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logical remodelling includes both increased inward and reduced outward currents, but their role in promoting
repolarisation abnormalities remains unknown. The goal of this study is to identify key ionic mechanisms driving
repolarisation abnormalities in human HCM, and to evaluate anti-arrhythmic effects of single and multichannel
inward current blocks.
Methods: Experimental ionic current, action potential (AP) and Ca®"-transient (CaT) recordings were used to
construct populations of human non-diseased and HCM AP models (n = 9118), accounting for inter-subject var-
iability. Simulations were conducted for several degrees of selective and combined inward current block.
Results: Simulated HCM cardiomyocytes exhibited prolonged AP and CaT, diastolic Ca®>* overload and decreased
CaT amplitude, in agreement with experiments. Repolarisation abnormalities in HCM models were consistently
driven by L-type Ca®* current (Ic..) re-activation, and Ic,; block was the most effective intervention to normalise
repolarisation and diastolic Ca?™, but compromised CaT amplitude. Late Na™ current (Iy,.) block partially
abolished repolarisation abnormalities, with small impact on CaT. Na™/Ca?* exchanger (Incx) block effectively
restored repolarisation and CaT amplitude, but increased Ca?* overload. Multichannel block increased efficacy
in normalising repolarisation, AP biomarkers and CaT amplitude compared to selective block.
Conclusions: Experimentally-calibrated populations of human AP models identify Ic,; re-activation as the key
mechanism for repolarisation abnormalities in HCM, and combined Incx, Inar and Ic, block as effective anti-
arrhythmic therapies also able to partially reverse the HCM electrophysiological phenotype.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords:

Hypertrophic cardiomyopathy
Pro-arrhythmic mechanisms
Repolarization reserve
Inter-subject variability

In silico drug testing

1. Introduction

Hypertrophic cardiomyopathy (HCM) is the most common mono-
genic cardiac disorder and the main cause of sudden cardiac death in
children and young adults [1], with a reported prevalence of 1 in 500
worldwide [2]. Usually asymptomatic, it is characterised by an unex-
plained thickening (hypertrophy) of the left ventricle, and occasionally
of the right, with predominant involvement of the inter-ventricular sep-
tum. However, the ejection fraction is usually preserved in HCM pa-
tients [3,4], with only a minority of the subjects developing enlarged
ventricular cavities, hence pointing towards a different aetiology of
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the disease compared to acquired heart failure. In addition, the first
manifestation of HCM is often arrhythmic sudden death, caused by ven-
tricular tachyarrhythmias [2], but the underlying electrophysiological
mechanisms remain unclear.

HCM is still lacking of a disease-specific pharmacological treatment
[5-7]. To date, implantable cardioverter-defibrillator therapy prevails
as the only effective prevention of sudden cardiac death in HCM [8,9].
Different mutations are associated with different outcome in HCM pa-
tients, but the strength of the genotype-phenotype correlation is weak
to warrant recommendation in risk management based on the geno-
type, due to significant inter-subject variability in disease expression,
even among carriers of the same variant [10]. Therefore, a better under-
standing of the ionic mechanisms underlying arrhythmic risk and inter-
subject variability in HCM is required to guide the development of spe-
cific pharmacological treatments and risk stratification.

0022-2828/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://core.ac.uk/display/82086645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.yjmcc.2015.09.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.yjmcc.2015.09.003
alfonso.bueno@cs.ox.ac.uk
http://dx.doi.org/10.1016/j.yjmcc.2015.09.003
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00222828
www.elsevier.com/locate/yjmcc

E. Passini et al. / Journal of Molecular and Cellular Cardiology 96 (2016) 72-81 73

Recently, Coppini et al. characterised the electrophysiological profile
of human HCM by measuring alterations in the action potential (AP),
Ca?™ subsystem, sarcolemmal ionic currents and mRNA expression in
donor HCM cardiomyocytes [3]. Particularly distinct to the ionic remod-
elling associated to heart failure [11], HCM cardiomyocytes exhibited a
significant overexpression of the L-type Ca®™ current (Ic), which to-
gether with an increase in the Late Na™ (Iya.) and a reduction in K™
repolarising currents, contributed to a prolonged AP and Ca™ transient
(CaT). Experimental recordings also provided evidence of HCM facilitat-
ing the occurrence of repolarisation abnormalities such as early after-
depolarisations (EADs), which may act as triggers for ventricular ar-
rhythmias [12,13].

