a single node (Figs. 7(a) and 7(b)). This graph-rewriting procedure 
reduces the size of the graph by replacing each complex graph pattern with a single 

’ The current program uses an array structure to implement View, and a special Pattern, called null pattern, 
is used to indicate the absence of the pattern in the View. 
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node. Accordingly, as the graph converted from the inference traces becomes smaller, 
the inference becomes easier. 

Note that this graph-rewriting operation is different from the graph contraction in the 
following three ways: 

( I) Standard graph-matching methods check the equivalence of two graphs by con- 
sidering all possible edge combinations. In our algorithm, however, we adopt 
graph identity as our matching criterion. The incoming edges are ordered, and 

only the equivalence between the corresponding edges is examined. An important 
implication of this is that graph-matching can be done in polynomial time. In 
contrast to matching based on graph isomorphism (an NP-complete problem), 

matching based on graph identity has a time complexity that is O(Number of 
Nodes). This restriction does not seem to limit the class of learning tasks that 
the algorithm can handle. 

(2) The graph-matching procedure also checks the equivalence of node color. This 
also makes the matching efficient by further pruning the candidates. 

(3) If the data from the intermediate graph node is used to calculate another value 
(Fig. 7(a) ), the original node is retained. 

Fig. 8 shows how patterns are modified in this step. The reduced graph is analyzed 

and every possible pattern made up of two linked nodes is considered. These patterns 
are referred to as temporary patterns. Each such temporary pattern is then expanded 

based on patterns in the current view, and used to create new views. In the example, 
three new views, each with two patterns, are generated from the current view. Note that 
patterns in the parent view are also stored in the new views. By rewriting an expanded 
pattern first and then rewriting the original pattern, we get a smaller graph even if the 

expanded pattern does not rewrite all the occurrence of the original pattern. 
In the circuit domain, node color corresponds to circuit equation number (more 

precisely, interpretation rule number). The new color, therefore, corresponds to a new 
circuit equation which is translated from original equations. CLIP also uses node color 
which corresponds to the value of the data. However, pattern modification does not use 
this color (See Section 3.2 for this color). 

If the capacity of the view is exceeded, CLIP discards low-priority patterns judging 
from the result of (frequency of usage) x (size of pattern). Note that Pattern Mod- 

ijcution modifies Pattern in a stepwise manner. A single invocation of this operation 
modifies only one pattern, and therefore, multiple invocations are required to generate a 
complex pattern, e.g., a pattern that corresponds to NOR/ NOT circuits. 

2.2.2. Pattern Combination 

Pairs of existing views are combined to obtain new views. All possible combinations 
are considered. Again, if the capacity of the view is exceeded, low-priority patterns are 
discarded. 

2.2.3. View Selection 
Estimates are obtained for each view as to how much reduction in graph size can 

be expected after rewriting the input graph using patterns in that view, and only highly 
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Fig. 8. Pattern modification. 

ranked views are chosen, up to the allowable number of views. Note that the definition 
of the graph size is an important input for CLIP By changing this definition, CLIP can 
find various concepts from the same inputs. (See Section 4 for the details.) 

Fig. 9 illustrates how patterns evolve through iterations. In this example, the maximum 
number of views is limited to 4. In the first iteration, starting from null patterns, the 
pattern-modification step generates three views, each containing one pattern that consists 
of two nodes (e.g., l-2). In succeeding iterations, in addition to pattern modification, 
pattern combination is also performed. In pattern modification, all patterns in all views 
are considered in turn as candidates for modification. In each case, a new view is created 
consisting of the modified pattern appended to the original view. View selection is done 
after the pattern-modification and combination steps. The view-selection step selects the 
best N views (maximum number of views, which is a search parameter; 4 in Fig. 9) in 
each iteration. 

