
URL: http://www.elsevier.nl/locate/entcs/volume71.html 20 pages

Correct and Complete (Positive) Strategy
Annotations for OBJ �

Maŕıa Alpuente 1, Santiago Escobar 2, and Salvador Lucas 3

DSIC, Universidad Politécnica de Valencia, Spain.

Abstract

Strategy annotations are used in several rewriting-based programming languages
to introduce replacement restrictions aimed at improving efficiency and/or reduc-
ing the risk of nontermination. Unfortunately, rewriting restrictions can have a
negative impact on the ability to compute normal forms. In this paper, we first
ascertain/clarify the conditions ensuring correctness and completeness (regarding
normalization) of computing with strategy annotations. Then, we define a program
transformation methodology for (correct and) complete evaluations which applies
to OBJ-like languages.

Key words: Declarative programming, OBJ, strategy annotations.

1 Introduction

Strategy annotations are used in the OBJ family of languages 4 (OBJ2 [6],
OBJ3 [8], CafeOBJ [7], and Maude [3]) to avoid nontermination ([8], Section
2.4.4).

Example 1.1 The following OBJ program:

obj EXAMPLE is

sorts Nat LNat .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op nil : -> LNat .

op cons : Nat LNat -> LNat [strat (1)] .

� Work partially supported by CICYT TIC2001-2705-C03-01, Acciones Integradas HI 2000-
0161, HA 2001-0059, HU 2001-0019, and Generalitat Valenciana GV01-424.
1 Email: alpuente@dsic.upv.es
2 Email: sescobar@dsic.upv.es
3 Email: slucas@dsic.upv.es
4 As in [8], by OBJ we mean OBJ2, OBJ3, CafeOBJ, or Maude.

c©2003 Published by Elsevier Science B. V.

70

Open access under CC BY-NC-ND license.

Electronic Notes in Theoretical Computer Science 71 (2003)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82086592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Alpuente, Escobar, and Lucas

op from : Nat -> LNat [strat (1 0)] .

op sel : Nat LNat -> Nat [strat (1 2 0)] .

op first : Nat LNat -> LNat [strat (1 2 0)] .

vars X Y : Nat .

var Z : LNat .

eq sel(s(X),cons(Y,Z)) = sel(X,Z) .

eq sel(0,cons(X,Z)) = X .

eq first(0,Z) = nil .

eq first(s(X),cons(Y,Z)) = cons(Y,first(X,Z)) .

eq from(X) = cons(X,from(s(X))) .

endo

specifies an explicit strategy annotation for the list constructor cons which
disables replacements on the second argument. In this way, we can ensure
that computations with this program are terminating (see Example 4.4 below
for a formal justification of this claim).

Termination of rewriting under strategy annotations has been studied in
a number of papers [5,13,14]. Unfortunately, using rewriting restrictions may
cause incompleteness, i.e., normal forms of input expressions could be unreach-
able by restricted computation. For instance, using the program in Example
1.1 we are not able to compute the list of integers that corresponds to the
evaluation of first(s(0),from(0)). As we show below, the evaluation of
this expression stops yielding the term cons(0,first(0,from(s(0)))). On
the other hand, from the user’s point of view, this must be thought of as a
kind of incorrect evaluation, when normal forms are expected as the result of
a computation.

We show that these problems can be solved by using a program transfor-
mation while we are still able to preserve termination of computations.

2 Preliminaries

Given a set A, P(A) denotes the set of all subsets of A. Let R ⊆ A × A be
a binary relation on a set A. We denote the reflexive closure of R by R=, its
transitive closure by R+, and its reflexive and transitive closure by R∗. An
element a ∈ A is an R-normal form, if there exists no b such that a R b; NFR is
the set of R-normal forms [1]. We say that b is an R-normal form of a (written
a R! b), if b is an R-normal form and a R∗b. We say that R is terminating
iff there is no infinite sequence a1 R a2 R a3 · · ·. Throughout the paper, X
denotes a countable set of variables and F denotes a set of function symbols
{f, g, . . .}, each having a fixed arity given by a function ar : F → N. We
denote the set of terms built from F and X by T (F ,X). A context C[] is a
term from T (F ∪ {✷},X), where ✷ is a new constant symbol. A term is said
to be linear if it has no multiple occurrences of a single variable. Terms are
viewed as labelled trees in the usual way. Positions p, q, . . . are represented by

7171

Alpuente, Escobar, and Lucas

chains of positive natural numbers used to address subterms of t. By Λ, we
denote the empty chain (referring to the root of the term). Given positions
p, q, we denote its concatenation by p.q. If p is a position, and Q is a set
of positions, p.Q is the set {p.q | q ∈ Q}. By Pos(t), we denote the set of
positions of a term t. Positions of non-variable symbols in t are denoted as
PosF(t) and PosX (t) are the variable occurrences. The subterm at position
p of t is denoted as t|p and t[s]p is the term t with the subterm at position p
replaced by s. The symbol labelling the root of t is denoted as root(t) and
root(t, p) is root(t|p). A substitution is a mapping σ : X → T (F ,X) which
homomorphically extends to a mapping σ : T (F ,X) → T (F ,X).