Repolarisation abnormalities and in particular EADs are known to be
facilitated by abnormalities in the Ca?™ subsystem and Ca® " overload
[14-16]. Genetic mutations in HCM commonly enhance Ca%*-
sensitivity and energy requirements of myosin ATPase, leading to al-
tered force production and impairment of intracellular Ca?>* and intra-
cellular Ca?™ load [6,8]. Indeed, experimental data in human HCM
provided evidence of a highly impaired Ca?* subsystem, owing to a re-
duction of Ca®* uptake by SERCA and an altered Na™/Ca?* exchanger
function, contributing to the slower kinetics of CaT and the elevated di-
astolic Ca®* [3]. Further investigations are therefore required to ad-
vance our understanding of the ionic mechanisms underlying pro-
arrhythmic repolarisation abnormalities in HCM.

The goals of this study are to investigate the ionic mechanisms driv-
ing repolarisation abnormalities in human HCM cardiomyocytes, and to
evaluate the efficacy of selective and combined inward currents block as
potential anti-arrhythmic strategy. Building on the comprehensive
dataset provided by Coppini et al. [3] and on the methodology proposed
by Britton et al. [ 17], we construct two populations of human ventricular
AP models in range with the experimental data and accounting for
cell-to-cell variability in non-diseased and HCM conditions. Based on
our analysis in these populations, we propose different single
and multi-channel strategies for the pharmacological management
of cellular repolarisation abnormalities in HCM, evaluating their effi-
cacy in abolishing repolarisation abnormalities and in reversing
the electrophysiological phenotypic characteristics of human HCM
cardiomyocytes.

2. Materials and methods
2.1. Experimental data

The experimental dataset, previously published in [3], consists of re-
cordings from n = 80 HCM cells and n = 31 non-failing non-
hypertrophic control cells (CTRL). HCM cardiomyocytes were hypertro-
phic, as indicated by an increased cell volume (+90%) compared with
CTRL (33.5 4+ 4.3 vs 17.6 & 3.2 pL, P < 0.05). Single cell patch-clamp
measurements and intracellular Ca?™ studies produced an extensive
set of AP and Ca? "-transient (CaT) biomarkers at 1 Hz pacing: AP dura-
tion (APD), computed at 20%, 50% and 90% of repolarisation (APD-o,
APDsg and APDgy, respectively), AP amplitude (AP,p,;), mean upstroke
velocity (dV/dtyean, computed as the mean dV/dt value during the up-
stroke phase), resting membrane potential (RMP), CaT time to peak
(CaTyyp), CaT relaxation time from peak, computed at 50% and 90% of
CaT decay (Tsg and Tog), CaT amplitude (CaT,mp) and diastolic Ca®™ con-
centration ([Ca® ™ ]; gizs). In addition, voltage clamp experiments, togeth-
er with mRNA and protein expression studies, were considered.

2.2. Baseline model

As baseline for our investigations, the endocardial version of the
O'Hara-Rudy (ORd) model was used [18]. This constitutes the most so-
phisticated human ventricular AP model to date, developed from and
extensively validated against experimental data from more than 100
non-diseased human hearts. Minor modifications were performed to

the original model in order to better reproduce the experimental non-
diseased data considered in this study. A detailed description of these
changes is provided in the extended methods and Supplemental
Table S1.

2.3. Building the control population

As in Britton et al. [17], a population of non-diseased AP models ac-
counting for biological variability was constructed, by assuming that
variability is mostly caused by cell-to-cell differences in ion channel
density rather than kinetics (which may be altered instead by abnor-
malities such as channelopathies [19]).

An initial population of 30,000 human endocardial AP models was
generated, by varying a total of 11 parameters in the original model.
These included the maximal conductances (g) of the main ionic
currents/pumps/exchangers characterising the human ventricular AP:
8kr» Eks 8K1» Etor ECals ENaL» ENar ENCx» ENak (Nat /K™ pump), gger (RyR)
and gyp (SERCA). All the parameters were probabilistically sampled in
the [50%-150%] range with respect to their original values, by using
Latin Hypercube Sampling [20].

