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ABSTRACT 

The general problem considered is that of solving a linear system of equations 
which is singular or almost singular. A method is described which obtains a "solution" 
to the system which is stable with respect to small changes in the matrix elements. 
This method will solve an overdetermined system in m variables and n equations 
(m < n) even when the system rank is less than m, and should therefore be very useful 
in many statistical applications. In this case the error of the system is minimized 
in the Chebyshev norm using a linear programming formulation and solution. A 
numerical example using the Hilbert matrix is described in detail. 

l .  INTRODUCTION 

A wide variety of problems, arising in many areas of the physical and social sciences, 
lead to a computational problem of the following kind. We are given the elements 
of an m • n matrix A. The  values given will often be subject to small errors. It  is 
desired to get a "best" solution in some sense to the linear system 

A'y  = b, (1.1) 

where d '  is the transpose of A, and b is a specified n-dimensional vector which may 
also be subject to error. 

One of the most common situations occurs when m ~ n, so that (I.1) may be 
an overdetermined system. Provided that rank(A) = m, we can (in principle) get a 
least-squares solution to (1.1) by solving the normal equations 

A A ' y  = Ab  (1.2) 

which gives the least-squares solution 

y .  - (AA' ) - I  Ab. (1.3) 

* This research was sponsored in part by NASA Research Grant NGR-50-022-028, and in 
part by the Mathematics Research Center, United States Army, Madison, Wisconsin under 
Contract No. : DA-11-022-ORD-2059. 
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We may consider the standard situation where A is a square (m • m), nonsingular 
matrix as a special case of this, giving us the usual solution y = (A') -1 b. 

As shown by (1.3) the least-squares solution is unique whenever rank(A) = m, 
that is, whenever AA' is nonsingular. If we define the error vector 

8 = 8(y) = A'y -- b, (1.4) 

then for rank(A) = m, we have 

II ~(Y*)II < [I ~(Y)I[ for all y :~ y*, (1.5) 

where [[. [[ denotes the Euclidean norm. When rank(A) < m, there will in general 
be a linear manifold Y of solutions to (1.4) all of which minimize I[ ~(Y)II. 

Uniqueness may again be achieved in this situation by imposing an additional 
requirement on the norm of the solution vector y. In particular, the requirement is 
that the solution yt  e y satisfy 

H yt II ~ II y I[ for all y ~ Y (1.6) 

where 

Y = {Y Ill 3(y)l[ ---- min 118(z)L[). (1.7) 

The unique vector y* is given in this case by 

y* = A'b, (1.8) 

where A t is the pseudoinverse ([1], [2]) of A'. 
When the matrix A is square and well-conditioned there are available numerical 

methods which compute a very accurate inverse. Similarly, if AA'  is well-conditioned 
the value of y* as given by (1.3) can be obtained to high accuracy by inverting AA' .  
In this latter case, however, it should be noted that the condition number of AA'  
is the square of that of A, so that AA'  is never less ill-conditioned than A. Recently 
a numerical method has been proposed [3] which does not require the formation 
or inversion of AA'  in order to get y*. 

A more fundamental problem also arises when the matrix A or AA'  is ill-conditioned. 
This is the problem of the stability of the solution y with respect to small perturbations 
in the elements of A. Generally speaking, as the condition number of A increases 
there is an increased sensitivity of the solution y to a small perturbation in an element 
of A. This difficulty is most apparent if rank(A) ~ m and we have obtained the 
solution y* using the pseudoinverse. An arbitrarily small change in an element of A 
may now increase the rank and give a completely different solution, so that in a 
certain sense the solution y* is completely unstable. 
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This  situation is best illustrated by a very simple numerical example. Suppose 
we let 

Then it is easy to see that for every scalar c~, the vector 

(0.25~ t ~ 1 
Y =  0.25t + 

(1.1o) 

gives a least-squares solution to (1.4) with II ~ II = (0 .5)  1/2. The  unique pseudoinverse 
solution is then obtained with a = 0, so that 

y t  = / x/0"25| (1.11) 
~0.25/" 

