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A continuous ordinary vector differential equation in Euclidean
space has a funnel of solutions through each initial condition. Its
cross-section at time t is a continuum. Many continua are known
to be funnel sections: For instance the circle is a cross-section
of a continuous ODE y′ = f (t, y) where y is a variable in the
plane, but it is not known whether every Jordan curve J is a
planar funnel section. In this paper we give sufficient conditions
that imply J is a planar funnel section – “pierceability.” We show
that pierceability is not generic when we put a fairly interesting
complete metric on the space of Jordan curves. We also give proofs
of several statements in the first author’s paper on funnel sections
that appeared in the JDE in 1975.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A continuous time-dependent vector ODE on R
m

y′ = f (t, y), y(t0) = y0 (1)

can have many solutions with the same initial condition. The simplest example is the time-
independent one-dimensional ODE

y′ = 2|y|1/2, y(0) = 0
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Fig. 1. The funnel of a two-dimensional time-dependent ODE through (t0, y0) and its cross-section K in the t = t1 plane.

whose uncountably many solutions with initial condition y(0) = 0 are

ya,b(t) =

⎧⎪⎨⎪⎩
−(t − a)2 if t < a,

0 if a � t � b,

(t − b)2 if b < t

where −∞� a � 0 � b �∞. The solution funnel of (1) is

F (t0, y0, f ) = {(
t, y(t)

)
: y(t) solves the ODE y′ = f (t, y) with y(t0) = y0

}
.

It is the union of the graphs of the solutions with the given initial condition. Its cross-section at time
t1 is the funnel section

Kt1(t0, y0, f ) = {
y1: (t1, y1) ∈ F (t0, y0, f )

}
.

See Fig. 1. The funnel section consists of the points y1 ∈ R
m that are accessible from y0 by a solution

starting from y0 at time t0 and arriving at y1 at time t1.
The classical theorem about funnel sections is due to H. Kneser. It states that Kt1 is a continuum

(i.e., is nonempty, compact, and connected) if f : Rm+1 → R
m is continuous and has compact support.

See [2] and [4].
In [4] the first author investigated the question: “which continua are funnel sections?” The main

answers were:

(a) The planar continuum consisting of an outward spiral and its limit circle is not a funnel section
of any m-dimensional ODE.

(b) Every continuum in R
m whose complement is diffeomorphic to R

m \ {0} is a funnel section of an
m-dimensional ODE.

(c) All piecewise smooth, compact, connected polyhedra in R
m are funnel sections of m-dimensional

ODEs.

(b) provides a great many pathological continua as funnel sections. For example, all non-separating
planar continua are funnel sections. This includes the topologist’s sine curve, the bucket handle, and
the pseudo-arc (which contains no ordinary arcs). (c) implies that all compact smooth manifolds are
funnel sections.
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Fig. 2. The eye-shaped region S .

An obvious question remains open: Is the property of being a funnel section topological, or does it
depend on how the continuum is embedded in R

m? The simplest case is the circle, where the ques-
tion becomes: “Is every Jordan curve a funnel section of a two-dimensional ODE?” In this paper we answer
the question affirmatively under some extra hypotheses, and point out the difficulties in general. We
also expand on some remarks in [4].

2. Smooth pierceability

An arc pierces a separating plane continuum K , such as a Jordan curve, if it meets K at a sin-
gle point and passes from one complementary component of K to another. If the arc is smooth it
smoothly pierces K . Planar Jordan curves are everywhere pierceable and smooth Jordan curves are
everywhere smoothly pierceable.

Theorem 1. If a planar Jordan curve is smoothly pierceable at some point then it is a funnel section of a two-
dimensional ODE.

Patching Lemma. If K is a funnel section of an m-dimensional ODE and p ∈ R
m is given then there exists a

continuous g :Rm+1 →R
m with compact support contained in [0,1] ×R

m such that K = K1(0, p, g).

Proof. This is Proposition 2.4 of [4]. It lets us patch funnels together, one to the next. �
Proof of Theorem 1. Let J ⊂ R

2 be a Jordan curve pierced at p by a smooth arc A. We may assume
p is the origin and A contains the horizontal segment [−1,1] × {0}. Let β : R → [0,1) be a smooth
bump function such that the eye-shaped region S between the graphs of −β and β is as in Fig. 2.
There is a smooth map Ψ :R2 \ S →R

2 closing the eye. It sends the vertical segment x × [β(x),1] to
x × [0,1], is symmetric with respect to y �→ −y, and is the identity outside the unit disc D. Except
for the fact that Ψ (x, β(x)) = (x,0) = Ψ (x,−β(x)), Ψ is a diffeomorphism.

The map Ψ −1 : R2 \ (−1,1)×0 opens the eye and sends J \0 to an open arc. Let J∗ = Ψ −1( J \0)∪
(0, β(0)) ∪ (0,−β(0)). It is a compact planar arc, so it is a funnel section: J∗ = K1(0, p, f ) for some
p ∈ R

2 and some f = f (t, x, y) with compact support in [0,1] × R
2. (Here we used the Patching

Lemma and the fact from [4] that every planar continuum whose complement is diffeomorphic to
R

2 \ 0 is a funnel section.)
Next, we gradually close the eye as t varies from t = 1 to t = 2. There is a continuous vector field

g = g(t, x, y) tangent to the vertical lines x ×R whose forward trajectories on [1,2] × x × [−1,1] are
shown in Fig. 3. The time-one map of the forward g-flow is Ψ . See Fig. 4. Thus J is a funnel section,
J = K2(0, p, f + g). �
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Fig. 3. A g-trajectory starting at (1, x, y) with |y| � β(x) ends at (2,Ψ (x, y)).