From this initial pool of 30,000 candidate models, a calibration
process was performed to select those models in agreement with
the experimental non-diseased data [17]. Calibration ranges were
extracted from each of the experimental AP and CaT biomarkers, by
considering their minimum and maximum values. Only models
within these experimental bounds, i.e. satisfying all the experimen-
tal constraints, were accepted in the final CTRL population, while
the others were discarded.

Absolute [Ca2 " ;.qias values were not used within the calibration pro-
cess, since these are extracted from the conversion of fluorescence
emission after removal of the background level signal [21]. Cell-to-cell
offsets in background emission can hence significantly affect the indi-
rect estimation of [Ca®™]; gias, Whereas other CaT biomarkers such as
CaT amplitude and duration are insensitive to diastolic Ca> concentra-
tions. We therefore reserved [Ca® " ]; gias data to compare diastolic Ca™
levels in HCM vs CTRL cardiomyocytes, by normalising them with re-
spect to the mean CTRL values.

24. Building the HCM population

Based on the experimental data described above, we constructed the
human HCM population by applying the electrical remodelling mea-
sured in human HCM to the CTRL population. Remodelling in the differ-
ent ionic currents was accounted for by scaling their corresponding
conductances, based on the ratio between HCM and non-diseased
data, as reported by Coppini et al. [3]. This is equivalent to shifting in
mean values the distributions of peak intensities for the different affect-
ed ionic currents, as experimentally reported. Based on the voltage
clamp experiments, we up-regulated Ina (+165%) and Ic, (+40%),
and down-regulated I, (—70%) and Igx; (—30%), together with
an increase of the fast and slow time constants of both voltage- and
Ca%*-dependent I¢,. inactivation (+35% and + 20%, fast and slow
respectively). Based on mRNA expression data, we modulated the K™
repolarizing currents (Ix, and Igs, —45%), SERCA pump (Jup, —25%),
RyRs release (Jre, —20%) and Na™/Ca? ™ exchanger (Incx, +30%). Final-
ly, we modified cell radius to reproduce the +90% increase in cell vol-
ume reported in the experiments. In the absence of specific
ultrastructural analysis of the human HCM cardiomyocytes, we as-
sumed an equal volume increase of all subcellular compartments, in
agreement with the increased cell radius and marked enlargement of
the SR in murine models of HCM [22].

Three additional remodelling elements were considered: i) an in-
creased affinity of Troponin for Ca?* (Kigpn, —50%) [23,24]; ii) Na*/
K* pump inhibition due to energy deficiency of ATP-consuming pro-
cesses (Ina, —30%) [24,25], which markedly regulates intracellular
Ca* load by Na™ regulation of the Na*/Ca?* exchanger [26]; and iii)
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an increase of background Na™ current (Inap, + 165% as for Ina ) [27]. A
sensitivity analysis of model biomarkers for all the ionic parameters
sampled in the CTRL and HCM human populations is provided in Sup-
plemental Figure S2. For comparative purposes, the main differences
in ionic remodelling between HCM and heart failure are highlighted in
Supplemental Table S2.

2.5. Repolarisation abnormalities

All AP traces were automatically checked for repolarisation abnor-
malities, e.g. EADs. HCM models with abnormal repolarisation were
identified, based on the following conditions: i) failure of repolarisation
at the end of diastole (define as V, > —65 mV); and/or ii) showing a
positive derivative of transmembrane voltage after 150 ms from AP
peak. The final trace of models exhibiting repolarisation abnormalities
was recorded for a full extent of 3 s. In accordance with experiments,
these were subdivided into single/multiple EADs (based on the number
of voltage peaks after the AP upstroke, for EADs lasting less than 3 s),
and repolarisation failure (RF; EADs longer than 3 s). This latter group
of abnormalities is also in agreement with independent experimental
observations of long-lasting membrane potential oscillations after
EADs onset due to slow repolarisation [28]. Matching experiments,
models showing repolarisation abnormalities were not considered in
the computation of mean AP and CaT biomarkers.

2.6. Current blocks

Based on our analysis of ionic mechanisms underlying repolarisation
abnormalities in human HCM models, in silico studies were conducted
to investigate the effects of inhibition of inward currents during the
phase 2 of the human AP (Inar, Icar and Incx). This was achieved by re-
ducing their respective maximal ion channel conductances, for all
models within the HCM population. Single and multi-channel strate-
gies, from 10% to 60% current block, were considered. Larger current
blocks were not considered in order to avoid secondary effects due to al-
most complete repression of the respective ionic currents.