A rewrite rule is an ordered pair (l, r), written l→ r, with l, r ∈ T (F ,X),
l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and the
right-hand side (rhs) is r. A TRS is a pair R = (F , R) where R is a set of
rewrite rules. L(R) denotes the set of lhs’s of R. R is left-linear if L(R) is
a set of linear terms. Given R = (F , R), we consider F as the disjoint union
F = C � D of symbols c ∈ C, called constructors, and symbols f ∈ D, called
defined functions, where D = {f | f(l1, . . . , lk) → r ∈ R} and C = F − D.
Then, T (C,X) is the set of constructor terms. Let PosD(t) (resp. PosC(t))
be the set of positions of defined (resp. constructor) symbols of term t. An
instance σ(l) of a lhs l ∈ L(R) is a redex. A term t ∈ T (F ,X) rewrites to s

(at position p), written t
p→R s (or just t→ s), if t|p = σ(l) and s = t[σ(r)]p,

for some l → r ∈ R, p ∈ Pos(t) and substitution σ. A term is a normal form
if it is a →-normal form. Let NFR be the set of normal forms of R. A term t
is a head-normal form if it cannot be rewritten to a redex. Let HNFR be the
set of head-normal forms of R. A TRS is terminating if → is terminating.

3 Rewriting with syntactic replacement restrictions

A mapping µ : F → P(N) is a replacement map (or F -map) if µ(f) ⊆
{1, . . . , ar(f)} for all f ∈ F [9]. The inclusion ordering ⊆ on P(N) extends
to an ordering � on MF , the set of all F -maps: µ � µ′ if for all f ∈ F ,
µ(f) ⊆ µ′(f). In this way, µ � µ′ means that µ considers less positions than
µ′ for reduction. We also say that µ is more restrictive than (or equally re-
strictive to) µ′. Given a TRS R = (F , R), we write MR rather than MF .
The set of µ-replacing positions Posµ(t) of t ∈ T (F ,X) is: Posµ(t) = {Λ}
if t ∈ X , and Posµ(t) = {Λ} ∪

⋃
i∈µ(root(t)) i.Posµ(t|i) if t �∈ X . In context-

sensitive rewriting (CSR [9]), we (only) rewrite replacing redexes: t µ-rewrites

to s (written t ↪→µ s) if t
p→R s and p ∈ Posµ(t). The ↪→µ-normal forms

are called µ-normal forms. NFµ
R is the set of µ-normal forms of R. The µ-

normal forms include all normal forms of R (but not viceversa). A TRS R
is µ-terminating if ↪→µ is terminating. The canonical replacement map µcan

R
is the most restrictive replacement map which ensures that the non-variable
subterms of the left-hand sides of the rules of R are replacing. Note that µcan

R

7272

Alpuente, Escobar, and Lucas

is easily obtained from R: for all f ∈ F and i ∈ {1, . . . , ar(f)},
i ∈ µcan

R (f) iff ∃l ∈ L(R), p ∈ PosF(l), (root(l, p) = f ∧ p.i ∈ PosF(l))

Let CMR = {µ ∈ MR | µcan
R � µ} be the set of replacement maps which are

less restrictive than or equally restrictive to µcan
R .

4 E-strategies

A (positive) local strategy (or E-strategy) for a k-ary symbol f ∈ F is a se-
quence ϕ(f) of integers taken from {0, 1, . . . , k} which are given in parentheses
(see Example 1.1). A mapping ϕ that associates a local strategy ϕ(f) to every
f ∈ F is called an E-strategy map [19]. Algebraic languages such as OBJ2,
OBJ3, CafeOBJ and Maude admit the specification of E-strategies. Symbols
without an explicit local strategy are given a default strategy whose concrete
shape depends on the language considered 5 . Given an OBJ program P, we
(separately) consider the corresponding TRS R which consists of the set of
rewriting rules in P and the E-strategy map ϕ that corresponds to its strategy
annotations. Semantics of OBJ programs under a given E-strategy map ϕ is
given by means of a mapping evalϕ : T (F ,X) → P(T (F ,X)) (from terms to
their sets of ‘computed values’). Following [17,19] we describe evalϕ by using
a reduction relation →ϕ on pairs of labelled terms and positions.