Fig. 4. Ψ closes the eye.

Theorem 2. There exist planar Jordan curves, smoothly pierceable at no points. Some of them are funnel sec-
tions.

See Section 5 for the proof of the second assertion.

Remark. It is natural to expect that unions and intersections of funnel sections of m-dimensional
ODEs are funnel sections of m-dimensional ODEs. The union case is an open question, while the
intersection assertion is false. In fact, if it were known that the union of two funnel sections of 2-
dimensional ODEs is a funnel section of a 2-dimensional ODE then it would follow at once that every
planar Jordan curve J is a funnel section of a 2-dimensional ODE. For J is the union of two arcs,
each being a funnel section of a 2-dimensional ODE by (b) in Section 1. See Section 4 for the union
question when it is permitted to raise the dimension.

To understand the funnel intersection question, consider the outward spiral together with its limit
circle, S . It is not a funnel section, but its one-point suspension T is one. For the complement of T
in R

3 is diffeomorphic to the complement of a point. The closed unit disc D ⊂ R
2 ⊂ R

3 is a funnel
section, but S = T ∩D is not.



C. Pugh, C. Wu / J. Differential Equations 253 (2012) 225–243 229
Fig. 5. Part of a button curve B .

Fig. 6. Part of a zippered button curve – a resistor curve.

3. Nowhere smoothly pierceable Jordan curves

It is not surprising that there exist planar Jordan curves which are nowhere smoothly pierceable.
We prove slightly more.

Theorem 3. There are planar Jordan curves that are nowhere pierceable by paths of finite length. Some of them
are funnel sections.

See Section 5 for the proof of the second assertion.
If J ⊂ S2 is a Jordan curve that separates the north and south poles and γ is a path from one pole

to the other that pierces J then we call γ a polar path for J . Every polar path has length � π . The
resistance of J is

r( J ) = inf
{
�(γ ): γ is a polar path for J

}
where �(γ ) is the length of γ .

The greater the resistance, the longer it takes a point to travel at unit speed from pole to pole
crossing J just once. The equator has resistance π . Approximating it by a Jordan curve B made of
many small consecutive buttons as in Fig. 5 does not increase the resistance, but subsequently adding
zippers across the buttons as in Fig. 6 increases the resistance as much as we want.

Resistance Theorem. There exist Jordan curves with infinite resistance.

Proof. Modify the equator by approximating it with a smooth resistor curve R1 having resistance
> π . Then approximate R1 with a resistor curve R2 having resistance > 2π , etc., and take a limit. The
details appear below. �
Lemma 4. There is a diffeomorphism σ : [0,1]2 → [0,1]2 such that σ is the identity on a neighborhood of
the boundary and σ carries the rectangle [2/5,3/5] × [0,1] to an S-shaped strip S such that for every path
γ (t) = (x(t), y(t)) in S connecting the top and bottom of S, 0 � t � 1, we have

1∫ ∣∣x′(t)
∣∣dt � 1.
0



230 C. Pugh, C. Wu / J. Differential Equations 253 (2012) 225–243
Fig. 7. The S-shaped strip S .

Fig. 8. A stack of four unit-length S-strips forms a zipper strip Z with r(Z) � 4.

Proof. See Fig. 7. �
Lemma 5. Given L > 0, there is a diffeomorphism ζ : [0,a]× [0,b] → [0,a]× [0,b] such that ζ is the identity
on a neighborhood of the boundary and ζ carries the rectangle [2a/5,3a/5] × [0,b] to a zipper strip Z such
that every path γ in Z connecting the top and bottom of Z has length � L.

Proof. Reduce the unit square to a rectangle [0,a] × [0,b/n] with n � L/a. Stack n copies of the
reduced strip diffeomorphism σ from Lemma 4 to form ζ and Z . The length of γ is at least na � L.
See Fig. 8 in which a = 1, b = 1/2, and n = 4. �

Let C be the cylinder S1 × [−1,1] and let J be a Jordan curve that separates its top and bottom.
As for paths on the sphere, a path on the cylinder connecting the top and bottom is polar for J if it
meets J exactly once, and the resistance of J is the infimum of the lengths of the polar paths. Let E
be the equator of C .

Lemma 6. Given ε > 0 and L > 0, there is a diffeomorphism ϕ : C → C in the ε-neighborhood of the identity
such that ϕ is the identity off the ε-neighborhood of E, and J = ϕ(E) has resistance > L.
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Fig. 9. Zipper strips are glued into the rectangles ρ,ρ ′ ⊂ Ca .

Proof. Choose a = 1/n � ε/2 and divide the cylinder Ca = S1 × [−a,a] into n squares of size a × a.
Draw a button curve B with n buttons, one in each square. There is a diffeomorphism φ : C → C
sending each square to itself such that φ(E) = B and φ is the identity off Ca .

Then draw 2n rectangles ρ,ρ ′ of length a/2 and height b as shown in Fig. 9. In each rectangle,
replace the identity map by the zipper diffeomorphism constructed in Lemma 5. This gives a diffeo-
morphism ζ : C → C . The composite ϕ = ζ ◦ φ ε-approximates the identity and fixes all points off Ca .
Every polar path for J = ϕ(E) must travel through an entire zipper strip and therefore has length
> L. �

Let J0 be the collection of Jordan curves on the 2-sphere that separate the poles.

Lemma 7. With respect to the Hausdorff metric, the resistance function is lower semi-continuous at smooth
Jordan curves in J0 .