View selection is based on estimates of the relative effectiveness of views in graph- 
rewriting. These estimates are computed as follows: For each of the views Vprev;ous (that 
were selected in the previous iteration), the actual size C~xo~~( Vpmious) of the rewritten 
graph that results from applying patterns in that view to the graph is calculated at the 
beginning of the current iteration. For each new view Vcurmnr that is generated in the 
pattern-modification step, the estimated size C’Estimte ( V,,,,,) of the rewritten graph that 
would result from applying that view is calculated as a perturbation to the actual size of 
the rewritten graph due to the parent view Vprpyious. The graph size for views generated 
in the pattern-combination step is estimated as a linear combination of the two views 
involved in the combination. 
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The estimated size and the actual size (calculated at the beginning of the next itera- 
tion) may not agree. (See the difference between big and small marks at the top left of 
each view in Fig. 9.) However, the estimate is reasonable enough to ensure that good 

views are usually selected. The estimation process is necessary because computation 
of the actual size is computationally expensive. The graph size is estimated in pattern 

modification by 

CEstimote ( bmw~r 1 = ( 1 .O - a x F) x CErmt( Vprevious)~ 

F= 
Number of occurrences of temporary patterns @ -+ @ 

Number of occurrences of nodes B 0 

In the case of the pattern combination, 

CEstimate ( bmxmr 1 = ( 1 - PI x CEmct( VPrrviousl 1 + P x CEma( breoious2) 7 

where cy and /I are input parameters for the experiments. (See Sections 3 and 4 for 
the values and the results.) Note that graph-rewriting is performed only at the pattern- 
modification step (see Fig. 8)) and is limited to the maximum number of views. If the 
graphs were actually rewritten during view selection, more than 500 rewritings would 
be required in circuit domain examples, while the maximum number of views was set at 
15 (see Section 3.2). Obviously, then this size prediction represents a great cost saving. 

The pattern-finding algorithm explained in this section can be seen as a kind of genetic 
algorithm [ 71. Here, View corresponds to Chromosome, Pattern to Gene, Pattern Mod- 
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Fig. 10. Experimental result (resulting digraph) 

@cation to Mutation, Pattern Combination to Crossover, graph size to jitness function, 
and View Selection to Selection. 

3. Outline of experimental results 

3.1. Input and parameters 

We implemented the pattern-finding algorithm CLIP, described in the previous sec- 
tion, using the C programming language. An example of the graph-rewriting process 
performed by CLIP is shown in Fig. 10. The input graph was converted from the results 
of a qualitative simulation of the behavior of the carry-chain circuit shown in Fig. 1. 
The total number of nodes in the input graph was 2176 and the total number of edges 
was 2144. The carry-chain circuit has three boolean inputs, and the input graph involves 
the simulation results of eight (= 23) cases. The left-most part of Fig. 10 shows a subset 
of the input graph that corresponds to one such input case. 

The qualitative values used in the qualitative simulation are: [ +], [O], [-I, 
[s+] (small +), [ vs+] (very small +), [s-l, and [ vs-_I. By using this information 
about the magnitude of the value, the qualitative simulation system can express infor- 
mation such as: The current through the pull-up transistor is smaller than the current 
through the pull-down transistor. 

The graph size was evaluated using the following equations: 

c Exact = 

Number of Nodes 

+ Number of Edges 

+x (N umber of I/O Combinations of the Interpretation Rule,)’ 

+c (N umber of Inputs to the Pattern,)* 

- Number of Graph-Rewritings. (1) 

C,Qimte for Pattern Modijkation = 

( 1.0 - 0.1 X F) X CEwct(brevi0u.v) 9 
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cb?,ul~ for Pattern Combination = 

With this definition, the smaller the rewritten digraph becomes, the less the in- 

ference cost becomes. The first term in Eq. (1) represents the amount of data to 
be handled; the second term represents the matching cost during the inference. The 
third term represents the amount of memory required to store the interpretation rules. 
For example, the numbers of I/O combinations of the interpretation rule of NOT 
and NOR are 2 (“1False+True” and “TTrue+False”) and 4 (“FalseVFalse+True”, 
“TrueVFalse+False”, “FalseVTrue+False” and “TrueVTrue*False”), respectively. If 
the view is made up of two patterns each corresponding to NOR and NOT, the third 

term becomes 20 (= 22 + 42). As with the first term, an increase in this term results 
in increased memory usage. Increasing the amount of input data increases the matching 
cost to use the interpretation rules, and the fourth term represents that matching cost. 
For example, the NOT receives 1 datum, and NOR receives 2 data, so the fourth term 

becomes 5. ’ 

The last term is to accelerate the pattern search. In the early iterations of the search, 

the patterns found are not big enough to sufficiently reduce the graph size, and increases 
in the third and fourth terms sometimes hinder the search process. The purpose of this 
term is to enforce the succeeding search that follows the frequently occurring patterns 

used to rewrite the input graph. In the later iterations of the search, the effect of this 
term can be neglected because a pattern which results in a great reduction of size tends 

to result in small values for the first and the second terms. 