2.7. Simulation details

All models were paced at 1 Hz until steady state (500 s), to ensure
that intracellular Na* and K™ concentrations were stable over time.
As in the experiments, the last ten AP and CaT traces for each model
were stored and used to compute average AP and CaT biomarkers.
Numerical simulations and biomarkers evaluation were performed
using Chaste [29]. Post-processing of AP and CaT traces, together
with data analysis, were performed in Matlab (Mathworks, Inc.).

3. Results

3.1. The ionic remodelling and abnormal Ca®* handling recover the main
hallmarks of the human HCM electrophysiological phenotype

As a result of the experimentally-driven calibration, the human ven-
tricular CTRL population consists of 9118 models out of the initial pool
of 30,000, qualitatively and quantitatively in agreement with the exper-
imental recordings in human non-diseased cells, and accounting for bi-
ological variability. Fig. 1A illustrates the distribution of AP and CaT
biomarkers in the non-diseased population: only models for which all
AP and CaT biomarkers were within the experimental bounds were ac-
cepted in the final population, while others were discarded. Fig. 1B
shows representative AP and CaT traces for both accepted (blue) and
discarded (light grey) models. The baseline model used to generate
the population has been highlighted in white.

By applying the experimentally-recorded remodelling in HCM to the
CTRL population (see Methods), the human HCM population was ob-
tained. This population qualitatively and quantitatively reproduces the

HCM electrophysiological phenotype, as shown by the AP and CaT bio-
markers comparison in Fig. 2A. In agreement with the experiments,
HCM models are characterised by prolonged AP, reduced upstroke ve-
locity and slightly increased AP,pp,. CaT is prolonged as well, together
with a decrease in CaTamp and an increase in [Ca? * )i dias-

The main differences between HCM (pink) and CTRL (blue) are
summarised in Fig. 2B, showing representative AP and CaT traces from
the two populations. To facilitate the comparison, the baseline CTRL
model and its corresponding HCM counterpart have been highlighted
in white and black, respectively. Within the HCM population, approxi-
mately 8% of the models exhibited repolarisation abnormalities. As
in the experiments, AP and CaT biomarkers of these models were not
considered for the biomarkers comparison presented above, and are
analysed in detail below.

3.2. I¢q re-activation underlies repolarisation abnormalities in human
HCM

Repolarisation abnormalities were detected in 752 out of 9118 HCM
models, and classified as single/multiple EADs (480 and 201 models, re-
spectively) and repolarisation failure (RF, 71 models). Representative
experimental and in silico AP traces from each of these subgroups are
presented in Fig. 3A, highlighting the similarities between simulations
and experimental recordings. Fig. 3B shows the distributions of ionic
properties for each of the HCM repolarisation abnormalities subgroups,
compared to the models with a normal AP, i.e. exhibiting a regular
repolarisation phase. All models affected by repolarisation abnormali-
ties were characterised by markedly low I, conductances. In these sub-
groups, models were also characterised by decreasing conductances of
Ixs, Ix1 and Inak currents, which further contributed to compromise the
repolarisation reserve [30]. In addition, all inward currents during the
phase 2 of the AP (Icar, Inar and Iycx) were up-regulated in HCM models
displaying repolarisation abnormalities. Finally, Ca®* uptake through
SERCA and Ca?™ release through RyRs were moderately reduced com-
pared to HCM models with normal repolarisation.

Fig. 4 further illustrates the ionic mechanisms underlying
repolarisation abnormalities in HCM models. Single/multiple EADs and
RF were consistently led by I, re-activation in all 752 abnormal HCM
models (Fig. 4, left column). The compromised repolarisation reserve
kept the membrane depolarised long enough to allow for the re-
opening of the L-type Ca>* channels, as confirmed by the I¢,; activation
gate traces (Fig. 4, left column, second row). Simulation results did not
identify any re-activation of the Na™ gates or any significant release of
Ca®™ from the sarcoplasmic reticulum (Fig. 4, left column, fourth and
last rows).