Now suppose that, due to experimental or numerical error, we are actually presented 
with the matrix 

1 
A(E) ~ (11 1 + E)" (1.12) 

For ~ 4: 0, this matrix is, of course, nonsingular so that (1.1) has the solution 

(1 + 1/~ 
Y = - i /~  I (1.13) 

The  situation is illustrated in Fig. 1, with E ---- 0.2. 
The  important point to note from this example is that for E = 0 the "correct" 

answer is y t  as given by (1.11), while for any ~ @ 0 the "correct"  answer is given 
by (1.13) and approaches ov as ~ -~  0. 

The  reason for this discontinuous behavior is that we do not impose any requirement 
on the norm of y except in the special case where rank(A) < m. Tha t  is, we are 
insisting on reducing the error norm to its minimum value regardless of the effect 
that  this has on the norm of the solution vector. This  has been pointed out by 
Levenberg [4], who suggested that one should minimize the function 

q~(Y) = [I 3(Y)[] 2 + Ally []z (1.14) 

for some fixed A > 0. This adds the constant A to each diagonal element of the 
matrix AA' in the normal equations, which improves its conditioning in general, 
and ensures that it is nonsingular even when AA'  is singular without the added 
constant. Difficulties with this proposal are that it is necessary to solve the normal 
equations for each selected value of A, and - -more  impor tant - - there  is no clear 
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relationship between any particular choice of A and the direct effect it has on the 
solution obtained.  

A proposal is made here which appears to eliminate, or at least greatly reduce, 
the problems arising because A (or AA') is ill-conditioned, and which also avoids 
the difficulties of the Levenberg scheme. Specifically, it is proposed that the solution 
vector y minimize the error 3(y) subject to the additional requirement that each 
component of y be bounded in absolute value by a parameter/3; that is, 

[Yi I ~< fl, i = 1 ..... m. (1.15) 

2 
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Fxo. 1. Graph of solution for r = 0.2 and �9 = 0. 

To  illustrate the effect of this additional requirement let us again consider the 
simple example (1.12). The  effect of (1.15) is to require that y lie in, or on the boundary 
of, a square with sides 2fl and center at the origin. This is shown for several values 
of fl in Fig. 2. For each value of fl the corresponding solution y(f l )  is shown. It is 
seen that as fl increases from 0 to ~ ,  the "trajectory" of the solutiony(fl) is traced out. 
The  following points should be noted for E > 0: 

1. For 0 ~< fl ~< (4 + ~)-1, the bound (1.15) is active for both components 

Yl(fl) and Y2(fl); that is, Y1(/3) = Y~(fl) ~- fl" 
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2. At /3 = / 3 c  = (4 + e)-a, we obtain the solution Yl = Y2 = /3 ,  which cor- 
responds to the pseudoinverse solution when E = 0. 

3. For/3c < / 3  ~< 1 4- E -1, only the first bound is active, that is Yl(fl) =/3 and 
Y2(/3) < /3 .  However, we have a Chebyshev-type error in this range; that is 

32 ~- - -a  a = [1 4-(1 --/3) e] (2 4- ~)-1. 

4. For/3 > 1 4- c I, neither bound is active and the solution is given by (1.13), 
independent of/3, with zero error. 

On the basis of these observations we may conclude (at least for this example) 
that even though the "correct"  solution (1.13) depends strongly on e, and in fact 
is discontinuous at E = 0, the trajectory y(/3) depends only weakly on ~ and may 
therefore be called stable with respect to the perturbation E. In  fact, for any finite 
positive value /3m~x, the trajectory y(/3), 0 ~</3 ~</3max, approaches the limiting 

Y2 f ] . . . . .  y(/3) 
2 ] Q Y (/~c) ~ Yf 

I ,~ [] y(CO) 