3.2. Results 

We set the maximum number of patterns per view at 7 and the maximum number of 

views per iteration at 15. In an experiment with 50 iterations, the minimum size was 
reached at the 25th iteration. The right-most part of Fig. 10 shows the graph generated 
in a later iteration. The pattern found is bigger than that of the 25th iteration. Increases 

in the third and fourth terms prevent further improvement. 
In Fig. I f, we show an example of a typical pattern extracted (lower left) and the 

corresponding macro/interpretation rules (right) at the 25th iteration. Computation time 
for this 6-node pattern was about 6 minutes on a IO-MIPS computer. The corresponding 
equations used during the simulation relate to 

( 1) voltage changes at the terminal, 
(2) voltage changes at the terminal caused by the incoming current, 
(3) collector and emitter currents in the transistor, 
(4) emitter current and base voltage, 
(5) collector current and V&, and 
(6) knowledge about VCC. 

3 Note that both the number of nodes and edges were about 2000, and the number of I/O combinations and 

inputs of the pattern were I - IO. To compensate for the difference of the order of magnitude of the term 

value. the third and fourth terms are squared. 
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Macro Rule for a New Concept Component 

IF a...Vnext=V+dV 
Q . . . dV = I1 + 12 
0 . . . I1 = -le 
@ . . . le+Vb 
@ . . . I2+Vcc 
cp . . . vcc = [+] 

Then Vnext = NEW(Vb, V) 

Interpretation Rule for 
the above Concept Component 

Vnext = NEW(Vb, V) 
= [+] / [+I / [+] / [Ol ! 101. 
= [O] I [s+] / [+I / [s+l/ [+I. 

Then Vnext= [O] / [O] I is+]/ [+I I [+I. 

Fig. 11. Resulting patterns. 

II 

. 

. 

Eqs. (3) and (4) are for a pull-down transistor and Eqs. (5) and (6) are for a pull- 

up transistor. The variables on the right-hand side of each equation in the conditional 
portion of the extracted concept (e.g., V and dV in Eq. @ ) are arranged so that they 
correspond to the numbers indicated on the edges pointing to each node (e.g., edges 1 
and 2 going into the node 0 ) . 

The macro rule says that if there is a set of 6 relations (equations) as shown, it is 
reasonable to infer that V,,, can be calculated by some relation NEW from the current 
values of V and Vb. The interpretation rule shown describes a set of relationships between 

the inputs V and Vb, and the output V,,. In other words, this interpretation rule defines 
the new function NEW. The I/O combinations stored in the interpretation rule are 
extracted from the occurrence of the pattern in the graph. Since this is assumed to be a 
NOT circuit and [ +] / [ 0] should correspond to [True] /[False], an analog component, 
such as [s+] (an intermediate value between [ +] and [ 0] ), makes this representation 
imperfect. However, this is still quite similar to NOT, and the interpretation rule specifies 
the method of inference using this pseudo-NOT. (See Section 4.2 for another “NOT’ 
which does not have this defect.) 

The macro-rules generated by CLIP can be used to translate the physical-level cir- 
cuit descriptions into higher-level descriptions. For example, the macro-rule in Fig. 11 
translates the circuit equations into pseudo-NOT descriptions. In another result from the 
same experiment, the macro-rule corresponding to NOR descriptions was also produced. 
In the examples shown in Figs. 10 and 11, the descriptions generated by the macro-rules 

and the interpretation rules enable the logical inference. If the purpose of the simulation 
is to predict the logical circuit behavior, this higher-level description suffices for this 
purpose, and is more efficient as well. Note that the proposed method does not utilize 
any supplementary information that explicitly defines the hierarchical structure in order 
to produce multilevel descriptions. It only tries to minimize the graph size. 
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Fig. 12. Pattern representation 

3.3. Analysis of CPU time and memory requirement 

CLIP can be seen as a kind of EBL system which uses efficient graph-matching as a 

substitute for unification. (See [ 121 for the relationship between unification and EBL.) 
Fig. 12 shows the data structure used to implement Pattern in the C programming 

language. It shows the memory requirement, F( W, D), for a single pattern with this 
implementation: 

l+W*F(W,D-l), 
F(KD)= , L ifD> 1, 

ifD= 1. 