In order to corroborate these findings, additional simulations were
performed artificially impeding the re-activation of L-type Ca®* chan-
nels. This consistently eliminated all repolarisation abnormality types
in all 752 abnormal HCM models (Fig. 4, middle column). Finally, to con-
firm the role played by the weak repolarisation reserve in leading to I,
re-activation, we considered additional simulation results obtained
when eliminating the Ik, remodelling associated to the human HCM
phenotype. This again abolished all the observed repolarisation abnor-
malities within the remodelled HCM population (Fig. 4, right column).

3.3. Selective block of inward currents as a potential therapy in human HCM

Based on the analysis of the ionic mechanisms underlying
repolarisation abnormalities in human HCM, we identified the selective
blockade of the three main inward currents during the AP plateau phase
(Icaw, InaL and Incx) as potential anti-arrhythmic strategies in this dis-
ease. Indeed, the HCM models exhibiting repolarisation abnormalities
were characterised by high conductances for these inward currents.
This contributed to further reduce the repolarisation reserve, already
compromised as a consequence of the reduced Iy, associated to HCM
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remodelling, leading to a large APD prolongation and thus favouring I,
re-activation.

Simulation studies were conducted to investigate the effect of the se-
lective block of these currents. Their therapeutic potency was evaluated
by monitoring the abolishment of repolarisation abnormalities in the
human HCM population, as well as their capability of normalising AP
and CaT biomarkers in the rest of the HCM population (Fig. 5A and B,
respectively).

The three current blocks were effective in reducing repolarisation
abnormalities, especially single EADs (Fig. 5A, solid lines). Their efficacy
was however lower in suppressing abnormalities under conditions of a
highly compromised repolarisation reserve (Fig. 5A, dashed and thin
solid lines for multiple EADs and RF, respectively). Ic,; block proved as
the most effective option: indeed, 30% of I, block sufficed to suppress
all single EADs, and with a 60% Ic, block all repolarisation abnormalities
are abolished. I,y block significantly reduced the occurrence of single
EADs (more than 95% with 60% block), but its effect was smaller for
multiple EADs (20%) and null for RF. The efficacy of Iycx block was
higher than the one of Iy, succeeding in suppress more than 95% of sin-
gle EADs as well, but up to 60% of multiple EADs and 20% of RF instances.
None of the three selective inward current blocks elicited additional
repolarisation abnormalities in the rest of the human HCM population.

E. Passini et al. / Journal of Molecular and Cellular Cardiology 96 (2016) 72-81

Regarding the normalisation of AP biomarkers, all the selective cur-
rent blocks partially reversed the AP prolongation occurring in HCM
cardiomyocytes (Fig. 5B, first column). The magnitude of APD reduction
relative to the HCM population was similar for the three considered cur-
rent blocks (i.e., APDgg decrease of — 7.8%, —9.2% and — 8.6% for 60% of
Icar, InaL and Incx block, respectively).

Both ¢, and Ina. blocks reduced [Ca”]i,dias (Fig. 5B, second col-
umn), one of the hallmarks induced by HCM remodelling. However,
Icar blockade yielded a more remarkable reduction in diastolic Ca® ™
load (—19.3% with 60% Ica. block) than Ina, which had a smaller effect
(—1.8% with 60% Ina block). On the contrary, blocking Incx led to an in-
crease in [Ca® ™ ; gias (4 27% with 60% Incx block), thus potentially aggra-
vating the HCM phenotype. A similar trend was observed for the CaT
amplitude (Fig. 5B, third column), which decreased when blocking I,
and Ina (—82% and — 14%, with 60% I, and Iy, block, respectively),
and highly increased when blocking Incx (+105% with 40% Incx
block). Therefore, both Iy, and Ica; blocks have a negative effect on
CaTamp, already reduced in HCM, while Incx block seems to counteract
this aspect of HCM remodelling.

To summarise our findings, Ica. block was identified as the most
effective strategy to suppress repolarisation abnormalities in HCM, as
well as to revert the increase in APD and [Ca? ] gi.s induced by HCM
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of repolarisation abnormalities. From left to right: single EADs, multiple EADs and repolarisation failure (RF). B: Normalised distributions of ionic properties for the 11 conductances varied
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remodelling. However, large I, inhibition may severely compromise
CaTamp. Ina block is able to successfully suppress single EADs, but has a
very low efficacy on multiple EADs and RF. It also has a positive effect
by reducing both APD and [Ca® " [ gias, With a small impact on CaTamp. Fi-
nally, Incx block reduces repolarisation abnormalities, especially single
EADs, and also shortens APD. However, it has a high impact on CaT, espe-
cially on CaT,pmp, and further increases the already elevated [Ca® ™) dias
observed in human HCM cells.