-] 

2_ - J ~  2.0 

5 

4 

J 

~ L ~ _ _  I I I I r 

0 ! 2 5 4 5 6 

FIc. 2. Solution trajectory with bounds. 

trajectory for ~ = 0, as ~ --+ 0. Furthermore,  the first value at which a Chebyshev 

solution is obtained, fl = t ic,  gives a vector Y(flc) such that [] Y(flc) - -  y t  [] = O(~). 
Thus  if one were presented with A(E) for ~ ~ 0 and b = (o~), and asked to solve (I.1), 
it would be reasonable to choose the solution Y(flc). 

57I/I/I-3 
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The example considered above is of course extremely simple. However, as will be 
shown in the following sections, the essential ideas carry over to the solution of large 
linear systems of arbitrary rank. In order to carry this out computationally for large 
systems, it is useful to modify the problem by using the Chebyshev error norm 
instead of the Euclidean norm. This permits us to use an efficient linear programming 
(LP) algorithm [5] as the basis of the computational solution method. 

Specifically, let 

II ~ Ilc = max ] ~j i. (1.16) 
) 

Then, in terms of the original system (1.1) and the error vector ~(y) given by (1.4), 
the problem we wish to solve may be stated as that of finding y = y(/3) such that 

IE 8(Y(/3))Hc = rain lr 18 IIc 8 = A'y -- b t (1.17) 
[lY IIc <~/3 I" 

It should also be emphasized that the computational solution of this LP problem 
requires essentially only that the inverse for a selected (m -4- 1) • (m -- 1) matrix 
be computed. This usually requires approximate 2m simplex (Gauss-Jordan type) 
pivot operations. Thus the solution time depends primarily on rn and only to a small 
extent on the value of n. The method will therefore be most efficient when m ,~ n. 

In the next section the formulation of (1.17) as a linear programming problem in 
standard primal form will be derived. This is done by associating (1.17) with the 
unsymmetric dual problem and actually solving the corresponding primal problem. 
The parameter/3 then appears in the primal cost row so that the trajectory of solutions 
y(/3) as/3 increases from 0 to oo can be obtained by a single parametric run. If solutions 
for specific values of fl are desired, this can easily be done by using the multiple 
cost row feature of a primal LP code. 

An interesting result is obtained which describes the behavior of the error norm 
Y0(/3) ---- II 8(Y(/3))11c, as B increases. It is shown that Y0(/3) is a nonincreasing, convex, 
piecewise linear function. The possible decrease in error by increasing the norm 
of the solution vector is completely described by the function Y0(/3). 

In the final section some numerical results are presented. These results were 
obtained using the first 5 columns of the 6 X 6 Hilbert matrix as the matrix A'. 
The solution trajectory y(/3) was obtained using the parametric cost row feature of 
a primal LP code. The results are presented in Table 1. The Chebyshev error norm 
Yo(/3) is also given there, and is shown graphically in Fig. 3. It is seen that the error 
drops rapidly to its value at/3c ~ 1507, and then decreases only slightly to its minimum 
value at/3 m = 2000. No basis changes take place for/3 between/3c and ~m so that 
y(/3) and Y0(/3) are linear functions of/3 over this range. The value ]3 c is the smallest 
value of ~ for which a Chebyshev-type error is achieved, that is the error yo(/~) is 
attained for at least m of the n Eqs. (1.1). It is also characterized by the fact that 
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only one of the bounds  (1.15) is active for tic <~ fl <~ ~,~. For  fl > / t i m ,  both  Y0(fl) 

and y(fl) are constant  and none  of the bounds  (1.15) are active. 
T h e  stabili ty of this (unper tu rbed)  solut ion trajectory was investigated by  m a k i n g  

similar  runs  on eight per tu rbed  matrices obta ined  by making  r andom changes in  the  