Let L be the set of all lists consisting of natural numbers. By Ln, we denote
the set of all lists of natural numbers not exceding n ∈ N. We use the signature
FL = {fL | f ∈ F ∧ L ∈ Lar(f)} and labelled variables XL = {xnil | x ∈ X}.
An E-strategy map ϕ for F is extended to a (labelling) mapping from T (F ,X)
to T (FL,XL) as follows:

ϕ(t) =

xnil if t = x ∈ X
fϕ(f)(ϕ(t1), . . . , ϕ(tk)) if t = f(t1, . . . , tk)

The mapping erase : T (FL,XL) → T (F ,X) removes labellings from symbols
in the obvious way. Given a TRS R = (F , R) and an E-strategy map ϕ for F ,
the binary relation →ϕ on T (FL,XL)×N

∗
+ (i.e., pairs 〈t, p〉 of labelled terms t

and positions p) is [17,19]: 〈t, p〉 →ϕ 〈s, q〉 if and only if p ∈ Pos(t) and either

(i) root(t, p) = fnil, s = t and p = q.i for some i; or

(ii) t|p = fi:L(t1, . . . , tk) with i > 0, s = t[fL(t1, . . . , tk)]p and q = p.i; or

(iii) t|p = f0:L(t1, . . . , tk), erase(t|p) is not a redex, s = t[fL(t1, . . . , tk)]p, q = p;
or

(iv) t|p = f0:L(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p for some
l→ r ∈ R and substitution σ, q = p.

We let evalϕ(t) = {erase(s) ∈ T (F ,X) | 〈ϕ(t),Λ〉 →!
ϕ 〈s,Λ〉} [17,19]. A TRS

5 For instance, in Maude, the default local strategy associated to a k-ary symbol f , is
(1 2 · · · k 0), see [4].

7373

Alpuente, Escobar, and Lucas

R is ϕ-terminating if, for all t ∈ T (F ,X), there is no infinite →ϕ-rewrite
sequence starting from 〈ϕ(t),Λ〉. An OBJ program P is terminating if the
corresponding TRS R is ϕ-terminating [13].

4.1 E-strategies and context-sensitive rewriting

Rewriting with strategy annotations is closely related to CSR. Given an E-
strategy map ϕ for F , we define µϕ ∈ MF as follows: µϕ(f) = {i ∈ ϕ(f) |
i �= 0} for all f ∈ F , where e ∈ L means that item e appears somewhere
within the list L. We will drop superscript ϕ from µϕ if no confusion arises.
Moreover, we also write ϕ ∈ CMR meaning that µϕ ∈ CMR.

Example 4.1 The TRS R:

sel(0,cons(x,z)) → x

sel(s(x),cons(y,z)) → sel(x,z)

first(0,z) → nil

first(s(x),cons(y,z)) → cons(y,first(x,z))

from(x) → cons(x,from(s(x)))

together with the replacement map

µ(s) = µ(cons) = µ(from) = {1} and µ(sel) = µ(first) = {1, 2}
correspond to the OBJ program in Example 1.1.

Every →ϕ-reduction step issued on 〈t, p〉 correspond to a µϕ-rewriting step
on the unlabelled version erase(t) of t (or erase(t) just remains unchanged).

Theorem 4.2 [13] Let R be a TRS and ϕ be an E-strategy map. Let t ∈
T (FL,XL), and p ∈ Posµ(erase(t)) be s.t. root(t, p) = fL for some suffix L of
ϕ(f). If 〈t, p〉 →ϕ 〈s, q〉, then q ∈ Posµ(erase(s)) and erase(t) ↪→=

µ erase(s).

Termination of OBJ programs and termination of CSR are also related.

Theorem 4.3 [13] An OBJ program P with E-strategy map ϕ is terminating
if the corresponding TRS R is µϕ-terminating.

Termination of CSR has been studied in a number of papers, see [12] for
an overview of the different methods for proving termination of CSR.

Example 4.4 Consider R and µ as in Example 4.1. The µ-termination of (a
superset of) R is demonstrated in Example 7 of [2]. Hence, by Theorem 4.3,
the OBJ program in Example 1.1 is terminating.

5 Correctness and completeness

A rewriting semantics for a TRS R = (F , R) is a mapping S : T (F ,X) →
P(T (F ,X)) such that, for all t ∈ T (F ,X) and s ∈ S(t), t →∗

R s [15]. Note
that, given a TRS R and an E-strategy map ϕ, evalϕ is a rewriting semantics
for R. A semantics S is deterministic (resp. defined) if ∀t ∈ T (F ,X), |S(t)| ≤ 1

7474

Alpuente, Escobar, and Lucas

(resp. |S(t)| ≥ 1). In general, evalϕ is not deterministic or defined. Note that
ϕ-termination of R implies definedness of evalϕ.

The semantics which is most commonly considered in functional program-
ming is the set of constructor terms that R is able to produce in a finite
number of rewriting steps (eval(t) = {s ∈ T (C,X) | t →∗

R s}). Other kinds
of semantics often considered for R are, e.g., the set of all possible reducts
of a term which are head-normal forms (hnf(t) = {s ∈ HNFR | t →∗

R s}), or
normal forms (nf(t) = hnf(t) ∩ NFR). Thus, given a semantics S for R (e.g.,
S ∈ {eval, hnf, nf}), a different rewriting semantics for R (e.g., evalϕ) is:

correct (w.r.t. S) if evalϕ(t) ⊆ S(t) for all t ∈ T (F ,X), and

complete (w.r.t. S) if, S(t) ⊆ evalϕ(t) for all t ∈ T (F ,X).