Proof. Let Jn be a sequence of Jordan curves in J0 that converges to J ∈ J0 with respect to the
Hausdorff metric. If J is smooth we claim that r( J ) � lim infn→∞ r( Jn). We refer to points on the
south side of a curve in J0 as “below” and those on the north side as “above.”

Consider the ε-tubular neighborhood N = Nε of J . It is an annulus bounded by smooth Jordan
curves Ja and Jb above and below J . The normals to J give smooth projections πa : N → Ja , πb :
N → Jb . As ε → 0, the norms of (Dπa)x and (Dπb)x for x ∈ N tend uniformly to 1. Thus, if ν is a
smooth path in N then the length ratio satisfies

lim inf
ε→0

�(ν)

�(πa(ν))
� 1, lim inf

ε→0

�(ν)

�(πb(ν))
� 1,

uniformly ν ⊂ N .
Fix a small ε > 0 and choose a polar path γn for Jn whose length is approximately r( Jn). For

large n, Jn ⊂ N and Jn separates the boundary curves Ja, Jb of N . By approximation, we can assume
that γn is smooth except at the point pn ∈ Jn where it crosses Jn , and that γn is transverse to ∂N .
We form a polar path ρn for J as follows. (It will not be much longer than γn .)

The polar path γn for Jn goes from the north pole to the south pole, and Jn splits it as γn = α ∪β

where α goes from the north pole to pn and β goes from pn to the south pole. Since Jn separates
the boundary curves of N , α lies above Jb and β lies below Ja . Transversality implies that α splits as

α = α1 ∪ ν1 ∪ · · · ∪ αk ∪ νk
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Fig. 10. Ja splits α as α = α1 ∪ ν1 ∪ α2 ∪ ν2. The path ρa is drawn thick.

where each α j lies above Ja and each ν j lies in N . The curve

ρa = α1 ∪ πa(ν1) ∪ · · · ∪ αk ∪ πa(νk)

lies above or on Ja and has length not much greater than �(α). (In fact, it is likely that �(ρa) is much
less than �(α).) See Fig. 10. In the same way we form from β a path ρb that lies below or on Jb and
has length not much greater than �(β). The path ρa ends at the point πa(pn) while ρb starts at the
point πb(pn). Let σn = [πa(pn),πb(pn)] be the normal segment of N that passes through pn . Thus,

ρn = ρa ∪ σn ∪ ρb

is a polar path J and its length is not much greater than �(γn). It follows that r( J ) �
lim infn→∞ r( Jn). �
Remark. The resistance function is not upper semi-continuous. There exist resistor curves approxi-
mating the equator arbitrarily well that have large resistance.

Question. Is the preceding lemma true without the assumption that J is smooth? That is, if Jn → J
in J0 and there are polar paths γn for Jn of length � r, is there a polar path for J of length � r + ε?

Lemma 7 uses the Hausdorff metric on J0. A finer topology is defined as follows. Every pa-
rameterization of a Jordan curve is an embedding f : S1 → S2, and every f extends to a home-
omorphism F : S2 → S2. (We think of the circle as the equator of the sphere.) The space H of
self-homeomorphisms of the sphere has a natural metric

D(F , G) = ‖F − G‖ + ∥∥F −1 − G−1
∥∥,
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where ‖F1 − F2‖ = sup{|F1(x) − F2(x)|: x ∈ S2} is C0-distance. With respect to D , H is complete, and
the subset

H0 = {
F ∈ H: F

(
S1) separates the poles

}
is closed in H.

Lemma 8. For the generic F ∈H0 , F (S1) has infinite resistance.

Proof. It suffices to check that for every L > 0,

H0(L) = {
F ∈ H: F

(
S1) has resistance > L

}
contains an open dense subset. Let F0 ∈ H0 be given. It can be approximated in H0 by a diffeomor-
phism F1. The tubular neighborhood of the smooth Jordan curve J1 = F1(S1) is diffeomorphic to the
cylinder, so Lemma 6 provides a diffeomorphism F2 that approximates the identity and J = F2( J1)

has resistance > L. Then F = F2 ◦ F1 approximates F1 and lies in H0(L). Hence H0(L) ∩ C∞ is dense
in H0. For each F ∈H0(L)∩ C∞ , J = F (S1) is smooth, so Lemma 7 implies that for all G ∈H0 near F ,
G(S1) has resistance > L. That is, H0(L) contains a neighborhood of F . Hence H0(L) contains an open
dense subset of H0, and

⋂
L∈NH0(L) is residual; that is, for the generic F ∈H0, J = F (S1) has infinite

resistance. �
Proof of the Resistance Theorem. Since residual subsets of a complete nonempty metric space are
nonempty, Lemma 8 provides many Jordan curves of infinite resistance. �
Remark. A Jordan curve J of infinite resistance is nowhere smoothly pierceable. For if ν is a smooth
path piercing J then we can choose a smooth path α from the north pole to one endpoint of ν , and a
smooth path β from the other endpoint of ν to the south pole, such that α and β are disjoint from J .
Then the combined path α ∪ ν ∪ β is polar with finite length, contradicting r( J ) = ∞.

Remark. There is nothing special about the poles of the sphere. For any distinct p,q ∈ S2 we can
consider the set Hpq of homeomorphisms F ∈ H such that F (S1) separates p from q. Letting p, q
vary in a countable dense subset of the sphere, we infer a stronger looking version of the Resistance
Theorem.

Theorem 9. For the generic F ∈ H, the Jordan curve J = F (S1) offers infinite resistance to all paths piercing
it.