TABLE 1 

UNPERTU~ED SOLUTION 

fl Yo Yl Y2 Ya Y~ Y5 

0 791.6765 0 0 0 0 0 
100.000 563.3432 100.000 100.000 100.000 100.000 100.000 

I000.000 3.2286 1.146 7.937 1000.000 1000.000 1000.000 
1100.000 0.8744 81.355 -- 304.439 1100.000 1100.000 1100.000 
1200.000 0.2268 101.321 --307.982 913.719 1200.000 1200.000 
1300.000 0.1504 82.012 --125.339 562.454 1300.000 1300.000 
1400.000 0.0778 62.735 57.272 211.151 1400.000 1400.000 
1500.000 0.0133 43.435 240.127 --140.425 1500.000 1500.000 
1507.232 0.0121 41.696 254.790 --167.042 1507.232 1507.232 
2000.000 0.0100 50.000 100.000 500.000 500.000 2000.000 

oo 0.0100 50.000 100.000 500.000 500.000 2000.000 

Wo Wl w2 w3 w4 w 5 

B c ~ f l ~  fl,,, --4.27 • 10 6 0.01685 --0.31412 1.35366 --2.04403 1.00000 

Yo 

30 

2.0 

1.0 

800 I000 

FIG. 3. 

,200,400 , oo ,8'~ ' s176  2000 2400 

Chebyshev error norm. 
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6th decimal digit of the elements of A. I t  was found, as shown in Table 2, that the 
"correct" solutions y ( ~ )  to the perturbed problems differed greatly from the 
unperturbed solution. However, the trajectory Y(t) and error norm Yo(t) for t ~< t ic ,  
were found to be almost independent of the perturbations and therefore Y(t), for 
t ~ tic, represents a stable solution to the linear system. This is clearly shown in 
Fig. 4, where the maximum difference between the unperturbed and perturbed 
solutions are plotted as a function of 8. The stable solution with minimum error is 
given by the vector Y(tc), which may therefore be taken as the "best" solution to 
the original problem. 

TABLE 2 

COMPARISON OF SOLUTIONS 

Matrix tic fl~ II y~(oo) -- y~(oo)lJc yo(OO) 

Unperturbed 1507.232 2000.000 - -  0.0100 
Perturbed I 1512.995 2308.638 1808 0.0087 
Perturbed II 1514.952 1724.730 583 0.0162 
Perturbed III 1510.452 1748.373 524 0.0120 
Perturbed IV 1496.171 1933.700 119 0.0093 
Perturbed V 1504.621 1598.359 1098 0.0099 
Perturbed VI 1502.963 2768.087 768 0.0008 
Perturbed VII 1502.788 2035.204 83 0.0104 
Perturbed VIII 1512.958 1889.224 122 0.0072 

FIG. 4. 
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In  many actual problems a "reasonable" value of the solution vector may be known. 
To  be specific, suppose we are presented with the system 

A ' z  = d (1.18) 

and an a priori estimate ~ for a reasonable value of the solution. In  such a case we 
would want to proceed as discussed above except that we would want to replace 
(1.15) by 

l zi  - -  &[  ~ fl, i = 1,..., m. (1.19) 

This  is easily accomplished by letting 

y = z - - ~ ,  b = d - - A ' ~  (1.20) 

and proceeding as before. 

2. EQUIVALENT LINEAR PROGRAMMING PROBLEM 

We now want to convert (1.17) into a linear programming (LP) format. We observe 
that, in component  form, (1.4) becomes 

8i = ai 'y  - - b i ,  i = 1,..., n, (2.1) 

where ai is the ith column of A, and bi is the ith component  of the vector b. Introducing 
a new nonnegative scalar variable Y0 ~> O, we consider the system of inequalities 

Y o )  l a i ' y - - b i l ,  i =  l .... , n  (2.2) 

or the equivalent system of 2n linear inequalities, 

Yo >~ a i '  y - -  bi >~ --Y0, i = 1,..., n. (2.3) 