Computations with OBJ programs produce expresions (by means of evalϕ)
called E-normal forms (ENF s). Such terms are not generally normal forms
(i.e., terms without redexes). Therefore, evalϕ is not guaranteed to be either
correct or complete w.r.t. nf. In fact, we have the following:

Theorem 5.1 [13] Let R = (C � D, R) be a TRS and ϕ be a E-strategy map
such that for all f ∈ D, ϕ(f) ends in 0. If s ∈ evalϕ(t), then s is a µ-normal
form of t.

Requiring that ϕ(f) ends in 0 for all f ∈ D is essential in our development
(see also [4] for a thorough analysis of the relevance of this requirement). Thus,
we say that a E-strategy map ϕ is regular 6 if this condition holds.

If the strategy annotations are ‘compatible’ with the canonical replacement
map, we can ensure that the E-strategy is correct w.r.t. hnf.

Theorem 5.2 [13] Let R = (C�D, R) be a left-linear TRS and ϕ be a regular
E-strategy map such that ϕ ∈ CMR. If s ∈ evalϕ(t), then s is a head-normal
form.

If we restrict the attention to the computation of values (i.e., constructor
terms), then CSR is powerful enough to compute them. Given TRS R =
(F , R) = (C �D, R) and B ⊆ C, we let µB

R to be µB
R(c) = {1, . . . , ar(c)} for all

c ∈ B and µB
R(f) = µcan

R (f) if f ∈ F − B. Note that µB
R ∈ CMR.

Theorem 5.3 [9] Let R = (F , R) = (C � D, R) be a left-linear TRS, B ⊆ C
and µ ∈MF be such that µB

R � µ. Let t ∈ T (F ,X), and δ ∈ T (B,X). Then,
t→∗ δ iff t ↪→∗

µ δ.

Theorem 5.3 is very easy to use in sorted signatures (as in OBJ programs),
since, given a term t (of sort τ), we are able to establish the set of constructors
B ⊆ C which should be considered (namely, the constructor symbols of sort τ).
Unfortunately, Theorem 5.3 does not directly apply to OBJ computations, as
they must obey the order of evaluation expressed by the strategy annotations.
However, we have the following.

6 This terminology is used in [20], with a slightly different meaning.

7575

Alpuente, Escobar, and Lucas

Theorem 5.4 Let R = (F , R) = (C � D, R) be a left-linear, confluent TRS
and B ⊆ C. Let ϕ be a regular E-strategy map such that R is ϕ-terminating.
Let t ∈ T (F ,X) and δ ∈ T (B,X). If µB

R � µϕ, then t→! δ iff δ ∈ evalϕ(t).

For instance, ϕ can be used to compute the value of every expression of

the sort Nat in the OBJ program in Example 1.1 (since µ
{0,s}
R � µϕ). This is

not true for expressions of the sort LNat as the following example shows.

Example 5.5 The evaluation of expression t = first(s(0),from(0)) of
sort LNat using the program in Example 1.1 yields (we use the version 1.0.5
of the Maude interpreter 7 but other interpreters behave likewise 8):

Maude> reduce first(s(0),from(0)) .

reduce in EXAMPLE : first(s(0), from(0)) .

rewrites: 2 in -10ms cpu (0ms real) (~ rewrites/second)

result LNat: cons(0, first(0, from(s(0))))

Note that cons(0,first(0,from(s(0)))) is not a normal form. However,
t→∗ cons(0,nil) ∈ T (C,X), i.e., cons(0,nil) is a value of t which cannot
be obtained by using the Maude interpreter.

Correctness of OBJ computations w.r.t. nf can also be achieved:

(i) Nagaya shows that if ϕ(f) contains all indices 0, 1, . . . , ar(f) for each
symbol f ∈ F , and ϕ(f) ends in 0 for defined symbols f ∈ D, then evalϕ
is correct w.r.t. nf (Theorem 6.1.12 in [17]).

(ii) Nakamura and Ogata show that given a strategy map ϕ, if evalϕ is correct
w.r.t. hnf, then evalϕ′ is correct w.r.t. nf for any ϕ′ given by ϕ′(f) =
ϕ(f)++(i1 · · · in) for all symbol f ∈ F (where ‘++’ appends two lists,
and {i1, . . . , in} = {1, . . . , ar(f)} − µϕ(f)) (Theorem 3.2 in [19]).

For instance, ϕ as given in Example 1.1 is correct w.r.t. hnf (use Theorem 5.2).
Moreover, since the OBJ program in Example 1.1 is ϕ-terminating, evalϕ is
defined. Thus, the evaluation of every term t yields a head-normal form of t
(i.e., ϕ can be thought of as being head-normalizing). Unfortunately evalϕ′ is
not defined anymore: the head-normalizing behavior of ϕ gets lost.

Example 5.6 Consider the program in Example 1.1 with ϕ′(cons) = (1 2)
and ϕ′(f) = ϕ(f) for every other symbol f (rename the program to EXAMPLE-INF).
Consider again the evaluation of t = first(s(0),from(0)):

Maude> reduce first(s(0),from(0)) .

reduce in EXAMPLE-INF : first(s(0), from(0)) .