4. One dimension up

The outward spiral together with its limit circle, S , is not a funnel section of any continuous 2-
dimensional ODE, and in fact it is not a funnel section of any continuous m-dimensional ODE. Raising
the permitted dimension has no effect on this property of S . However, some funnel questions get
easier if the dimension can be increased.

Theorem 10. The image of a funnel section under projection is a funnel section.

Proof. There is a continuous function g(t, x) on R
2 such that the trajectories of x′ = g are as in Fig. 3:

All trajectories x(t) that begin in the interval [−1,1] at time t = 1 end at 0 by time t = 2. The support
of g is compact and contained in [1,2] ×R. This gives a local projection.
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Suppose that K = K1(0, p, f ) is a subset of the unit m-cube Q for some continuous f =
f (t, x1, . . . , xm) with compact support in [0,1] ×R

m . Let π : Rm → R
m−1 be the projection that kills

the span of the last variable xm . Then

π(K ) = K2(0, p, f + g)

where g is the vector field on R
m ,

(
0, . . . ,0, g

(
t, xm)) = g

(
t, xm) ∂

∂xm
.

Projections into higher codimension subspaces are handled by induction. �
Corollary. Every planar Jordan curve is a funnel section of a 3-dimensional ODE.

Proof. Let h : [0,2π ] → J parametrize the Jordan curve J ⊂ R
2, and define g : [0,2π ] →R

3 by

g(θ) = (
h(θ), θ

)
.

g([0,2π ]) is an arc K in R
3. Its complement is diffeomorphic to the complement of a point, so it is

a funnel section of a 3-dimensional ODE. Theorem 10 implies that π(K ) = J is a funnel section of a
3-dimensional ODE. �

In fact, we have established something a bit more general.

Theorem. Peano continua in R
m are funnel sections in one dimension up.

Proof. A Peano continuum X is the continuous image of an interval. (Equivalently, by the Hahn–
Mazurkiewicz Theorem a Peano continuum is a compact Hausdorff space which is connected and
locally connected.) Jordan curves are Peano continua. If h : [0,2π ] → X ⊂ R

m is a continuous surjec-
tion then θ �→ g(θ) = (h(θ), θ) is a homeomorphism from the interval to an arc K ⊂ R

m+1. The latter
is a funnel section of an (m + 1)-dimensional ODE, and by Theorem 10, so is X = π(K ). �
Corollary. The Hawaiian earring is a funnel section of a 3-dimensional ODE.

Proof. The Hawaiian earring is a planar Peano continuum. �
Remark. It is not hard to show directly that the Hawaiian earring is also a funnel section of a 2-
dimensional ODE.

Theorem 11. If a continuum is a union of two funnel sections then it is a funnel section in one dimension up.

Proof. Suppose that A, B ⊂ R
m are funnel sections for m-dimensional ODEs, A = K1(0, p, f ) and B =

K1(0,q, g) for continuous f , g : Rm+1 → R
m having compact support in [0,1] ×R

m , and c ∈ A ∩ B . It
suffices to construct a funnel section K consisting of a line segment L = c × [0,3] and copies of A, B
as shown in Fig. 11. For then Theorem 10 implies π(K ) = A ∪ B is a funnel section of an (m + 1)-
dimensional ODE.

Without loss of generality we assume that the interior of the unit cube Q = Q m+1 contains the
supports of f , g , and the funnels through p and q.

We write (t, x, z) ∈ R × R
m × R systematically. It is easy to construct a continuous h0 :

R
m+2 →R

m+1 with compact support in [−1,0] ×R
m+1 such that
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Fig. 11. The configuration of the desired funnel section is K = (A × 0) ∪ L ∪ (B × 3).

Fig. 12. β is continuous except at (t,a(t),0).

K0(−1, p,h0) = L0

= [
(0, p,0), (0, p,1)

] ∪ [
(0, p,1), (0,q,2)

] ∪ [
(0,q,2), (0,q,3)

]
.

L0 is the broken line in the t = 0 plane from (0, p,0) to (0,q,3) having vertices (0, p,1) and (0,q,2).
Then we will construct h so that K1(0, L0,h) = K . This gives K1(−1, p,h0 + h) = K .

First we fix f - and g-solutions a(t) and b(t) such that a(0) = p, b(0) = q, and a(1) = c = b(1).
Then we construct h on the three slabs 0 � z � 1, 1 � z � 2, 2 � z � 3 as follows. We think of z as an
“external homotopy variable” by requiring that the z-component of h is identically zero. This forces h-
solutions to stay in z = const planes. For clarity we drop the zero z-component from the notation for
h and write h(t, x, z) as an m-vector. Choose a bump function β(t, x, z) on the bottom slab 0 � z � 1
such that:

(i) β = 1 on the set {(t, x, z) ∈ Q × (0,1]: |x − a(t)| � z}.
(ii) β = 0 on the set {(t, x, z) ∈ Q × [0,1]: |x − a(t)| � 2z}.

(iii) 0 � β � 1 otherwise, and β is continuous except at the curve a in the slab’s bottom face Q × 0.

See Fig. 12, and note that β = 1 on the slab’s top face Q × 1.
Although β is discontinuous at (t,a(t),0), the average

h(t, x, z) = β(t, x, z) f
(
t,a(t)

) + (
1 − β(t, x, z)

)
f (t, x)

is continuous on the whole slab. Fix 0 < z � 1. The set Nz = {(t, x, z): |x−a(t)| < z} is an open tubular
neighborhood of the curve (t,a(t), z). On Nz , β = 1. We claim that a(t) is the unique solution of
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x′ = h(t, x, z), x(0) = p.