I t  is clear that for any fixed y,  the min imum value ofyo satisfying (2.2) or (2.3) gives 
the value of II 8(y)llc as defined by (1.16). We may therefore state the problem (1.17) 
as that of finding Yo(fl) and y(fl) such that Y0 attains its min imum value over all 
Yo ~> 0 and vectors y satisfying (2.3) and (1.15). Putting this in standard format we 
obtain an LP problem in m + 1 variables and [2(m + n ) +  1] linear inequality 
constraints as follows: 

min 
Yo,Y l Yo 

yo + ai'y ~ b i ,  i =  1 .... , n  ] 
Yo --  ai' y ~ --bi  , i = 1,..., n 

--Yi ~ --fi, i 1 ..... m ).  

Yo >~ 0, 
Yi ~ --3,  i 1 .... , m]  

(2.4) 
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We observe that in this form we have a problem with more inequality constraints 
than variables, and in which the variables are not necessarily nonnegative. We 
therefore associate (2.4) with the dual form [6] of an LP problem. We define the 
(m + 1) • (2n + 2m + 1) matrix ~ and corresponding vector b: 

A = [ 1  1.. .1 1..A1 0 0 . . . 0  
A I 1"+11; (2.5) 

- -  - - / m  

b' = ( b tb2  . . .  b.  - - b l  ... - - b .  I --/3 ... --/3 I 0 - - / 3  ... --/3). 

The vertical lines are used merely to help clarify the structure of A and ~. We also 
define two (m + 1)-vectors 

The problem (2.4) may now be written 

mi.n{e'331.4'33 
y 

Considering this as a problem in dual form 
corresponding primal problem in terms of a 

l' I m a x  ~X 
x x 

in the concise form 

b}. (2.7) 

we can immediately write down the 
nonnegative (2n -k 2m + 1)-vector x, 

~> . ( 2 . 8 )  

This is the standard primal LP format with a cost row b' and right-hand side L 
An initial feasible basis for this primal problem is given by the identity matrix I ,+  t . 
By the duality theory of linear programming, if (2.8) has an optimal solution then 
so does (2.7), and the optimal function values are equal. Furthermore, the computa- 
tional solution of (2.8) determines not only the optimal value of the vector x, but 
also the corresponding optimal dual (shadow-price) vector 33, so that a standard 
LP solution of (2.8) also gives us the desired solution to (2.7). 

Another well known result of duality theory is that any dual feasible solution 
(a solution satisfying the dual constraints) gives an upper bound to the primal function 
value for any primal feasible vector x. Now y = 0, Y0 = maxi [ b i ] ,  is a feasible 
solution to (2.7) for any fl i> 0. Therefore we know that the solution to (2.8) always 
exists (i.e., it has a finite solution) and in fact we have b'x ~< max~ [ bi [. 

The parameter/3 appears in the cost row of the primal problem. Therefore we 
can use the parametric cost row option (available on most LP codes) to obtain the 
optimal solution to (2.8) as a function of/3, as/3 goes from 0 to oo. Starting with 
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the initial basis Ira+l, the optimal basis for/3 = 0 will be obtained by replacing one 
or more columns of Im+l by columns selected from the first (2n + m) columns of ~.  
The optimal value of 33 for /3 = 0 is given by y0(0) = max~ ] b~ [ and y(0) = 0. 
As/3 is increased the optimal Y0(/3) will (as shown below) decrease linearly with/3 
until a basis change is required to maintain optimality. Following the basis change, 
the optimal Y0(/3) will again be linear in/3 until the next required basis change takes 
place. 

A basis consists of m + 1 linearly independent columns selected from ~.  Let us 
denote by B the current basis matrix. Then 33 = B-lb(/3) where/~(/3) is an (m + 1)- 
vector consisting of the elements of ~ which correspond to the current basis. The 
linearity of 33(/3), and Yo(/3) in particular, for a fixed basis follows immediately. More 
generally, the important properties of Yo(/3) are given by 

THEOREM I. Y0(/3) is a piecewise linear, nonincreasing, convex function of/3. 