Here, D is the maximum depth of the pattern, and W is the maximum width of the 

pattern. We used 6 for D and 4 for W for the search shown in Fig. 10. The color 0 
matches any color in this implementation. 

If we note the correspondence between CLIP and EBL, the node color represented by 
a number corresponds to a rule, the edge position corresponds to a variable name, and 
the color 0 means any rule. Although the EBL system uses unification or an equivalent 
operation for the pattern-matching to learn from an example, CLIP compares numbers to 
extract patterns from the input graph. This was also the motivation behind using graph 
identity as the matching criterion, which has made the matching quite efficient. 

In the experiments, the most important factor affecting the CPU time requirement 
was the size of the input graph. CPU time is roughly proportional to the graph size. 
However, the effect of pattern size, i.e., the number of nodes in the pattern, on the 
CPU time requirement was not clear from our experiments. In Fig. 13, showing one 

set of experimental results, the sizes of the pattern and view increase in proportion to 
the iteration number. Although the CPU time needed to rewrite a single occurrence of 
a single pattern increases in proportion to the size of the pattern, the decrease in the 
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Fig. 13. Relationship between pattern length and CPU time. 

pattern occurrence rate compensates for the increase in the total CPU time for rewriting 

the input graph. 
Note that the direct implementation of the pattern shown in Fig. 12 requires a large 

memory when D and W are large. However, the values are almost always 0, and we can 
use a hash table that uses F( W 0) as the key to reducing the memory requirement. 

4. Factors for generating concepts 

The basic idea of CLIP is simple: to extract a set of typical patterns which appear 
frequently in the known inference process. In this section, we analyze various factors 
which may affect the generation of new concepts. 

4. I. Environments 

As described in Section 2, CLIP simply extracts patterns which originally occur in the 
input graph. The function of the algorithm described in Section 2.2 is not generation, 
but extraction. However, we believe that many existing concepts, e.g., concepts used in 
physics, are patterns that exist in the environment of human life. Humans are able to 
extract a pattern from their environments as a concept to explain a certain aspect of the 
environment. We believe that humans’ behavior is similar to CLIP’s in this sense. 
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CLIP is designed to generate concepts that can speed up inference in some specific 
environment.4 It has two important inputs: colored digraph and selection criterion. The 

first input, colored digraph, contains the information about the pattern of inference 
and their frequencies, thus it represents some characteristics of the inference system’s 
environment. 

The second input, i.e., selection criterion, controls the behavior of CLIP by supplying 
the method to evaluate extracted patterns. Therefore, the design of Eq. ( 1 ), i.e., the 

selection criterion (see Section 3.1), is important to control CLIP’s behavior. Its first 

and third terms represent the amount of data to be handled, and the second and fourth 
terms represent the matching cost during the inference under a given environment. If the 
characteristics of the environment do not change, the resulting concepts reduce some of 

the inference costs. 
However, Eq. ( I ) does not cover all the factors which affect the performance of 

the inference. For example, to perform an inference with found concepts, the original 

descriptions should be re-expressed using the found concepts. The parameter also varies 
with the implementation of the inference system. The rest of this section discusses some 
of the remaining factors, using the results of additional experiments. 

4.2. Approximation 

We have already shown experimentally (Fig. 1 I) that the obtained interpretation rule 
does not exactly match a logical NOT function. This is because the magnitude of each 
variable is taken into account in the qualitative simulation. Even if a NOT circuit receives 

[ +] as an input, it cannot change the output directly to [O], and it must go through 

Is+]. 
For the carry-chain circuit to work as a logical circuit, a small amount of time must 

elapse. Humans seem to recognize the object behavior by neglecting such intermediate 
state changes, and a simpler representation can be obtained by ignoring the unnecessary 
details. Therefore, we need some kind of approximation to go from the analog world to 

the digital world. 
We have considered two such approximations, both involving a kind of pattern reduc- 

tion (See Fig. 14). Type I approximation removes a subpattern from the found pattern 
if the output value of the found pattern can be calculated without the information about 
variables in the subpattern. Type II approximation removes the edge portion from the 
rule subgraph for which the values of some data are the same for all occurrences. These 
approximations remove a pattern from the original graph, as long as no contradictions 
arise. 

