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Abstract

Comparison theorem and explicit sufficient conditions are obtained for oscillation and nonoscillation of
solutions of nonlinear impulsive delay differential equations which can be utilized to population dynamic
models. Our results in this paper generalize and improve several known results.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Impulsive delay differential equations may express several real-world simulation processes
which depend on their prehistory and are subject to short time disturbances. Such processes
occur in theory of optimal control, population dynamics, biotechnologies, economics, etc. In
recent years, oscillation theory of solutions of the delay differential equations with impulsive
effects or without impulsive effects has been an object of active research; we refer to [1–11,14,
17–19]. For other relative works of study for impulsive delay differential equation we refer to
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[12,13,15,16]. But, concerning the oscillation properties of impulsive delay differential equation
in population dynamics are relatively scarce.

The purpose of this paper is to study oscillation and nonoscillation of nonlinear impulsive
delay differential equations and their applications to population models. Our results in this paper
generalize and improve several known results in [4,14,19].

Consider the impulsive delay differential equation

y′(t) = −(
1 + y(t)

)
f

(
t, y

(
g(t)

))
, t �= τk, t � 0, a.e., (1.1)a

y
(
τ+
k

) = (1 + bk)y(τk), k = 1,2, . . . , (1.1)b

under the following assumptions:

(A1) 0 � τ1 < τ2 < · · · < τk < · · · are fixed points with limk→∞ τk = ∞;
(A2) f (t, y) : [0,∞) × R → R satisfies Caratheodory conditions, that is, f (t, y) is locally

bounded Lebesgue measurable in t for each fixed y and is continuous in y for each fixed t ;
f (t,0) = 0 for all t � 0;

(A3) g(t) : [0,∞) → R is Lebesgue measurable function and g(t) � t with limt→∞ g(t) = ∞;
(A4) {bk} is a sequence of constants and bk > −1, k = 1,2, . . . .

When bk = 0, k = 1,2, . . . , (1.1) ((1.1)a and (1.1)b) reduces to the delay differential equation

y′(t) = −(
1 + y(t)

)
f

(
t, y

(
g(t)

))
, t � 0, a.e. (1.2)

Oscillation and nonoscillation of some special forms of (1.2) have been extensively investigated
in the literature as population dynamics models. For example, the delay logistic equation

N ′(t) = p(t)N(t)

[
1 − N(g(t))

K

]
is known as Hutchinson’s equation. The food-limited equation is

N ′(t) = p(t)N(t)
K − N(g(t))

K + s(t)N(g(t))
,

etc. Their oscillation properties have been studied in [8,11], respectively. They can been reduced
to the form of (1.2) by the changes of variable y(t) = N(t)/K − 1.

For any t0 � 0, let t−0 = inft�t0 g(t). Set Φ(t0) denote the set of functions φ : [t−0 , t0] → R

which are bounded Lebesgue measurable on [t−0 , t0].

Definition 1.1. For any t0 � 0 and Φ(t0), a function y : [t−0 ,∞) → R is said to be a solution of
(1.1) on [t0,∞) satisfying the initial value condition

y(t) = φ(t), φ(t0) > 0, t ∈ [t−0 , t0], (1.3)

if the following conditions are satisfied:

(i) y(t) satisfies (1.3);
(ii) y(t) is absolutely continuous in each interval (t0, τk0), (τk, τk+1), k � k0, y(τ+

k ), y(τ−
k ) exist

and y(τ−
k ) = y(τk);

(iii) y(t) satisfies (1.1)a a.e. on [t0,∞)\{τk} and satisfies (1.1)b for every τk � t0.

Definition 1.2. A solution of (1.1) is said to be nonoscillatory if it is either eventually positive or
eventually negative. Otherwise, it is called oscillatory.
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2. Main results

In this section, we first give a fundamental lemma that enables us to reduce the oscillation and
nonoscillation of the solutions of (1.1) to the corresponding problems for a nonimpulsive delay
differential equation.