Proof. The piecewise linearity of Yo(/3) has been shown above. Let us denote 
by D(/3) the set of feasible points satisfying the constraints of (2.4) or (2.7), that is 
33 ~ D(/3) -r .4'33 ~/~(/3). Then D(/32 ) 3 D(/31) for /32 >/31 . Now let 331, with first 
component Yo(fll) be the optimal solution to (2.7) with /3 =/31, and 332 with first 
component Y0(fl2) be the optimal solution to (2.7) with /3 =/3a >/31. Then 
331 ~ D(/31) C D(/32) so that 331 ~ D(/3z) and therefore y0(/3z) ~< y0(/31). Thus Yo(/3) is 
nonincreasing. Finally, the convexity of Y0(/3) follows from the known result that 
the optimal function value for (2.7) is a convex function of the vector /~. 

Note that if b lies entirely in the null space of A (i.e., Ab =- 0), then we have 
Yo(/3) = [] b 1], and we can choose y(fl) = 0 for all /3/> 0. Therefore we assume 
that Ab ~ O. 

The duality between (2.7) and (2.8) is also exhibited by the fact that, if a specific 
column of A is in the optimal basis B, then the corresponding inequality constraint 
in (2.7) is satisfied as an equality. In particular, a bound of the type (1.15) can only 
be active if the corresponding column from the tast (2m + 1) columns of A is in 
the basis. Now as/3 increases, it seems reasonable that those x i > 0 with coefficients 
--/3 would be driven to zero in order to maximize the primal function value. This 
corresponds to one or more of the last (2m q- 1) columns of ~ going out of the basis, 
which also means that the corresponding bounds (1.15) become strict inequalities. 
We therefore have 

THEOREM 2. The total number of active bounds, Yi = 4-[3, goes to zero for sufficient& 
large ft. 

Proof. An active bound Yi = 4-3, in the dual problem requires that the cor- 
responding primal activity be positive. That is, we have xl > 0, corresponding to 
--/3 in/~. Now if such a basis were optimal for arbitrarily large/3, we would have 
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~'x < 0 for sufficiently large/3. But this contradicts the fact that for each fixed fl the 
optimal function values of (2.7) and (2.8) are equal, and t'33 = Y0 >~ 0. 

Suppose that we have an optimal solution 33(/3) for some fixed/3, such that only 
one of the last (2m + 1) columns of .~ is in the optimal basis. Then  either Yo(/3) = 0 
or Yi  = ~ /3  for one value of i. Furthermore, since we must have m out of the first 
2n columns of A in the basis we will have 

a,' y(/3) - -  b, = 4-yo (2.9) 

for at least m values of L That  is, the maximum error is at ta ined for at least m equations. 
When this occurs we will say that the corresponding optimal solution y(/3) gives a 
Chebyshev error. We will denote by/3c the smallest value of/3 for which there is 
at most one active bound. For some value o f / 3 / > / 3 c ,  the value of Yo(/3) will reach 
its minimum value (which may be either zero or positive). We will denote by 
/3m ~ t ic ,  this value of/3. For /3  >/ t im,  the vector y(/3) remains constant; that is, 

Yo(fl) = Yo(3m) 
/3 >~/3~. (2.10) 

y(f l)  = Y(/3m) ' 

It  follows that for fl > fl,~, there are no active bounds. 
As we saw in the simple example discussed in the Introduction, the solution Y(flc) 

is closely related to the pseudoinverse solution y*. The  numerical results of the next 
section show that Y(/3c) is also stable with regard to small perturbations in the elements 
of A, even when A is very ill-conditioned and the "correct" solution is highly 
unstable. 