The second graph in Fig. 15 shows the results when a Type I approximation is 
introduced. These results are exactly the same as those shown in Fig. 10. Using this as 
the initial pattern, CLIP obtained the third graph using a Type I approximation. Nodes 

’ Clearly, CLIP does not cover all human abilities to create new concepts. For example, humans can compare 

the importance of individual data, and delete the noise from the data. They can also extend their reasoning 

to problems outside the current environment. Although CLIP lacks these human abilities, we believe that it 
covers an important aspect of concept generation. 
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and generates a simpler representation. 
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In the carry chain circuit, the clock signal is alway [O]. 

In such case, CLIP ignores the value of the signal, 

and generates a simpler representation. 

Fig. 14. Approximation. 

with a single-input solid line correspond to NOT and nodes with two-input solid lines 

correspond to NOR. The resulting interpretation rules involve only [ +] and [ 01. If we 
take [ +] as [True] and [ 0] as [False], they correspond to the truth table for NOT and 
NOR. 

The fourth graph in Fig. 15 was obtained starting from the third graph, and corresponds 
to a five-input carry-chain operation. However, the actual number of inputs to a carry- 
chain circuit should be three. When we added a Type II approximation by assuming 
a default value for the clock signal (Fig. 16), the resulting graph clearly indicated a 
three-input carry-chain operation, as well as the digital NOT and NOR. The Type II 
approximation also affected the second and third figures, but the extracted NOT and 
NOR were essentially the same. The only difference was that some parts of the graph 
were neglected, since the value of the corresponding physical node did not change during 
the simulation. 

Note that the characteristics of the environment enable these approximations. If an 
important characteristic of the environment changes, these approximations result in con- 
tradictions. For example, if the inference system is required to treat an intermediate 
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Intermediate Hierarchy NOR / NOT (Analog) 

Higher Matching Cost resulted in an Intermediate Level of Hierarchy 

Fig. 17. Impotice of rewriting costs. 

state change of the analog circuits, the logical concepts NOR and NOT do not help the 
analysis. 

4.3. Inference system characteristics 

Another important factor affecting new concept generation is the inference system 
characteristics. To confirm the effect of the inference system characteristics on the 
generated concepts, different graph size definitions were used in other experiments: 

C Exact = 

Number of Nodes 

+ Number of Edges 

+ c (Number of I/O Combinations of the Interpretation Rule,)2 

+x(N b urn er of Inputs to the Pattern,)2 

+ 10 * c Number of Nodes in Pattern2 

- Number of Graph Rewritings. (2) 

The fifth term is a penalty for re-expressing the original descriptions using the found 
concepts. To perform an inference with the found concepts, the original descriptions 
should be re-expressed. As the number of nodes in the pattern increases, the cost of 
re-expressing, i.e., the graph-rewriting cost, increases proportionally. Although Eq. ( 1) 
ignores this re-expressing cost, EXq. (2) has a large penalty for it. 

With Eq. (2), the minimum size was reached at the 15th iteration, which is shown 
as the middle graph in Fig. 17. Each pattern is smaller than that of the previous result 
(Fig. lo), and corresponds to an intermediate physical structure, i.e., a pull-up or pull- 
down transistor. Starting from this pattern, CLIP obtained the rightmost graph, which 
is exactly the same as in the previous result (Fig. 10). This suggests that the optimal 
concept structure varies with the inference system characteristics. The more efficient the 
rewriting capability of the inference system becomes, the more efficient the inference 
becomes for fewer levels of hierarchy. CLIP can accommodate each inference system 
characteristic by adjusting the parameters in the size evaluation. 
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(a) Resulting Digraph (subgraph) with Rule 

(b) Resulting Digraph (subgraph) with Data Attribute 

(c) Resulting Digraph with Value 

Fig. 18. Importance of color. 

4.4. Color of the graph node 

In the previous experiments, pattern mod@cation used the rule number to find patterns. 
In this section, we investigate the possibility of using other information to generate 
concepts. 