For any t0 � 0, consider the nonlinear delay differential equation

x′(t) = −
∏

t0�τk<t

(1 + bk)
−1

(
1 +

∏
t0�τk<t

(1 + bk)x(t)

)
f

(
t,

∏
t0�τk<g(t)

(1 + bk)x
(
g(t)

))
,

t � 0, a.e. (2.1)

By a solution x(t) of (2.1) and (1.3) on [t0,∞), we mean a function which is absolutely con-
tinuous on [t0,∞), satisfies (2.1) a.e. on [t0,∞) and satisfies (1.3) on [t−0 , t0]. The definition of
oscillation is same as Definition 1.2.

The following Lemma 2.1 will be used repeatedly in the proofs of our results below. Its proof
is similar to that in [18, Theorem 1] and will be omitted.

Lemma 2.1. Assume that (A1)–(A4) hold. For any t0 � 0, y(t) is a solution of (1.1) on [t0,∞)

if and only if

x(t) =
∏

t0�τk<t

(1 + bk)
−1y(t) (2.2)

is a solution of (2.1) on [t0,∞).

In the following, we assume from an ecological point of view that

1 + y(t) > 0 for t � t0, (2.3)

and hence, in view of (2.2),

1 +
∏

t0�τk<t

(1 + bk)x(t) > 0 for t � t0. (2.4)

Our first main result below is a comparison theorem for oscillation of solutions of (1.1).

Theorem 2.1. Assume that (A1)–(A4), (2.3) hold and there exists a locally bounded Lebesgue
measurable function p(t) : [0,∞) → [0,∞) satisfying

f (t, y)

y
� p(t) for all y �= 0 and t � 0, (2.5)

and ∏
t0�τk<t

(1 + bk) is bounded and lim inf
t→∞

∏
t0�τk<t

(1 + bk) > 0. (2.6)

If there exists a constant 0 < δ < 1 such that all solutions of

z′(t) + (1 − δ)
∏

g(t)�τk<t

(1 + bk)
−1p(t)z

(
g(t)

) = 0 (2.7)

are oscillatory, then all solutions of (1.1) are also oscillatory.
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Proof. First, we show that
∞∫

0

∏
g(t)�τk<t

(1 + bk)
−1p(t) dt = ∞ (2.8)

if all solutions of (2.7) are oscillatory. Otherwise, there exists a large T > 0 such that for all
t � T and any sufficiently small δ > 0,

(1 − δ)

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds � 1

e
.

By a known result (see [8, p. 42]), for any sufficient small δ > 0 (2.7) has a nonoscillatory
solution. This is a contradiction.

Now, suppose that (1.1) has an eventually positive solution y(t) which is defined [t0,∞) and
y(t) > 0 for t � t1 � t0. By Lemma 2.1, x(t) = ∏

t0�τk<t (1 + bk)
−1y(t) is a solution of (2.1)

and x(t) > 0 for t � t1. From (2.5) we have that for t � t2 � t1,

f

(
t,

∏
t0�τk<g(t)

(1 + bk)x
(
g(t)

))
�

∏
t0�τk<g(t)

p(t)x
(
g(t)

)
.

In view of (2.1) and (2.4), we obtain

x′(t) � −
∏

g(t)�τk<t

(1 + bk)
−1p(t)x

(
g(t)

)
� −(1 − δ)

∏
g(t)�τk<t

(1 + bk)
−1p(t)x

(
g(t)

)
.

By a known result (see [8, p. 50]), (2.7) has an eventually positive solution. This is a contradic-
tion.

Suppose that (1.1) has an eventually negative solution y(t) > −1 defined on [t0,∞) and
y(t) < 0 for t � t1 � t0. By Lemma 2.1 x(t) = ∏

t0�τk<t (1 + bk)
−1y(t) is a negative solution of

(2.1) on [t1,∞). From (2.5) we have

f

(
t,

∏
t0�τk<g(t)

(1 + bk)x
(
g(t)

))
�

∏
t0�τk<g(t)

(1 + bk)p(t)x
(
g(t)

)
, t � t2 � t1.