We now consider the interesting case where the basis does not change as 13 increases 
from/3c to/3~.  Let  us denote by B c the basis obtained when fl = /3c  �9 Bc will consist 
of m columns from the first 2n columns of ~ and one column from the last (2m q- 1) 
columns of -~. If  this one column corresponds to the zero element in ~, then 
Yo(/3c) = 0 and/3~ = t ic .  Otherwise, we have a single column in B c ,  say the /th 
column, corresponding to one of the elements --/3 in ~. Since the basis does not 
change we have 

33(/3) = (Be1)' b(/3), /3c ~</3 ~</3,~, (2.11) 

where b(/3) consists of the elements of/~ corresponding to the columns of B c .  Now 
every element of b(/3) is constant except for t h e / t h  element which is --/3. Therefore 

33(/3) = 33(/3c) + (13 --  fie) ~, /3c ~</3 ~</3~, (2.12) 

where the constant vector zb is t h e / t h  column of (Bcl) ' or t h e / t h  row of Bc  1. At 
/~ = tim a new basis is obtained. This new basis has no columns corresponding to 
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the elements --fl in /~. Therefore b(/3) is a constant vector for/3 >~/3m- The error 
Yo(/3) and the trajectory Y(/3) are then completely described for/3 >~/3c, in terms 
of their values at/3c and the vector z~: 

t'f(/3c) q- (13 --/3c) ~, /3c ~</3 ~</3~, (2.13) 
= = + 0 , .  - / 3 0  

It follows from the relations (2.2) and (2.12) that 

II A'w lie ~< w0 (2.14) 

where w 0 is the first component of the vector ~ and w represents the last m com- 
ponents of ~. Thus the ratio %/]1 w [re is a good measure of the linear independence 
of the columns of A', and will be small if the columns are almost linearly 
dependent (in the numerical example, this ratio is approximately 2.1 • 10-6). 
Furthermore, if this ratio is small we can say that the vector w lies in an "approxi- 
mate null space" of A'. 

3. NUMERICAL RESULTS 

This concluding section is concerned with the most important aspect of this work: 
the computational test of the theory. Since inversion of the Hilbert matrix is a test 
which every aspiring linear equation solver must pass, an interesting test problem 
was constructed using this matrix. The matrix A was chosen to be the first 5 rows 
of the 6 • 6 Hilbert matrix; that is, 

I i = 1 , . . . ,  5 
(A)~j-- i §  j----1,..., 6. (3.1) 

Each element of A was rounded to 6 decimal digits and input as a 6-digit number; 
i.e., ~ = 0.166667. A numerical solution was then obtained to the problem (1.17) 
with the vector b given by 150  (01) 

100 --.01 

b = A'y -~- 3, 37 = [ 5 0 0 / ,  ~ = .01 (3.2) 
/ 5~176 -.0i 

.01 
\20001 -.o1 

For this choice of b, the solution to (1.17) is y(fl) ----- 37 and [[ 3(y(fl))[] c = 0.01, 
for/3 >~ 2000. The equivalent primal LP problem (2.8) was formulated as described 
in Section 2, and solved using the Control Data Corporation CDM 4 LP code [7] on 
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the CDC 3600. The  solution trajectory y(fi) was obtained using the parametric and 
multiple cost row features of C D M  4. The  Chebyshev error Yo(fl) and the solution 
vector y(fl) at selected values of fl, are shown in Table 1. The  value tic ---- 1507.232 
was obtained, and the corresponding error Y0(fic) and solution Y(flc) are given. The  
computed solution gave tim = 2000, Yo(flm) = 0.01 andy(flm) ---- ~7, to a larger number  
of figures than shown in the table. There  were no basis changes between tic and tim, 
so that the solution in this range is given by (2.13). The  required coefficients wi,  
i = 0,..., 5, are also given in Table 1. We will call the solution vector y(fl) obtained 
in this way the unperturbed solution, and we will denote it by Yu(fl). A graph of the 
Chebyshev error Yo(fl) is given in Fig. 3. This  illustrates the piecewise linear, non- 
increasing convex property ofy0(fl) as it approaches its minimum value Yo(flm) = 0.01. 