Let x(t) be any solution of this equation. It starts out in Nz , where β = 1 implies h(t, x, z) = f (t,a(t)),
a function that does not depend on x. Thus, for small t the solution is unique and given by integration

x(t) = p +
t∫

0

f
(
s,a(s)

)
ds,

which is the same as a(t). Thus x(t) = a(t) for small t . Since a(t) always lies in Nz , equality continues
and we get uniqueness.

In terms of funnels, this shows that

K1
(
0, p × [0,1],h

) = A × 0 ∪ c × [0,1].
The same construction extends h to the top slab such that

K1
(
0,q × [2,3],h

) = B × 3 ∪ c × [2,3].
We fill in the middle slab by linear interpolation. For 1 � z � 2 we set

h(t, x, z) = (2 − z)h(t, x, z = 1) + (z − 1)h(t, x, z = 2).

On the slab Q × [1,2], h does not depend on x. It is

h(t, x, z) = (2 − z)h
(
t,a(t), z = 1

) + (z − 1)h
(
t,b(t), z = 2

)
.

Both curves a(t) and b(t) stay interior to the unit cube Q , and so does their convex combination

c(t) = (2 − z)a(t) + (z − 1)b(t).

Then h(t, c(t), z) = (2 − z)h(t,a(t), z = 1)+ (z − 1)h(t,b(t), z = 2) because h(t, c(t), z) does not depend
on c(t), so

c(t) = (2 − z)

(
p +

t∫
0

h
(
s,a(s), z = 1

)
ds

)
+ (z − 1)

(
q +

t∫
0

h
(
s,b(s), z = 2

)
ds

)

= (2 − z)p + (z − 1)q +
t∫

0

h
(
s, c(s), z

)
ds

is the unique h-solution starting at the point c(0) = (0, (2 − z)p + (z − 1)q, z) on the middle segment
of L0. Since a(1) = c = b(1), we have c(1) = c. In the middle slab the trajectories through the broken
segment L0 end at the vertical segment L.

Finally, we extend h above and below R
m+1 × [0,3] to give it compact support. The net effect is

that we get the funnel section K as in Fig. 11, and then Theorem 10 completes the proof. �
Remark. By induction Theorem 11 applies to finite unions, but it fails for countable unions. For ex-
ample we can decompose the closed outward spiral into countably many arcs but it is not a funnel
section.
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5. Diffeotopies and funnels

A diffeotopy is a smooth curve ϕ(t) in the space of diffeomorphisms, starting at the identity map
when t = 0. We often write ϕ(t)(x) = ϕ(t, x).

Diffeotopies are generated by time-dependent ODEs and vice versa. More precisely, if x(t, t0, x0)

solves the smooth time-dependent ODE

x′ = f (t, x), x(t0) = x0

then ϕ(t, x0) = x(t,0, x0) is a diffeotopy. Conversely, if ϕ is a diffeotopy then ϕ solves the ODE above
with f (t, x) = ϕ′(t)(ϕ(t)−1(x)). A diffeotopy ϕ defined on [0, c) is said to have bounded speed if
|ϕ′(t, x)| is uniformly bounded. In this case

φ(x) = lim
t→c

ϕ(t, x)

exists and is continuous, although it need not be a diffeomorphism. Also, if ϕ(t, x) is independent
from t for all t � c then the map φ defined by x �→ ϕ(c, x) = φ(x) is the transfer map of the dif-
feotopy. It is the ultimate effect of the diffeotopy on x.

Theorem 12. Suppose that A is a funnel section and there is a diffeotopy ϕ of bounded speed on [0,1) whose
time-one map carries A onto B. Then B is a funnel section.

Proof. By assumption there is an ODE

x′ = f (t, x), x(0) = p

whose funnel has cross-section A at time 1. By Proposition 2.4 of [4] we may assume that f has
compact support in [0,1] ×R

m . The diffeotopy ϕ gives a second ODE,

x′ = g(t, x)

whose solutions give a funnel from 0 × A to 1 × B . Since ϕ has bounded speed, if we reparameterize
time as τ (t) = t2(2 − t)2 then the diffeotopy ψ(t, y) = ϕ(τ (t), y) has

∣∣ψ ′(t, y)
∣∣ = ∣∣ϕ′(τ (t), y

)∣∣τ ′(t) � Mτ ′(t)

where M is the maximum speed of ϕ . That is, ψ is generated by an ODE which converges to zero as
t → 1. This lets us assume g :Rm+1 →R

m is continuous and has compact support in [0,1] ×R
m . Set

h(t, x) = f (t, x) + g(t − 1, x).

Then K2(0, p,h) = B . �
Proof of Theorems 2 and 3. Since infinite resistance implies nowhere smoothly pierceable, it suffices
to prove Theorem 3: there exist Jordan curves of infinite resistance, some of which are funnel sections. The
first assertion is proved in Section 3. It remains to prove that some Jordan curves of infinite resistance
are funnel sections. By Theorem 12 it is enough to find a diffeotopy of bounded speed from the circle
to some Jordan curve of infinite resistance. For the circle is a funnel section.

We fix a sequence (tn) such that 0 = t0 < t1 < · · · and tn → 1 as n → ∞. Then we construct a
sequence of smooth diffeotopies ϕn on S2 such that ϕn is supported in the time interval (tn, tn+1).
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The transfer map φn is a diffeomorphism S2 → S2 and we arrange things so that the composed
transfer map φn ◦ · · · ◦φ0 converges to a homeomorphism sending the equator of S2 to a Jordan curve
of infinite resistance. The construction is by induction.