Thus from (2.1) and (2.4), we obtain

x′(t) � −
(

1 +
∏

t0�τk<t

(1 + bk)x(t)

) ∏
g(t)�τk<t

(1 + bk)
−1p(t)x

(
g(t)

)
� 0, t � t2 � t1.

This implies that x(t) is nondecreasing. By using (2.6) and (2.8), it is easy to prove

lim
t→∞

∏
t0�τk<t

(1 + bk)x(t) = 0.

Hence there exists a constant 0 < δ1 � δ such that for all t � t3 � t2,

x′(t) � −(1 − δ1)
∏

g(t)�τk<t

(1 + bk)
−1p(t)x

(
g(t)

)
.

By a known result, the delay differential equation

x′(t) + (1 − δ1)
∏

(1 + bk)
−1p(t)x

(
g(t)

) = 0

g(t)�τk<t
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also has an eventually negative solution and hence (2.7) also has an eventually negative solution.
This leads to a contradiction again. The proof of Theorem 2.1 is complete. �
Remark 2.1. Condition (2.6) will be satisfied, for example, if limt→∞

∏
t0�τk<t (1 + bk) con-

verges.

Corollary 2.1. Assume that (A1)–(A4), (2.3), (2.5) and (2.6) hold. If either

lim inf
t→∞

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds >

1

e
(2.9)

or g(t) is nondecreasing and

lim sup
t→∞

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds > 1, (2.10)

then all solutions of (1.1) are oscillatory.

Proof. Suppose that (2.9) is satisfied. Then we can choose a constant 0 < δ < 1 such that

(1 − δ) lim inf
t→∞

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds >

1

e
.

By a well-known result, all solutions of (2.7) are oscillatory. From Lemma 2.1 and Theorem 2.1,
we see that all solutions of (1.1) are also oscillatory.

Suppose that (2.10) is satisfied. We can choose constant 0 < δ < 1 such that

(1 − δ) lim sup
t→∞

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds > 1.

Hence by a known result, all solutions of (1.1) are also oscillatory. �
Remark 2.2. Corollary 2.1 generalizes and improves Theorem 2.2 in [19]. For nonimpulsive
delay differential equation y′(t) = −(1 + y(t))p(t)y(g(t)),

∫ ∞
0 p(t) dt = ∞ is assumed in [19,

Theorem 2.2] for all solutions of the equation to be oscillatory.

Theorem 2.2. Assume that (A1)–(A4), (2.3) hold and there exists a locally bounded Lebesgue
measurable function p(t) : [0,∞) → [0,∞) such that

0 <
f (t, y)

y
� p(t) for all y �= 0 and t � 0, (2.11)

and there exists t0 > 0 satisfying

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds � 1

e
, for all t � t0. (2.12)

Then (1.1) has a nonoscillatory solution.
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Proof. By Lemma 2.1, we only prove that (2.1) has a nonoscillatory solution. Let C[t−0 ,∞)

denote a locally convex linear space of all continuous functions on [t−0 ,∞), where t−0 =
inft�t0 g(t) < t0, with the topology of uniform convergence on compact subsets of [t0,∞). De-
fine a set S of continuous functions on [t−0 ,∞) satisfies the following properties:

(p1) x(t) is nondecreasing on [t−0 ,∞);
(p2) −(1 − δ) � x(t) � −(1 − δ) exp[−e

∫ t

t0

∏
g(s)�τk<s(1 + bk)

−1p(s) ds], t � t0;

(p3) x(t) = −(1 − δ) on [t−0 , t0];
(p4) x(t)e � x(g(t)) on [t0,∞),

where 0 < δ < 1 is a constant. It is obvious that S is nonempty. For example, the function x̄(t) =
−(1 − δ) exp[− ∫ t

t0

∏
g(s)�τk<s(1 + bk)

−1p(s) ds] ∈ S. Moreover, S is a closed convex subset of

C[t−0 ,∞).
Now, we define a map F :S → C[t−0 ,∞) as follows:

(Fx)(t) =
{

−(1 − δ), t−0 � t � t0,

−(1 − δ) exp
[− ∫ t

t0
(ξx)(s) ds

]
, t � t0,

(2.13)

where

(ξx)(t) =
[ ∏

t0�τk<t

(1 + bk)
−1

(
1 +

∏
t0�τk<t

(1 + bk)x(t)

)

× f

(
t,

∏
t0�τk<g(t)

(1 + bk)x
(
g(t)

))]/
x(t).