34. Na™/Ca® " exchanger block improves the efficacy of Ina and Icq; selec-
tive blocks

Simulation results for selective inward current blocks pointed out
CaTamp decrease as the main drawback when blocking Ic,. and Inar.
Since Incx block produces instead an increase in CaT,mp, the potential
benefit of multichannel block therapies were additionally investigated,
by adding Incx blockade to both the selective I, and Iy, blocks. Due
to the high number of possible combinations and number of models
within the human HCM population (n > 9000), results are presented
for a double multichannel block strategy for each pair of currents,
based on the findings on selective current block results presented in
the previous section. As for Ic,;, we considered the 40% current block,
which yields positive efficacy (100/98% for single/multiple EADs) with-
out excessively compromising the CaT amplitude. As for Inar, as CaTamp
reduction was overall of small magnitude, we considered the maximum
block (60%). We combined these two scenarios with Iycx block (40% and

20%, respectively), aiming at balancing the changes in both CaT,m,, and
[Caz +]i,dias~

Both multichannel approaches increased the efficacy of the single
channel blocks in abolishing repolarisation abnormalities, including
single/multiple EADs and RF. Blockade of 40% and 20% of Incx augment-
ed the efficacy of Icyp and Ina blocks in + 5% and + 18%, respectively
(Fig. 6A). In terms of the normalisation of AP biomarkers, Incx block fur-
ther contributed to AP shortening in both multichannel combinations
(Fig. 6B, first column), even under already significant APD decrease
due to large Iy, inhibition. As for [Ca®*]; gias (Fig. 6B, second column),
the increase in diastolic Ca?* load induced by Iycx block was not fully
compensated by the other single channel block actions: as a result,
[Ca®™); gias distributions were comparable to those in the baseline
HCM population. As for the CaT amplitude (Fig. 6B, last column), the
large reduction in CaT,m, due to Ic,. block was not fully counteracted
by additional Incx block: the final CaTamp was still ~100 nM lower
than for the HCM population without any current block. On the con-
trary, when combining Ina. and Incx, the final CaT,mp was increased,
and almost restored to that for the non-diseased population.

4. Discussion

In this study, we unravel the key ionic mechanisms underlying repo-
larization and Ca?* handling abnormalities in human ventricular
cardiomyocytes in HCM, and we identify potentially-efficacious anti-
arrhythmic strategies specific to the HCM phenotype. Our synergistic
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approach tightly couples populations of models of human ventricular
electrophysiology with a rich experimental dataset, including action po-
tential, calcium transient, ionic current and mRNA measurements ob-
tained in human HCM cardiomyocytes. We consistently found the re-
activation of the overexpressed L-type Ca?™ current, favoured by a de-
creased repolarisation reserve, as the key mechanism responsible for
repolarisation abnormalities in HCM. These findings were subsequently
integrated in in silico studies of single and multichannel ion block,
aiming at suggesting potential strategies to ameliorate the main hall-
marks of the electrophysiological phenotype of human HCM. In spite
of exhibiting a high efficacy in the suppression of pro-arrhythmic abnor-
malities, selective I, block also markedly compromised Ca?* transient
amplitude in human HCM. Multichannel Iycx, Inar and Icap blocks, previ-
ously unexplored in the pharmacological management of the disease,
exhibited increased efficacy than the respective single blocks, also mit-
igating adverse effects on systolic Ca®>* function.

In order to address the significant inter-subject variability and dis-
ease expression exhibited in the disease, experimentally-calibrated
populations of models of human ventricular electrophysiology under
non-diseased and HCM conditions were constructed based on the
most comprehensive electrophysiological and molecular characterisa-
tion of HCM to date in human [3]. The two populations qualitatively
and quantitatively reproduce the distinctive characteristics of the non-
diseased and HCM phenotypes, and in particular the distinctive charac-
teristics associated to human HCM, including the drastic prolongation
of AP duration at different levels of cellular repolarisation, increased
diastolic Ca®>™ load and decreased Ca®™ transient amplitude with
slower kinetics, together with a propensity to develop repolarisation
abnormalities.