Fig. 18(a) shows partial results for the case using the rule number coded in the node 
color, and Fig. 18(b) shows partial results for the data attribute (i.e., voltage, current, 
etc.). Finally, Fig. 18(c) shows complete results for the data value (i.e., [ +], [ 01, 
etc.). As described in the previous sections, the results with the rule number involve the 
logical concepts NOT and NOR (Fig. 18 (a) ) 

CLIP extracts some patterns even when the data attribute is used as the node color. 
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Shallow Level Inference (OUTPUT with NOISE) 

Deep Level Inference (INPUT with NOISE) 

CUP can Learn a “Concept” even in the presence of Noise. 

Fig. 19. Effect of noise. 

One of them can be interpreted as ‘The voltage at the input node of a transistor asects 

the current at the output of the transistor”, and it represents some knowledge about 
transistor behavior. The relationship between the data attribute and the corresponding 

variables in the circuit equation seems to be a cause of this pattern generation. 

When we use the value of the physical data, the resulting graph also represents some 
patterns (Fig. 18 (c) ) . In this case, each pattern represents the distribution of the value in 
the circuit. For example, the two right-most graphs in Fig. 18(c) indicate the similarity 
of the calculations performed in corresponding simulation cases. 

Although we cannot find a method of using these concepts in the inference, these 

results suggest the possibility of concept-generation using information other than rule 
number. 

4.5. Noise 

Humans can compare the importance of individual data items, and learn new concepts 

even from noisy data by deleting the noise. All of the results shown above are simple 
noiseless examples, thus CLIP’s ability to learning from noisy data remains in question. 

In theory, however, CLIP can learn new concepts from noisy data. The idea is illustrated 
in Fig. 19, where the circuit has the input going through a pass transistor (see hatched 
area of Fig. 19), and the behavior of the pass transistor is simulated using rough 
knowledge about transistor behavior (Rule 6). The other inferences are performed using 
detailed knowledge (Rules 1, 2, 3 and 4)) and the imbalance in the description levels 

makes a kind of noise in the inference process. 5 

5 Note that the value of VI in Fig. 3 is calculated from Qt using the detailed knowledge, i.e., Rule 2, and 

Fig. 3 does not involve this kind of noise. In this section, we examined the case where the occurrence of 

the inference that does not have a relationship with the target concepts makes the noise. Recent study [ 171 
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Table I 
COBWEB and CLIP characteristics 

COBWEB CLIP 

Input 

output 

Note 

Set of object descriptions Set of inference patterns 
Domain theory 

Characteristics of inference engine 

Useful sets of objects Useful set of chunks (composite objects) 

Their conceptual descriptions from inference patterns 

Conceptual descriptions to all chunks 

Maximize category utility: Minimize graph size: 

to predict unknown properties to improve eficiency 

Even in such a case, CLIP can learn concepts if the part of the inference affected by 

the noise is small enough. In other words, if the noise does not cause a large error in the 

graph size, CLIP can ignore the noise (i.e., the hatched area of Fig. 19). If the noise 
affects the graph size, CLIP may learn somewhat different concepts (concepts affected 

by noise, or typical noise patterns themselves). However, if the environment is to be the 
same, the learned concepts will make the inference efficient. 

Note that in the results shown in Figs. 15 and 16, some portion of the circuit behavior 

acts as noise in the learning process for cum, calculation. For example, the outputs of 
the NOTs in Fig. 1 have no direct relation to the value of the carry. These results also 
indicate the learning potential of CLIP in noisy environments. 

5. Related work 

5.1. Inductive learning 

Most conventional inductive learning methods learn a new concept from posi- 
tive/negative examples, and generate classification rules (e.g., INDUCE, ID3 and Ver- 
sion Space [3] ). They do not aim to speed up abstract-level inference. CLIP assumes 

that u concept is something which makes inference easy, and tries to speed up the 

inference process by using the generated concepts. For example, CLIP generates new 
concepts such as NOT and NOR by analyzing the qualitative simulation traces of a 
digital circuit. CLIP can generate NOT and NOR without having any knowledge of 
logic. 