We first verify FS ⊂ S; it is easy to see that (Fx)(t) is nondecreasing and (Fx)(t) � −(1 − δ)

for t � t−0 . From (2.11), (p2) and (p4) we obtain

t∫
t0

(ξx)(s) ds

�
t∫

t0

[ ∏
g(s)�τk<s

(1 + bk)
−1p(s)

(
1 +

∏
t0�τk<s

(1 + bk)x(s)

)
x
(
g(s)

)/
x(s)

]
ds

� e

t∫
t0

∏
g(s)�τk<s

(1 + bk)
−1p(s)

×
[

1 − (1 − δ)
∏

t0�τk<s

(1 + bk) exp

(
−e

s∫
t0

∏
t0�τk<u

(1 + bk)
−1p(u)du

)]
ds

� e

t∫ ∏
g(s)�τk<s

(1 + bk)
−1p(s) ds. (2.14)
t0
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From (2.13) and (2.14), we find

−(1 − δ) � (Fx)(t) � −(1 − δ) exp

[
−e

t∫
t0

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds

]
.

Thus Fx satisfies (p2). In addition, we also find

(Fx)(t)

(Fx)(g(t))
= exp

[
−

t∫
g(t)

(ξx)(s) ds

]
� exp

[
−e

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds

]
� 1

e
,

which implies that Fx satisfies (p4). Therefore FS ⊂ S.
The continuity of F :S → S is verified as follows: let xn ∈ S, x ∈ S with limn→∞ xn = x. Set

t2 > t1 be a fixed number. By the uniformly convergence of limn→∞ xn = x on [t1, t2], we have
that for any ε > 0 there exists a positive integer Nε such that

sup
t1�s�t2

∣∣(ξxn)(s) − (ξx)(s)
∣∣ <

ε

(1 − δ)(t2 − t1)
for all n � Nε.

Hence from inequality |e−x − e−y | � |x − y| when x > 0 and y > 0, we obtain

∣∣(Fxn)(t) − (Fx)(t)
∣∣ = (1 − δ)

∣∣∣∣∣exp

(
−

t∫
t0

(ξxn)(s) ds

)
− exp

(
−

t∫
t0

(ξx)(s) ds

)∣∣∣∣∣
�

∣∣∣∣∣
t∫

t0

[
(ξxn)(s) − (ξx)(s)

]
ds

∣∣∣∣∣ < ε, for all n � Nε and t1 � t � t2.

The continuity of F on S is obtained.
Since∣∣∣∣ d

dt
(Fx)(t)

∣∣∣∣ = (1 − δ) exp

[
−

t∫
t0

(ξx)(s) ds

]∣∣(ξx)(t)
∣∣

is uniformly bounded in x for t on [t1, t2], it follows that the family FS is equibounded, which
implies that FS is precompact.

Now, by Schauder–Techonoff fixed point theorem, we conclude that F has a fixed point in S.
That is, there is a x̃ ∈ S and x̃(t) = (F x̃)(t) on [t1, t2]. Since t2 > t1 is arbitrary, we have that for
all t � t0,

−(1 − δ) � x̃(t) � −(1 − δ) exp

[
−

t∫
t0

∏
g(s)�τk<s

(1 + bk)
−1p(s) ds

]
,

and x̃(t) = −(1 − δ), t−0 � t � t0. x̃(t) is a nonoscillatory solution of (2.1). The proof of Theo-
rem 2.2 is complete. �
Remark 2.3. By applying linearized oscillation theory in [9], we can improve Theorem 2.1
to obtain necessary and sufficient condition for all solutions of (1.1) to be oscillatory and the
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improved result can been applied to more general impulsive delay differential equations, for
example, the delay food limited equation with impulsive effect