The population of models approach [17,31-33] is particularly suit-
able for exploring the effect of inter-subject variability in the disease, es-
pecially when evaluating potential anti-arrhythmic therapies, whose
efficacy may depend on individual responses to drug actions [34]. Fur-
thermore, this is the first time that this methodology has been applied
to the study of a genetic cardiomyopathy.

Here, instead of a single AP model representative of average cell be-
haviour, cell-to-cell differences are accounted for by varying ion channel
parameters around their nominal values. These parameters are the
maximal conductances of the main ionic currents, based on the assump-
tion that variability is mostly depending on the difference in the number
of ionic channels from cell to cell, as recently suggested also by others
[19,34-36]. Calibration of model outputs against experimental data is
then performed in order to only retain models within physiological
range. In this regard, each model hence becomes a representation of a
viable cell within the plausible bounds of biological variability observed
in the population [17,31-33].

The HCM phenotype was recovered in this study based on the avail-
able experimental data, by modifying the conductances of the main
ionic channel affected by the disease together with the inactivation of
the L-type Ca®™ current. Additional elements of the electrophysiological
remodelling associated to HCM can be easily accommodated to the pre-
sented approach, shall the experimental evidence becomes available.

The experimental recordings also provided confirmation of in-
creased proneness to repolarisation abnormalities in HCM diseased
cardiomyocytes [3,37], and in particular to the development of EADs
as a well-established pro-arrhythmic mechanism [12,13]. Our findings
suggest that the concomitant decrease of the K* repolarising currents
and the increase of inward currents during the plateau phase of the
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AP, i.e. an impaired repolarisation reserve [30], is the provenance of
such repolarisation abnormalities in human HCM. The marked AP pro-
longation induced by the combined action of these two factors keeps
the membrane depolarised long enough to allow for the re-opening of
the L-type Ca? ™ channels. The mechanistic insights on EADs generation
presented in this contribution, specific of human ventricular electro-
physiology under HCM diseased conditions, are therefore in agree-
ment with previous experimental and theoretical studies in
different animal species [38,39]. Other possible factors, such as the
reopening of Na* channels, has been also associated with EADs trig-
gering [12,40]. Our in silico results, analysed in ~800 human ventric-
ular models exhibiting different severities of repolarisation
abnormalities, consistently identified I, re-activation as the only
source of triggered activity in human HCM.

Emerging from these results, we identified the targeting of net in-
ward currents (Icar, Inar and Incx) as potential therapeutic strategies to
counteract AP prolongation in HCM. We evaluated in silico their selec-
tive block, considering both their anti-arrhythmic implications and
their contribution in reversing the HCM phenotype. The selective
block of I proved as highly effective in suppressing all repolarisation
abnormalities, and also in reducing APD and lowering the diastolic
Ca%* load. However, our simulation results also show how I, block
markedly affects the already compromised Ca? ™ transient amplitude
in human HCM (Fig. 5). This provides additional mechanistic and quan-
titative insights into the interpretation of the existing guidelines for the
management of HCM [41], which suggest caution in the use of Ca®™"
blockers (e.g. verapamil) in the treatment of the disease [5].

Selective Iy, block successfully suppressed single EADs at high levels
of current block, but exhibited small efficacy on more severe
repolarisation abnormalities. It also contributed to a decrease in APD
and to a smaller extent in diastolic Ca?* load, without any noticeable ef-
fect on Ca®* transient amplitude. Our findings are hence in agreement

with the reported reduction of EADs in HCM cells and the partial reversal
of the HCM phenotype under pharmacological Iy, inhibition with
ranolazine [3,42]. In addition, highly selective Iy, blockers are currently
being developed and may be available in the near future [43], which to-
gether with ongoing clinical trials to assess the effects of ranolazine in
HCM patients, will allow for a systematic validation of our prospective
in silico predictions.

In the HCM population, selective Iycx block had an anti-arrhythmic
effect, especially by reducing single EADs and shortening the AP. These
results are in agreement with the reported potential of Incx block
in suppressing EADs and preventing Ca?™ overload-induced trig-
gered arrhythmias in canine and guinea pig studies [44-46]. To facil-
itate the interpretation of our results, Table 1 summarises the ionic
currents investigated in our selective channel block simulation
study, drugs targeting them, and their previously reported use in
human HCM.