Conceptual clustering [ 51 is an important area of machine learning in which several 
methods (e.g., COBWEB) have been proposed to generate meaningful concepts from 
observations. CLIP is similar to COBWEB in that it finds useful concepts from observa- 
tions by clustering similar patterns. Prior research in this area focused only on clustering 
similar patterns, and gave little attention to the inferences which use the learned concept. 
(See Table 1 for the difference.) The most important characteristic of CLIP is that it 

reveals the relationship between CLIP and the conventional inductive learning studies, which contributes to 
clarify the relation between CLIP and noise. 
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Table 2 
EBL and CLIP characteristics 

EBL CLIP 

87 

Input 

output 

Goal concept 
Training example 
Domain theory 
Operational&y criteria 

One macro rule 

Multiple training examples 
Domain theory 
Characteristics 

of the inference engine 

Set of macro rules (operationality 
criterion implicitly embedded) 

Interpretation rule: 
(new domain theory for 
the abstract-level inference) 

Goal concept 

generates a set of rules to interpret the new concepts, and these interpretation rules 
enable the abstract-level inference using the generated concepts. 

5.2. AM 

AM [3] is an important concept-finding system. It uses a set of heuristics to find 
interesting concepts in mathematics, and can generate new theorems from the initial 
axioms. Although CLIP does not use an explicit heuristic, its minimization of the graph 
size has a heuristics aspect. CLIP has two important inputs, i.e., the graph and the graph 
size definition. The former represents the characteristics of the environment, and the 

latter, the characteristics of the inference system. CLIP tries to find concepts that make 

the inference efficient under the given environment. 

We can see CLIP as a system which uses only one domain-independent heuristic: a 
concept is something which makes inference easy. The generality of this heuristic is one 
important characteristic of CLIP 

5.3. EBL 

EBL (explanation-based learning) [ 111 aims at improving problem-solving ef- 

ficiency. Some research uses EBL to translate base-level descriptions of ob- 
jects, such as PART-OF(OBJl,BOITOM-l), ISA(B(YI’TOM-l,BOlTOM), and 
ISA( BCYITOM- 1 FLAT) into abstract-level descriptions, such as CUP( OBJl ) . 

Table 2 lists the features of EBL and CLIP for comparison. CLIP needs multiple 
examples, while conventional EBL requires only one example. Both need domain theory. 
CLIP also needs interpretation rules, i.e., rules describing how to make an inference. 

The main difference is that EBL needs a goal concept and operationality criteria to be 
explicitly provided as inputs. In CLIP, these are implicitly embedded in the algorithm 
and the multiple examples. CLIP can accommodate differences in the capability of each 

inference system with an appropriately defined graph size, which in turn affects the form 
of the extracted patterns. 

EBL produces one macro-rule for a given goal concept, whereas CLIP produces a 
set of macros, which can be viewed as a set of concepts in some domains. CLIP also 
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Fig. 20. Log of search (using approximation) 

produces new interpretation rules that describe how to make an inference using the 
generated concepts. 

CLIP shares an aspect of the EBL system. CLIP uses the graph size as a substitute 
for the goal concept and operational criteria to solve the utility problem [lo]. Since 

most studies [ 6,8, IO, 13, 141 related to the utility problem do not aim at generating 
new concepts, they lack a framework to perform inference by the generated concepts. 

5.4. Genetic algorithms 

As mentioned in Section 2.2, CLIP’s pattern-finding algorithm can be seen as a kind 
of genetic algorithm [7]. One notable characteristic of the algorithm used in CLIP is 

the strong search ability of the pattern modification. Fig. 20 shows how the graph size 
and the ratio of the views generated by pattern modification and by pattern combination 
change with progressive iterations during the experiment shown in Fig. 16. 

The Type I approximation is implemented as a kind of pattern modification by gen- 
erating a temporary pattern which has a mark indicating the edge to be neglected. 
Neglecting some edge is equivalent to neglecting the connecting node color. Type II 

approximation is performed by neglecting some inputs when CLIP generates interpreta- 
tion rules. When the approximation operation on a pattern results in contradiction, CLIP 
discards the view that contains the pattern. A solid circle on the top indicates such a 
discard. The solid curve indicates the average of the predicted graph sizes of all the 

candidate views. Note that the size is reduced to about one fifth of the original graph 
size. 