First we make a general construction for any fixed smooth Jordan curve J ⊂ S2 that separates the
poles and has r( J ) > α. Lemma 7 provides a δ = δ( J ) such that if J ′ is a Jordan curve that separates
the poles and has dH ( J , J ′) < δ then r( J ′) > α. Lemmas 5 and 6 imply that there is a diffeotopy ϕ
such that:

• ϕ is supported in a thin tubular neighborhood of J and |ϕ′| is arbitrarily small.
• The transfer map φ and its inverse φ−1 are arbitrarily close to the identity map in the C0 sense.
• The smooth Jordan curve φ( J ) separates the poles and dH ( J , φ( J )) < δ( J )/2.
• r(φ( J )) > α + 1.

Start with J0 equal to the equator of S2. It has r( J0) = π . The identity diffeotopy ϕ0 has an iden-
tity transfer map φ0 and it sends the equator J0 to itself, i.e., J1 = φ0( J0) = J0. Trivially, r( J1) > 1.

Next, applying the preceding construction to J1, we find a diffeotopy ϕ1 supported on (t1, t2) × N
where N is an equatorial band, such that the transfer map φ1 carries J1 to a smooth Jordan curve
J2 = φ1( J1). Since the poles stay fixed during the diffeotopy, J2 separates them. The construction
permits:

(a1) |ϕ′
1| < 1.

(b1) |φ1(x) − x| < 1/2 and |φ−1
1 (x) − x| < 1/2 for all x ∈ S2.

(c1) r( J2) > 2. (This is trivial since the resistance is always � π .)

Inductively, assume we have defined ϕn−1 with time support in (tn−1, tn) and transfer map φn−1.
Then Jn = φn−1( Jn−1) is defined. Working in a thin tubular neighborhood of Jn we construct a dif-
feotopy ϕn such that:

(an) |ϕ′
n| < 1/n.

(bn) For all x ∈ S2, the composed transfer maps and their inverses satisfy

∣∣φn ◦ φn−1 ◦ · · · ◦ φ1(x) − φn−1 ◦ · · · ◦ φ1(x)
∣∣ <

1

2n
,

∣∣φ−1
1 ◦ · · · ◦ φ−1

n−1 ◦ φ−1
n (x) − φ−1

1 ◦ · · · ◦ φ−1
n−1(x)

∣∣ <
1

2n
.

(cn) If Jn+1 = φn( Jn) then

dH ( Jn, Jn+1) < min

(
δ( J1)

2n
, . . . ,

δ( Jn)

2

)
.

By (an) the diffeotopy
⋃

ϕn has bounded speed on 0 � t < 1.
Consider Φn = φn ◦ · · · ◦ φ1. By (bn) we have

‖Φn − Φn−1‖ <
1

2n
and

∥∥Φ−1
n − Φ−1

n−1

∥∥ <
1

2n
,

so the sequence (Φn) is Cauchy in the space of homeomorphisms of S2, and it converges uniformly
to a homeomorphism Φ of S2. Let J = Φ( J0). It is a Jordan curve in S2. Since the poles stay fixed
under the diffeotopies, J separates them.
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By (cn),

dH ( Jn, J ) �
∞∑

k=n

dH ( Jk, Jk+1) <

∞∑
k=1

δ( Jn)

2k
= δ( Jn),

which implies that r( J ) > n. Hence r( J ) = ∞. Since we arrived at J by a funnel from p to the equator,
followed by a funnel from the equator to J , J is a funnel section. �
Remark. The diffeotopy produced above ends with a homeomorphism of the sphere to itself
and is therefore reversible. The reverse funnel from the Jordan curve leads back to the equator,
K0(1 × J ) = E , and in the terminology of [4] we have a “funnel cobordism” between E and J .

Remark. We do not know whether for every planar Jordan curve J there is a diffeotopy of bounded
speed that starts at the equator and ends at J . If we did then we would know that every planar
Jordan curve is a funnel section.

The proof of Theorem 3 above establishes the following approximation result.

Theorem 13. A smooth Jordan curve can be approximated by other smooth Jordan curves having arbitrarily
large resistance. That is, if h : S1 → C sends S1 diffeomorphically onto a Jordan curve J and δ, L > 0 are
given, then there is an h1 : S1 → C sending S1 diffeomorphically onto a smooth Jordan curve J1 such that
‖h − h1‖ < δ and r( J1) > L.

6. An Alexander Horned Sphere is a funnel section

Consider instead of a Jordan curve, an Alexander Horned Sphere A [1]. We claim there is a dif-
feotopy ϕ on [0,1) × R

3 of bounded speed that starts at the sphere S2 and ends at A. Theorem 12
and the fact that S2 is a funnel section imply that A is a funnel section. The time-one map of the
diffeotopy is continuous but it cannot be a homeomorphism because the complementary domains of
S2 and A are not homeomorphic.

The word “an” indicates that, as with Jordan curves, we do not know that every Alexander Horned
Sphere is a funnel section, only that some of them are. Theorem 12 is what may have been intended
on page 283 of [4] by the phrase “Using the methods of Section 4, it also follows that the usual
Alexander Horned Sphere is a funnel section and so is the [closure of the] set it bounds.”

As a preliminary step we easily construct a diffeotopy ϕ0 supported in the time interval (0, t1) that
bends the sphere into a banana shape so that the polar caps at the north and south poles become
supported on a pair of parallel discs of diameter 1 and distance 1 apart. This is shown in the second
part of Fig. 13. The resulting smooth sphere is S1 = φ0(S2) where φ0 is the transfer map of ϕ0.