Segment violation

7 Available at http://maude.csl.sri.com/system/.
8 We have reproduced all our experiments using the OBJ3 interpreter v. 2.0 (available
at http://www.kindsoftware.com/products/opensource/obj3/OBJ3/) and the CafeOBJ
interpreter v. 1.3.1 (available at http://www.ipa.go.jp/STC/CafeP/cafe.html).

7676

Alpuente, Escobar, and Lucas

The problem is that the evaluation of t, i.e., the evaluation of

ϕ′(t) = first(1 2 0)(s(1)(0nil),from(1 0)(0nil))

using →ϕ′ does not terminate (we underline the contracted redexes):

〈first(1 2 0)(s(1)(0nil),from(1 0)(0nil)), Λ〉
→ϕ′ 〈first(2 0)(s(1)(0nil),from(1 0)(0nil)), 1〉
→ϕ′ 〈first(2 0)(snil(0nil),from(1 0)(0nil)), 1.1〉
→ϕ′ 〈first(2 0)(snil(0nil),from(1 0)(0nil)), 1〉
→ϕ′ 〈first(2 0)(snil(0nil),from(1 0)(0nil)), Λ〉
→ϕ′ 〈first(0)(snil(0nil),from(1 0)(0nil)), 2〉
→ϕ′ 〈first(0)(snil(0nil),from(0)(0nil)), 2.1〉
→ϕ′ 〈first(0)(snil(0nil),from(0)(0nil)), 2〉
→ϕ′ 〈first(0)(snil(0nil),cons(1 2)(0nil,from(1 0)(s(1)(0nil)))), 2〉
→+

ϕ′ 〈first(0)(snil(0nil),cons(2)(0nil,from(1 0)(s(1)(0nil)))), 2〉
→ϕ′ 〈first(0)(snil(0nil),consnil(0nil,from(1 0)(s(1)(0nil)))), 2.2〉
→+

ϕ′ 〈first(0)(snil(0nil),consnil(0nil,from(0)(snil(0nil)))), 2.2〉
→ϕ′ · · ·

The Maude interpreter ‘shows’ this infinite sequence as a ‘segment violation’.

Thus, the ϕ-termination of R (see Example 4.4) does not ensure defined-
ness of evalϕ′ as the previous results by Nagaya, and Nakamura-Ogata may
suggest. Moreover, evalϕ was able to obtain head-normal forms that evalϕ′

does not obtain (compare the evaluation of t in Examples 5.5 and 5.6). Ex-
ample 5.6 also shows that requiring ϕ-termination in Theorem 5.4 is essential
for ensuring correct and complete evaluations (note that R and ϕ′ in Example
5.6 fulfill all requirements in Theorem 5.4, except for ϕ′-termination).

In the following section, we propose a solution to (partially) overcome this
problem which is based on program transformation.

6 Program transformations for complete evaluations

The discussion and examples in the previous section suggest to isolate the
replacement restrictions which are needed to achieve the head-evaluation of
a term t (which, at least, requires µcan

R , see Theorem 5.2) from the restric-
tions which are needed to get them within a constructor context C[] ∈
T (B ∪ {✷},X) for some B ⊆ C (which, at least, requires µB

R, see Theorem
5.4). In practice, we only need (and want) to fix the sort τ of input expres-
sions we want to evaluate in order to fix the ‘interesting’ constructor terms.
Assume that symbols f ∈ F are sorted by: f : τ1 × · · · × τk → τ ′. The
(output) sort of f is sort(f) = τ ′. Variables x ∈ X also have a sort, sort(x).
We also assume that all terms are well sorted everywhere. The sort of a term
t is the sort of its outermost symbol. Given a sort τ , let C∗

τ ⊆ C be the set
of constructor symbols that can be found in constructor terms of sort τ . For
instance, C∗

Nat = {0, s} and C∗
LNat = {0, s, nil, cons}. We introduce a set

7777

Alpuente, Escobar, and Lucas

C′ of fresh constructor symbols: they are renamed versions c′ of the original
constructors c ∈ C∗

τ that evaluate all the arguments.

The renaming of constructor symbols c ∈ C∗
τ into new constructor symbols

c′ ∈ C′ is performed by the rules

quoteτ ′(c(x1, . . . , xk)) → c′(quoteτ1
(x1), . . . , quoteτk

(xk))

where c, c′ : τ1 × · · · × τk → τ ′. Let Quote be the set containing all these
symbols: Quote = {quoteτ ′ | ∃c ∈ C∗

τ , sort(c) = τ ′}. The evaluation of a term
t would proceed by reducing quotesort(t)(t). The obtained value is built by
using symbols in C′ only. After the evaluation, new symbols unquoteτ ′ : τ ′ →
τ ′ are used to reverse the renamings. For each constant b ∈ C∗

τ , we add a rule

unquotesort(b)(b
′) → b

For each c ∈ C∗
τ such that c : τ1×· · ·× τk → τ ′, k > 0, and µϕ(c) = {1, . . . , k},

we add a rule

unquoteτ ′(c′(x1, . . . , xk)) → c(unquoteτ1
(x1), . . . , unquoteτk

(xk))