In Fig. 20, the hatched area indicates the ratio of the views generated by pattern 
modification. As shown in the figure, CLIP’s pattern modification with approximation 
included is the main source of the search. Improving the efficiency of the search is 
one important research theme of genetic algorithms. CLIP shares an aspect of genetic 
algorithms. CLIP improves the search efficiency through the use of a special mutation 
operation, i.e., pattern modification. 

Note that the current CLIP implementation does not use a probabilistic framework. 
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Fig. 21. Scope of hierarchical knowledge base. 

In this respect, CLIP is similar to the beam search programs, such as INDUCE [ 31 and 
HARPY [l]. 

5.5. Hierarchical knowledge representation 

To understand a complex system, humans view a system at different levels of abstrac- 
tion based on its functional structure. We have developed a method to represent complex 
systems in a hierarchical manner [ 15,161. 

The use of the entity-relationship model and the approximations are based on our 
previous research, and CLIP was designed to automate the process of hierarchically 
representing the functional descriptions. 

Fig. 21 shows our long-term research goal. We hope to integrate the hierarchical 
knowledge representation technique with the techniques for representing and acquiring 
the task knowledge. 

6. Future research issues 

This section summarizes the remaining research issues. 
l Optimization of multi-level representation: CLIP can generate a hierarchical con- 

cept structure such as that shown in Fig. 15 in a stepwise manner. However, CLIP 
doesn’t have a mechanism that guarantees the optimality of the generated hierar- 
chical structure. For example, CLIP may make two hierarchies when in fact three 
hierarchies would be optimal. Creating a mechanism to search for the optimum 
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multi-level structure is one important future issue. Furthermore, as described in 
Section 5.5, CLIP generates a hierarchical functional description. How to inte- 
grate this description with the task knowledge and how the integration affects the 
hierarchy are also important issues. 

l Similarity to human concep: The concepts generated in the experiments are all 

concepts known to be understood by humans. However, the reason why they corre- 
spond to human concepts is not clear. The graph size definition affects the generated 

concepts, and seems to be the key factor in this correspondence. Further analysis 
is necessary to confirm that the graph size definition is responsible for this corre- 

spondence. 
Furthermore, the current implementation has some restriction on the form of 

the generated concepts. It can treat only a concept that has one output. Since the 

carry-chain circuit has two outputs, i.e., the carry and the column value, the current 
program expresses this circuit as a combination of two independent concepts. The 

lack of multi-output concept treatment is another defect to be remedied. 
l Searching ability: As described in Section 5.4, the current version of CLIP does not 

use a probabilistic framework, and this weakens the searching ability. For example, 
Fig. 22 shows how the rewritten graph size changes with successive iterations for 
the results shown in Fig. 11. At the leftmost white arrow in Fig. 22, CLIP first 
found a small pattern which resulted in a local minimum. Then the size increased 
until a larger pattern was found at the third arrow. The number of nodes in the 

pattern tends to increase with iteration, and CLIP tends to ignore other smaller 
patterns even if choosing one of these would result in a smaller graph. This is not 

a good aspect of CLIP’s search ability, and needs improvement. 6 

7. Summary 

CLIP is a system that extracts a set of concepts together with their interpretation rules 
from the inference traces produced during a problem-solving event. CLIP has now been 
fully implemented and tested. The results of our findings are summarized as follows: 

6 Recent study 117 I has enhanced the generality of both the representation capability of the digraph, and the 

algorithm for extracting typical patterns from the graph. In [ 171, we investigated how to apply CLIP to two 

seemingly different learning tasks: inductive learning of classification rules, and learning macro rules to speed 

up inference. This, in turn, has increased the importance of the theme of improving CLIP’s search capability 

beyond the level assumed when we first wrote this paper. 
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l CLIP analyzes sample inference traces and extracts typical patterns which frequently 
appear in the inference. We assume that such patterns probably represent important 
concepts. 

l CLIP generates a set of rules for interpreting new concepts, and these interpretation 
rules enable abstract-level inference. 

l The environment and the inference system characteristics are the most important 
factors in constructing new concepts. Approximation is also important for creating 
more abstract-level concepts. The proposed method automatically considers these 
factors in generating new concepts. 

In experiments, CLIP automatically generated multilevel representations of a carry- 
chain circuit from its given physical/single-level representations. The generated repre- 
sentations contain abstract-level concepts, including mathematical and logical concepts. 
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