Next we define a diffeotopy ϕ1 on the time interval (1/2,3/4) that fixes all points of S1 in the
complement of the two parallel caps and moves four disjoint discs in the caps to the four smaller caps
shown in the third part of Fig. 13. The four discs have diameter 1/4; the diffeotopy ϕ1 moves them
to parallel caps of diameter 1/4 and distance 1/4 apart. The resulting smooth sphere is S2 = φ1(S1).

At the nth stage, we develop 2n−1 independent banana shapes where the spatial dimensions are
reduced by the factor 1/4 from the spatial dimensions at the previous stage, while the time interval
is reduced by the factor 1/2. This is done merely by copying and scaling the diffeotopy ϕ1. Since the
spatial reduction dominates the time reduction the speed of the combined diffeotopy ϕ = ⋃

ϕn tends
to zero as t → 1.

Hence the whole diffeotopy on [0,1) starts at S2, has bounded speed, and limits to our Alexander
Horned Sphere as t → 1. As stated at the outset, since S2 is a funnel section, so is A.

The same construction done with the roles of inside and outside reversed shows that an Alexander
Horned Sphere with inward curling horns is also a funnel section, as is an Alexander Horned Ball.
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Fig. 13. The sphere’s image at time 0, 1/2, 3/4 and 7/8 of the diffeotopy.

7. A complete metric on the space of Jordan curves

The space of homeomorphisms of a compact metric space to itself has a natural complete metric,
but the same does not seem to be true for the space of topological embeddings of a compact metric
space into another metric space. In the case of planar Jordan curves, we use the Riemann Mapping
Theorem to get such a metric. Many thanks to Andy Hammerlindl and Bill Thurston for elegant sug-
gestions regarding the construction of such a metric.

As above, let J0 denote the set of Jordan curves in Ĉ that separate the poles. Given J ∈ J0, the
Riemann Mapping Theorem supplies unique conformal bijections

R : D→ Ω, R̃ :D → Ω̃

such that:

• Ω and Ω̃ are the connected components of Ĉ \ J containing the south pole and north pole
respectively.

• R(0) is the south pole and R̃(0) is the north pole.
• If π denotes stereographic projection then (π ◦ R)′(0) is real and positive.
• If α denotes inversion z �→ 1/z then (π ◦ α ◦ R̃)′(0) is real and positive.
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We refer to R and R̃ as the canonical Riemann maps corresponding to J ∈ J0. We use the same
notation for the homeomorphisms from the closed disc D to the closures of Ω and Ω̃ . They exist by
Caratheodory’s Theorem.

Definition. For J1, J2 ∈J0, set

d( J1, J2) = ‖R1 − R2‖ + ‖R̃1 − R̃2‖,

where R1, R̃1 and R2, R̃2 are the canonical Riemann maps corresponding to J1 and J2. (Recall that
‖F − G‖ is the C0-distance between F and G .) It is clear that d is a metric on J0, and we call it the
welding metric. For it deals with pairs R 
 R̃ welded by R−1 ◦ R̃|∂D .

Theorem 14. The welding metric is complete.

Proof. To show that d is complete, let ( Jn) be a Cauchy sequence in J0. The Riemann maps Rn and
R̃n corresponding to Jn converge uniformly to continuous maps R and R̃ from the closed disc into Ĉ.
Uniform convergence and Rn(∂D) = Jn = R̃n(∂D) imply that

R(∂D) = J = R̃(∂D)

where Jn ⇒ J as maps of the circle into the 2-sphere. This shows that J is a closed curve, but we
don’t yet know it’s a Jordan curve, nor that Jn converges to it with respect to d.

We claim that the splitting S2 = Rn(D)
 Jn 
 R̃n(D) converges uniformly to a splitting S2 = R(D)

J 
 R̃(D) as n → ∞. If w ∈ S2 \ J is given then for all large n, z /∈ Jn . Thus w = Rn(zn) with zn ∈ D or
w = R̃n(z̃n) with z̃n ∈D. Without loss of generality, assume that Rn(zn) = w for infinitely many n, and
let z ∈ D be an accumulation point of {zn}. By continuity and uniform convergence R(z) = w . Since
w /∈ J , z ∈ D. Thus every w ∈ S2 lies in J , R(D), or R̃(D).

We claim that R(D) ∩ R̃(D) = ∅, so suppose w ∈ R(D) ∩ R̃(D). Then there are z, z̃ ∈ D with R(z) =
w = R̃(z̃). Uniform convergence implies that Rn(z) → w and R̃n(z̃) → w . For large n, the segment
σn = [Rn(z), R̃n(z̃)] avoids J and therefore avoids Jn , which contradicts the Jordan Curve Theorem
since σn joins points on opposite sides of Jn without crossing it. The upshot is that w cannot exist
and we have

S2 = R(D) 
 J 
 R̃(D)

as claimed. The sets R(D), R̃(D) are open, connected, and because R, R̃ are continuous on D, every
point of J is arcwise accessible from them.

Recall from general topology that a Jordan curve is characterized as a non-trivial continuum which
is disconnected by the deletion of every pair of distinct points.

J is a curve, so it is a continuum. Non-triviality of J amounts to the fact that J is not a point.
By Hurwitz’ Theorem, the restriction of R̃ to the open disc is either constant or a holeomorphism –
a holomorphic homeomorphism. But if R̃ is constant on the open disc then by continuity and the
fact that each R̃n sends the origin to the north pole, R̃(D) is the north pole. This implies that for n
large, the Jordan curve Jn approximates the north pole, and its southern complementary region Ωn

approximates π−1(C), the sphere minus the north pole. Consequently, π ◦ Rn :D→ C converges to a
holeomorphism D→ C, a contradiction to Liouville’s Theorem. Therefore R̃ sends D holeomorphically
onto a region R̃(D) = Ω̃ ⊂ Ĉ containing the north pole, and similarly, R sends D holeomorphically
onto a region R(D) = Ω ⊂ Ĉ containing the south pole, so J is arcwise accessible from Ω and Ω̃ .