Finally, for each c ∈ C∗
τ such that c : τ1 × · · · × τk → τ ′, k > 0, and µϕ(c) �=

{1, . . . , k}, we consider a new symbol fc : τ1× · · · × τk → τ ′; we add two rules

unquoteτ ′(c′(x1, . . . , xk)) → fc(unquoteτ1
(x1), . . . , unquoteτk

(xk))

fc(x1, . . . , xk) → c(x1, . . . , xk)

We collect these new symbols together in a new set Unquote. Denote the
TRS obtained from joining these rules together with those of R as Eτ (R).
The transformed TRS Eτ (R) includes the rules of the original TRS R. The
added rules manage the appropriate quoting and unquoting of constructor
symbols: quoted constructors enable the evaluation of all their arguments;
after evaluating them, symbol unquote restores the original constructor c.
Therefore, we also extend the (original) E-strategy ϕ: let ϕ′ = Emapτ (ϕ) as
follows: ϕ′(f) = ϕ(f) if f ∈ F , ϕ′(c′) = (1 · · · ar(c′)) if c′ ∈ C′, ϕ′(quoteτ ′) =
ϕ′(unquoteτ ′) = (1 0) for all sort τ ′, and ϕ(fc) = (1 · · · ar(c) 0) for each c ∈ C∗

τ

such that µϕ(c) �= {1, . . . , ar(c)}. In the following results, evalϕ′ uses ϕ′ and
Eτ (R) to evaluate terms (evalϕ uses ϕ and R, as above). Our transformation
is correct 9 in a very general setting.

Theorem 6.1 Let R = (F , R) = (C � D, R) be a TRS. Let ϕ be a regular
E-strategy map. Let t ∈ T (F ,X) be such that sort(t) = τ and δ ∈ T (C). Let
R′ = Eτ (R) and ϕ′ = Emapτ (ϕ). If δ ∈ evalϕ′(unquoteτ (quoteτ (t))), then
t→∗

R δ.

Thus, no ‘unexpected’ value can be obtained when evaluating t ∈ T (F ,X)
of sort τ as unquoteτ (quoteτ (t)). Moreover, no constructor term (of sort τ)
obtained by using ϕ and R gets lost when Emapτ (ϕ) and Eτ (R) are used
instead.

9 In this section we do not use ‘corrrect’ and ‘complete’ in the technical sense defined in
Section 5 because we need to consider two rewrite systems rather than only one.

7878

Alpuente, Escobar, and Lucas

Theorem 6.2 Let R = (F , R) = (C � D, R) be a TRS. Let ϕ be a regu-
lar E-strategy map. Let t ∈ T (F ,X) be such that sort(t) = τ and δ ∈
T (C). Let R′ = Eτ (R) and ϕ′ = Emapτ (ϕ). If δ ∈ evalϕ(t), then δ ∈
evalϕ′(unquoteτ (quoteτ (t))).

Completeness of the transformation (regarding the computation of con-
structor terms) requires some additional conditions.

Theorem 6.3 Let R = (F , R) = (C � D, R) be a left-linear, confluent TRS.
Let ϕ be a regular E-strategy map such that ϕ ∈ CMR, and R is ϕ-terminating.
Let t ∈ T (F ,X) be such that sort(t) = τ and δ ∈ T (C). Let R′ = Eτ (R) and
ϕ′ = Emapτ (ϕ). If t→∗

R δ, then δ ∈ evalϕ′(unquoteτ (quoteτ (t))).

Note that, in contrast to Theorem 5.4, we can now start with any E-
strategy map ϕ ∈ CMR:

Example 6.4 The following OBJ program:

obj EXAMPLE-STR is

sorts Nat LNat .

ops 0 0’ : -> Nat .

ops s s’ : Nat -> Nat [strat (1)] .

ops nil nil’ : -> LNat .

op cons : Nat LNat -> LNat [strat (1)] .

op cons’ : Nat LNat -> LNat [strat (1 2)] .

op fcons : Nat LNat -> LNat [strat (1 2 0)] .

op from : Nat -> LNat [strat (1 0)] .

op sel : Nat LNat -> Nat [strat (1 2 0)] .

op first : Nat LNat -> LNat [strat (1 2 0)] .

ops quote unquote : Nat -> Nat [strat (1 0)] .

ops quote’ unquote’ : LNat -> LNat [strat (1 0)] .

vars X Y : Nat .

var Z : LNat .

eq sel(s(X),cons(Y,Z)) = sel(X,Z) .

eq sel(0,cons(X,Z)) = X .

eq first(0,Z) = nil .

eq first(s(X),cons(Y,Z)) = cons(Y,first(X,Z)) .

eq from(X) = cons(X,from(s(X))) .

eq quote(0) = 0’ .

eq quote’(cons(X,Z)) = cons’(quote(X),quote’(Z)) .

eq quote’(nil) = nil’ .

eq quote(s(X)) = s’(quote(X)) .

eq unquote(0’) = 0 .

eq unquote(s’(X)) = s(unquote(X)) .

eq unquote’(nil’) = nil .

eq unquote’(cons’(X,Z)) = fcons(unquote(X),unquote’(Z)) .

eq fcons(X,Z) = cons(X,Z) .