N ′(t) = p(t)N(t)
K − N(g(t))

K + a(t)N(g(t))
, t �= τk, t � 0, a.e., (2.15)a

N
(
τ+
k

) − N(τk) = bkK

(
N(τk)

K
− 1

)
, k = 1,2, . . . . (2.15)b

By the change of variable y(t) = (N(t)/K) − 1, (2.15) becomes

y′(t) = −p(t)
(
1 + y(t)

) y(g(t))

1 + a(t)[1 + y(g(t))] , t �= τk, t � 0, a.e., (2.16)a

y
(
τ+
k

) = (1 + bk)y(τk), k = 1,2, . . . , (2.16)b

which has the form of (1.1).

Though (2.16)a does not satisfy (2.5) or (2.11), by same method we can prove the following
results. Their proofs will be omitted.

Corollary 2.2. Assume that (A1), (A3), (A4) hold and

a : [0,∞) → [0,∞) is locally bounded Lebesgue measurable,

lim
t→∞

∏
0<τk<t

(1 + bk) is convergent.

If either

lim inf
t→∞

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1 p(s)

1 + a(s)
ds >

1

e

or g(t) is nondecreasing and

lim sup
t→∞

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1 p(s)

1 + a(s)
ds > 1,

then all solutions of (2.16) are oscillatory.

Corollary 2.3. Assume that (A1), (A3), (A4), (2.17) hold. If there exists t0 > 0 such that

t∫
g(t)

∏
g(s)�τk<s

(1 + bk)
−1 p(s)

1 + a(s)
ds � 1

e
for all t � t0,

then (2.16) has a nonoscillatory solution.

Remark 2.4. Several related comparison theorems and oscillation or nonoscillation criteria for
nonlinear impulsive delay differential equations
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y′(t) +
m∑

i=1

ri(t)fi

(
y
(
hi(t)

)) = 0, t �= τk, (2.18)a

y(τk) = Ik

(
y
(
τ−
k

))
, τk � t0, (2.18)b

and

y′(t) + a(t)y(t) + f
(
y(t − σ1), . . . , y(t − σm)

) = 0, t �= τk, (2.19)a

y
(
τ+
k

) − y(τk) = bky(τk), τk � t0, (2.19)b

are established respectively by different techniques in [4] and [17], but the results are not able to
apply to (1.1), because nonlinear conditions of (2.18)a and (2.19)a in [4] and [17] are different
from (1.1)a .

3. Generalizations and applications

Consider the impulsive delay differential equation{
y′(t) = −(1 + y(t))

∑m
i=1 fi(t, y(gi(t))), t �= τk, t � 0, a.e.,

y(τ+
k ) = (1 + bk)y(τk), k = 1,2, . . .

(3.1)

and the nonimpulsive delay differential equation

y′(t) = −(
1 + y(t)

) m∑
i=1

pi(t)y
(
gi(t)

)
, t � 0, a.e. (3.2)

The following assumptions will be used:

(A5) fi(t, y) : [0,∞)×R → R, 1 � i � m, satisfy Caratheodory conditions and fi(t,0) = 0 for
all t � 0;

(A6) gi(t) : [0,∞) → R, 1 � i � m, are Lebesgue measurable functions and gi(t) � t with
limt→∞ gi(t) = ∞;

(A7) pi(t) : [0,∞) → [0,∞), 1 � i � m, are locally bounded Lebesgue measurable functions.

Let g(t) = max1�i�m gi(t), g∗(t) = min1�i�m gi(t). By similar to the arguments in Section 2
we can establish the following results.