Our in silico predictions of combined multichannel Iycx and either
Inaw Or Icar blocks in HCM indicate an increase in the efficacy of suppres-
sion of repolarisation abnormalities and of the shortening of the AP with
respect to the individual selective strategies. On the other hand, our re-
sults also show that Iycx block may have a significant impact on Ca®*
handling, by increasing the Ca?* transient amplitude and further con-
tributing to diastolic Ca? ™ overload. These findings are hence supported
by those of Bourgonje et al. [28], showing a combined I, and Incx block
by SEA-0400 as an effective anti-arrhythmic strategy against dofetilide-
induced arrhythmias, despite an increase in diastolic calcium content.
Their results were however obtained in a canine chronic atrioventricu-
lar block model for compensated hypertrophy, not representative of the
ionic remodelling of human HCM. Our study therefore constitutes the
first investigation of a multichannel Incx strategy for the pharmacologi-
cal management of human HCM, where the arrhythmic mechanisms
may be different.
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In HCM myocardium, alterations of Ca?>™ handling (e.g. reduced
SERCA function) may render the cardiomyocyte more dependent on
Incx for Ca? ™ transient decay. Additionally, the increased forward mode
activity of the Na™/Ca?™ exchanger appears to be crucial to maintain
CaT amplitude in HCM. For these reasons, the effects of Incx blockers are
likely to be more pronounced in HCM as compared with healthy myocar-
dium. In the multichannel strategies, and under the premise of not signif-
icantly raising the diastolic Ca>™ levels observed in HCM, Iycx block only
partially ameliorates the drastic decrease of Ca?™ transient amplitude in-
duced by I, blockade, whereas when combined with Iy, block it suc-
cessfully reverts Ca? ™ transient amplitude to the values exhibited by the
non-diseased population. However, recent experimental findings using
last-generation selective Incx blockers [44-46] have reported no signifi-
cant alterations in the AP or Ca®™ transient, in spite of Incx being consid-
ered the main responsible of Ca?* extrusion in cardiac myocytes. Future
research will be devoted to confirm the potential anti-arrhythmic impli-
cations of the proposed multichannel strategies for the treatment of
human HCM identified in our computational studies.

A different approach to counteract for repolarisation abnormalities in
human HCM, not considered in this study, could be the increase of
repolarising currents in HCM cardiomyocytes. One possibility could be
the use of Iy, agonists to selectively activate these channels, which
in vivo guinea pig studies with pharmacologically induced QT prolonga-
tion successfully shortened the QTc interval [47]. However, additional
studies showed that these I, agonists also impair cardiac conduction,
thus impeding their use as anti-arrhythmic drugs [47]. An alternative op-
tion might be the use of ATP-sensitive K™ channel openers, as already
suggested for heart failure [48]. However, the increased energy require-
ments of myosin ATPase and the reduction in the phosphocreatine-to-
ATP ratio (an established marker of cellular energy status) in HCM [6,8]
may also compromise the availability of these channels for targeting the
disease.

Finally, we did not explore the role of beta-adrenergic stimulation in
modulating pro-arrhythmic abnormalities in human HCM, whose ionic
characterisation still remains unknown in the disease. This may be an
important factor of arrhythmic risk in HCM, due to the known effect of
autonomic control in modulating ionic currents, and in particular L-
type Ca>™ channels [49]. Increased intracellular Na™ and Ca®* levels
can also modulate mitochondrial activity linking ATP production to
ATP demand, by activation of Na™/Ca?™ exchange in the inner mito-
chondrial membrane, which keeps mitochondrial Ca®>* low preventing
ATP supply meeting demand [50]. Computational models of the role of
the beta-adrenergic cascade on ionic currents, as well as of mitochondri-
al ATP synthesis, have been recently proposed [49,51-53]. These consti-
tute exciting and promising venues for future investigations.
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Table 1
Ionic currents investigated in this study, drugs targeting them, and their previously report-
ed use in the pharmacological management of human HCM.

Main channel Other Use in
Compound Ref Dose (uM) block actions HCM
Ranolazine [43] 17 uM 50% InaL I block [3,42]
GS967 [43] 0.13 M 50% InaL - -
Verapamil [54] 0.33 uM 50% IcaL Ik block [5,41]
ORM-10,103 [44] 0.96 yM 50% Incx - -
SEA-0400 [55] 1M 66% Incx Icar block -

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.yjmcc.2015.09.003.
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