7979

Alpuente, Escobar, and Lucas

endo

is the transformed version of the OBJ program in Example 1.1. Now, the
evaluation of term unquote’(quote’(first(s(0),from(0)))) yields:

Maude> reduce unquote’(quote’(first(s(0), from(0)))) .

reduce in EXAMPLE-STR : unquote’(quote’(first(s(0), from(0)))) .

rewrites: 11 in -10ms cpu (0ms real) (~ rewrites/second)

result LNat: cons(0, nil)

Note the difference between ‘unquoting’ rules for symbols s’ and cons’.
The unquoting of cons’ is indirect; the obvious short-cut:

unquote(cons’(X,Z)) = cons(unquote(X),unquote’(Z))

in the program in Example 6.4 does not work: the reason is that after applying
this rule, the second argument of cons remains non-replacing. For instance, by
using such a rule (instead of the last two rules of the program in Example 6.4)
the evaluation of unquote’(quote’(first(s(0),from(0)))) would yield

cons(0,unquote’(nil’))

This is solved by introducing the intermediate defined symbol fcons which
first evaluates its arguments (thus performing the renaming) and then re-
duces to cons. In this sense, the explicit annotation (1 2 0) is also crucial
for symbol fcons; otherwise, the interpreter could associate a default strategy
which does not permit the renamings (for instance, OBJ3 associates the strat-
egy (0 1 2 0) to fcons; with this default annotation, we would also obtain
cons(0,unquote’(nil’)) instead of the desired value).

Unfortunately, the previous transformation does not preserve termination
of the original program (proved in Example 4.4).

Example 6.5 The evaluation of t = quote’(from(0)) yields:

Maude> reduce quote’(from(0)) .

reduce in EXAMPLE-STR : quote’(from(0)) .

ADVISORY: closing open files.

Debug(1)> Bye.

where we were forced to abort the non-terminating execution. Again, the
problem is that the evaluation of t, i.e., the evaluation of

ϕ(t) = quote’(1 0)(from(1 0)(0nil))

does not terminate:

〈quote’(1 0)(from(1 0)(0nil)), Λ〉
→ϕ 〈quote’(0)(from(1 0)(0nil)), 1〉
→ϕ 〈quote’(0)(from(0)(0nil)), 1.1〉
→ϕ 〈quote’(0)(from(0)(0nil)), 1〉
→ϕ 〈quote’(0)(cons(1)(0nil,from(1 0)(s(1 0)(0nil))), 1〉
→ϕ 〈quote’(0)(consnil(0nil,from(1 0)(s(1 0)(0nil))), 1.1〉

8080

Alpuente, Escobar, and Lucas

→ϕ 〈quote’(0)(consnil(0nil,from(1 0)(s(1 0)(0nil))), 1〉
→ϕ 〈quote’(0)(consnil(0nil,from(1 0)(s(1 0)(0nil))), Λ〉
→ϕ 〈cons’(1 2)(quote(1 0)(0nil),quote’(1 0)(from(1 0)(s(1 0)(0nil)))), Λ〉
→+

ϕ 〈cons’(2)(0’nil,quote’(1 0)(from(1 0)(s(1 0)(0nil)))), 2〉
→ϕ · · ·

6.1 Preserving completeness and termination

Example 6.5 shows that the annotation ϕ′(quoteτ) = (1 0) may cause non-
termination. We can try to avoid this problem by restricting the E-strategy
for quoteτ to (0). In this case, however, we need to add new rules to enable
the evaluation in some alternative way. In [16], we have introduced a program
transformation which is able to achieve a similar effect. In the following,
by an outermost (occurrence of a) defined symbol in a term t, we mean a
defined symbol which only has constructor symbols above it in t. The new
constructors are now introduced in computations by the contraction of redexes
of outermost defined symbols f . Thus, we add both new defined symbols f ′,
which will show up when these outermost defined f symbols emerge, and new
rules for defining these symbols. The new rules f ′(l1, . . . , lk) → r′ come from
the original ones f(l1, . . . , lk) → r as follows: occurrences of outermost defined
symbols g in r are renamed in r′ as g′; occurrences of constructor symbols c
above those g in r are renamed in r′ as c′; occurrences of variables x in r which
only have constructor symbols above them are marked as quotesort(x)(x) in
r′. Now (in contrast to the previous transformation) symbols quoteτ are also
intended to rename outermost defined symbols f (of sort τ) as their alias f ′

(of the same sort). In order to simplify the transformation, it is tempting
not to take into account the number of extra rules which are added to the
transformed TRS and introduce new rules f ′(l1, . . . , lk) → r′ for each defined
symbol f . Unfortunately, this may unnecessarily cause non-termination.