Take any distinct w, w ′ ∈ J and draw an arc λ in Ω from w to w ′ . (This uses arcwise accessibility.
Except at its endpoints λ lies in Ω .) Construct a similar arc λ̃ in Ω̃ . The union λ∪ λ̃ is a Jordan curve.

Let Λ1,Λ2 be the complementary components of λ ∪ λ̃ in the 2-sphere. We claim that J meets
both Λ1 and Λ2 so suppose that J ∩Λ1 = ∅. Since Λ1 contains points of both Ω and Ω̃ , there would
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Fig. 14. If there are no points of J in the component Λ1 then there is a path γ from Ω to Ω̃ that avoids J , contradicting the
fact that S2 = Ω 
 J 
 Ω̃ .

be a path γ ⊂ Λ1 that avoids J and connects Ω to Ω̃ , contradicting the fact that S2 = Ω 
 J 
 Ω̃ . See
Fig. 14. The same is true for Λ2. Thus,

J \ {
w, w ′} = ( J ∩ Λ1) 
 ( J ∩ Λ2)

shows that J \ {w, w ′} is disconnected, and it follows that J is a Jordan curve. The canonical Riemann
maps that correspond to a Jordan curve are unique, so they are R and R̃ . In sum, starting with the
Cauchy sequence ( Jn) in J0 we found a Jordan curve J ∈J0 such that

d( Jn, J ) = ‖Rn − R‖ + ‖R̃n − R̃‖ → 0,

which finishes the proof that d is a complete metric on J0. �
Remark. The set J of all Jordan curves J ⊂ S2 receives a natural welding topology as well. As
remarked at the end of Section 3, there is nothing special about the north and south poles. For any
pair of distinct points p,q ∈ S2, the set of Jordan curves separating them, say Jpq , has a metric
topology given from the pull-back of the welding metric on J0 under a Möbius transformation of Ĉ
sending the poles to p and q. The welding topology is locally unchanged if p and q are varied slightly.
Taking p,q as distinct points in a countable dense subset of Ĉ, we see that J is locally a complete
metric space. Hence J is a Baire space, so it makes sense to speak of the generic Jordan curve, and
to ask what properties it has.

Remark. There are other metrics that give the same topology to the space of Jordan curves, but the
welding metric has the advantage of being complete. As two examples, consider

d1( J1, J2) = ‖R1 − R2‖,
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d2( J1, J2) = inf ‖h1 − h2‖
where the infimum is taken over all pairs of homeomorphisms h1 : S1 → J1, h2 : S1 → J2. By Radó’s
Theorem (below) these metrics are topologically equivalent to the welding metric but are not metri-
cally comparable to it.

8. Generic Jordan curves

Theorem 15. The generic Jordan curve is nowhere pierceable by paths of finite length.

We will use the following result of Radó [5] to prove this. See also Chapter 2 of Pommerenke’s
book [3].

Radó’s Theorem. Suppose that J is a planar Jordan curve enclosing the origin and h : S1 → J is a homeomor-
phism. Given ε > 0 there is a δ > 0 such that if J1 is a Jordan curve and h1 : S1 → J1 is a homeomorphism
with ‖h − h1‖ < δ then J1 encloses the origin and ‖R − R1‖ < ε where R and R1 are the canonical Riemann
maps for J and J1 .

Proof of Theorem 15. Consider the set J0(L) = { J ∈ J0: r( J ) > L}. We claim it is open and dense in
J0 with respect to the welding metric d defined in Section 7. Openness follows from Lemma 7, lower
semi-continuity of the resistance function with respect to the Hausdorff metric topology on J0, and
the fact that the latter topology is coarser than the welding topology.

To check density, let J ∈ J0 and ε > 0 be given. Let R be the canonical Riemann map fixing
the origin and sending D onto the planar region Ω bounded by J . Then h = R|∂D : S1 → J is a
homeomorphism and Radó’s Theorem supplies a δ > 0 such that if h1 : S1 → J1 is a homeomorphism
and ‖h − h1‖ < δ then ‖R − R1‖ < ε/2. Radó’s Theorem applies equally to the outer complementary
region of J , and we infer that ‖h − h1‖ < δ implies ‖R̃ − R̃1‖ < ε/2.

Continuity of R implies that for ρ < 1, the map

hρ : eiθ �→ R
(
ρeiθ )

is a diffeomorphism from S1 onto the smooth Jordan curve Jρ , which is the R-image of the circle
of radius ρ . If ρ is near 1 then ‖h − hρ‖ < δ/2. Since Jρ is smooth, Theorem 13 implies there is a
Jordan curve J1 and an h1 : S1 → C sending S1 diffeomorphically onto J1 such that ‖hρ − h1‖ < δ/2
and r( J1) > L. Thus ‖h − h1‖ < δ, which implies

d( J , J1) = ‖R − R1‖ + ‖R̃ − R̃1‖ < ε,

and confirms density of J0(L) in J0. The countable intersection
⋂

L∈NJ0(L) is residual, so the generic
Jordan curve has infinite resistance: it is nowhere pierceable by paths of finite length. Since J is a
Baire space, locally homeomorphic to J0, the same holds for the generic J ∈J . �
Remark. Theorem 15 highlights the question – is the generic Jordan curve a funnel section?
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