Theorem 3.1. Assume that (A1), (A4)–(A7), (2.3) and (2.6) hold and there exists a sufficiently
large T such that for each i,

fi(t, y)

y
� pi(t) for all y �= 0 and t � T . (3.3)

If there exists a positive constant δ < 1 such that all solutions of

u′(t) + (1 − δ)

m∑
i=1

∏
gi(t)�τk<t

(1 + bk)
−1pi(t)u

(
g(t)

) = 0

are oscillatory, then all solutions of (3.1) are also oscillatory.

By applying Theorems 3.4.1 and 3.4.3 in [8] and Theorem 3.1, we have the following results.
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Corollary 3.1. Assume that (A1), (A4)–(A7), (2.3) and (2.6) hold and either

lim inf
t→∞

t∫
g(t)

m∑
i=1

∏
gi (s)�τk<s

(1 + bk)
−1pi(s) ds >

1

e
(3.4)

or g(t) is nondecreasing and

lim sup
t→∞

t∫
g(t)

m∑
i=1

∏
gi (s)�τk<s

(1 + bk)
−1pi(s) ds > 1, (3.5)

then all solutions of (3.1) are oscillatory.

Corollary 3.2. Assume that (A6) and (A7) hold and either (3.4) or (3.5) is satisfied. Then all
solutions of (3.2) are oscillatory.

Remark 3.1. Corollary 3.2 improves respectively [3, Corollary 6] and [14, Theorem 2]. There
assume conditions

∞∫
0

m∑
i=1

pi(t) dt = ∞ and lim inf
t→∞

t∫
g(t)

m∑
i=1

pi(s) ds > 0 (3.6)

for all solutions of (3.2) to be oscillatory.

Theorem 3.2. Assume that (A1), (A4)–(A7), (2.3) hold and there exists a sufficiently large T

such that for each i, 1 � i � m,

0 <
fi(t, y)

y
� pi(t) for all y �= 0 and t � T

and
t∫

g∗(t)

m∑
i=1

∏
g∗(s)�τk<s

(1 + bk)
−1pi(s) ds � 1

e
for all t � T . (3.7)

Then (3.1) has a nonoscillatory solution.

By Theorem 3.2 we obtain the following result.

Corollary 3.3. Assume that (A6) and (A7) hold. Then (3.2) has a nonoscillatory solution.

Remark 3.2. Corollary 3.3 improves respectively [3, Corollary 8] and [14, Theorem 5]. The
condition (3.6) is assumed in [3,14] for (3.2) to have a nonoscillatory solution.

Now, let us consider the impulsive delay logistic equation{
N ′(t) = N(t)

∑m
i=1 pi(t)

(
1 − N(gi(t))

K

)
, t �= τk, t � 0, a.e.,

N(τ+) − N(τ ) = b K
(

N(τk) − 1
)
, k = 1,2, . . . ,

(3.8)

k k k K
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where K is a positive constant. By the change of variable y(t) = (N(t)/K − 1), (3.8) is trans-
formed into{

y′(t) = −(1 + y(t))
∑m

i=1 pi(t)y(gi(t)), t �= τk, t � 0, a.e.,

y(τ+
k ) = (1 + bk)y(τk), k = 1,2, . . . .

(3.9)

From an ecological point of view we restrict attention to the positive solutions of (3.8). A pos-
itive solution of (3.8) is said to be oscillatory about K if function N(t) − K is oscillatory.
A solution of (3.8) is said to be nonoscillation about K if N(t) − K is either eventually pos-
itive or eventually negative. Since 1 + y(t) > 0, oscillation (or nonoscillation) of N(t) about
K is equivalent to oscillation (nonoscillation) of solution of (3.9).

Thus by using Corollary 3.1 and Theorem 3.2, we obtain the following results.

Corollary 3.4. Assume that (A1), (A4), (A6), (A7), (2.3) and (2.6) hold, and either (3.4) or (3.5)

is satisfied. Then all solutions of (3.8) is oscillatory about K .

Corollary 3.5. Assume that (A1), (A4), (A6), (A7), (2.3) hold and (3.7) is satisfied. Then (3.8)

has a nonoscillatory solution about K .
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