In  order to test the stability of this solution, eight similar parametric runs were 
made using a different perturbed matrix A for each run. The  perturbed matrices 
were obtained by adding to each element of A, a random number  in the range 
[ - -5  X 10 -6, 5 • 10-6]. Eight different perturbed matrices were generated in this 
way, and each such matrix was used in a parametric run. 

The  solution obtained for large fi (no active bounds) is highly unstable with respect 
to these perturbations. Let  us denote by y~,(fl) the solution obtained with one of 
these perturbed matrices. We measure the difference between y~,(fl) and y,,(fl) in the 
Chebyshev norm; that is 

IlY~(fl) - -  vu(fl)llc = max l Y~,(fi) - y u d f l ) t .  (3.3) 
- i = 1  , . . . / i  

Each solution vector y~(fl) obtained for fl >/tim is independent of fl and in fact is 
what would be called the "correct"  solution to (1.1) for the corresponding perturbed 
matrix A. The  difference between these eight solutions and the unperturbed solution 
Yu(flm) ---- Y~(~) ---- 37, is shown in Table 2. The  values of t ic ,  fl,~ and Yo(flm) = Yo(~) 
are also given there. We see that the change in the solution may be as large as 1808, 
so that a perturbation in the sixth decimal digit of .4 may cause a relative change 
in the solution of almost 100 %.  This  large change is due to the fact that we are 
dealing with an almost singular system, so that any perturbation in the matrix A is 
greatly amplified. I t  should be emphasized that the results presented in Table 2 
are not due to computational difficulties. Essentially the same results would be 
obtained with arbitrarily high precision arithmetic. Thus  the instability of the 
"solution" to perturbations is not essentially a numerical problem but is inherent 
in the kind of solution being sought. 

In contrast, let us look at the solution vectors y~(fl) for fl ~< tic �9 The  results are 
shown in Fig. 4, where the Chebyshev norm of the difference, as defined by (3.3), 
is plotted for each of the eight perturbed matrices. I t  is seen that, relative to the 
differences for larger fl, the differences are very small for fl ~ tic �9 Tha t  is, the solution 
trajectory y(fl) for fl ~ tic is essentially independent of the perturbations in the 
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matrix A. As fl increases, with values fl ~ t ic,  the differences increase to their 
maximum values given in Table 2. Thus  if we were presented with the matrix A 
given by (3.1), and subject to small errors in the elements, we would say that y(fl) 
for fl ~< t ic ,  represents the stable solution trajectory to the minimum-error problem. 
I f  we also take into account the error Yo(fl) as given by Table 1 and shown in Fig. 3, 
we see that the most reasonable choice for a stable solution is the vector Y(flc), given 
in Table 1. 

The single parametric run on the unperturbed matrix has given us the stable 
solution trajectory y(fl) and the corresponding error Yo(fl) for/3 ~ tic- It  also gives 
the special vector on this trajectory, Y(flc), which is the stable solution with the 
smallest error. Finally, it gives (in terms of the vector w) the unstable solution 

trajectory y(fl) for f l />  t ic .  
As an indication of computation time, a typical parametric LP  run as described 

above, required about 30 seconds. The  computation time for a large primal LP 
problem depends primarily on the number of rows in the problem, and onty to a 
smaller extent on the number of columns. The  number of rows in the primal problem 
(2.8) is m q- 1, where m is the number of variables in the original problem (1.1). 
The  C D M  4 code will handle up to 400 rows, and other codes are available which 
handle even larger problems. On the basis of LP  computational experience it should 
be possible to obtain the solution trajectory to a system (1.1) with several hundred 
variables and possibly several thousand equations in 30-60 minutes. 
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