Example 6.6 Consider the rule

from(x) → cons(x,from(s(x)))

of our running example. We then introduce the rule:

from’(x) → cons’(quote(x),from’(s(x)))

For example, in the evaluation of t = first(s(0),from(0)) in Example
5.5, the symbol from does not emerge as outermost: roughly speaking, the
only possibility is that either the right-hand side of a rule defining first

contains a variable of sort LNat having only constructor symbols above, or
that from is outermost in some right-hand side. This does not happen in
our example. Thus, we do not need the rule which would introduce non-
termination since reductions are allowed on both arguments of cons’. For
this reason, we perform a more accurate analysis of the required additional
rules by carefully identifying the outermost defined symbols that can emerge
during the evaluation of a given expression.

8181

Alpuente, Escobar, and Lucas

The following notations are auxiliary [16]: Given f : τ1× . . .× τk → τ , the
sorts of arguments of f are gathered in the set 10 sortarg(f) = {τ1, . . . , τk}.
Given a term t ∈ T (F ,X),

• CVar(t) = {x ∈ Var(t) | ∃p ∈ Pos(t), t|p = x ∧ ∀ q < p, q ∈ PosC(t)}
is the set of constructor variables of t, i.e., variables of t having a maximal
proper prefix which only points to constructor symbols. We also use Cτ =
{c ∈ C | sort(c) = τ}.

• The set of possible sorts for symbols arising by instantiation of a constructor
variable x is CVSort(sort(x)) where, given a sort τ ,
CVSort(τ) = {τ} ∪

⋃
c ∈ Cτ

τ ′ ∈ sortarg(c)

CVSort(τ ′)

• Vouter(t) =
⋃

x∈CVar(t){f ∈ D | sort(f) ∈ CVSort(sort(x))} are the defined
symbols which can root the subterms introduced in t by instantiation of
constructor variables of t (that is, which emerge as outermost in t after
instantiation).

Example 6.7 Consider the term t = cons(y,first(x,z)), where sort(y) =
Nat and first : Nat× LNat→ LNat. Then,

• CVar(t) = {y}; note that sort(y) = Nat.

• CVSort(Nat) = {Nat} and

CVSort(LNat) = {LNat} ∪
⋃
c ∈ {nil, cons}
τ ′ ∈ sortarg(c)

CVSort(τ ′)

= {LNat} ∪ CVSort(Nat) ∪ CVSort(LNat)

= {LNat, Nat}
• Vouter(t) = {f ∈ D | sort(f) ∈ CVSort(sort(y))} = {f ∈ D | sort(f) ∈
{Nat}} = {sel}.

Given a TRS R = (F , R) = (C � D, R) and f ∈ D,

• outrhsR(f) ⊆ D contains the outermost defined symbols in rhs’s of the
f -rules: outrhsR(f) = ∪f(l1,...,lk)→r∈R{root(r, p) | p ∈ PosD(r)∧∀ q < p. q ∈
PosC(r)}.

• VrhsR(f) ⊆ D is the set of outermost defined symbols which can appear by
instantiation of constructor variables in rhs’s of the f -rules: VrhsR(f) =
∪f(l1,...,lk)→r∈RVouter(r).

• newouterR(f) = outrhsR(f) ∪ VrhsR(f).

10 Here, we disregard from the ordering of the argument sorts (i.e., we do not use a list of
sorts) since it is not important for our purposes.

8282

Alpuente, Escobar, and Lucas

Example 6.8 Consider the TRS R in Example 4.1 (assume the sorts as given
in the signature of the original OBJ program in Example 1.1). We have:

• outrhsR(sel) = {sel} and outrhsR(first) = {first}. Let us develop the
first one: the rules defining sel are

sel(0,cons(x,z)) → x and sel(s(x),cons(y,z)) → sel(x,z).

The rhs of the first rule is a variable; hence it does not contribute to
outrhsR(sel). On the other hand, the only outermost defined symbol of
the second rhs is sel; hence, outrhsR(sel) = {sel}.

• VrhsR(sel) = Vouter(x) ∪ Vouter(sel(x,z)) = Vouter(x) = {sel} (note
that sort(x) = Nat) and, according to Example 6.7:

VrhsR(first) = Vouter(nil) ∪ Vouter(cons(y,first(x,z)))

= Vouter(cons(y,first(x,z)))

= {sel}
• Finally, newouterR(sel) = outrhsR(sel) ∪ VrhsR(sel) = {sel} and
newouterR(first) = outrhsR(first) ∪ VrhsR(first) = {first, sel}.

In contrast to transformation Eτ , here we are mainly interested in evaluating
term f(t1, . . . , tk) for a given defined symbol f ∈ D. Given R = (F , R) =
(C � D, R) and f ∈ D, we let Df

R ⊆ D be:

Df
R = {f} ∪

⋃

g∈newouterR(f)

Dg
R

Df
R contains the outermost defined symbols which arise when a (well sorted)

f -rooted term f(t1, . . . , tk) is arbitrarily rewritten. In practice, since the def-
inition of Df

R is mutually recursive, we must consider all possible equations

Df1

R = {f1} ∪
⋃

g∈newouterR(f1)
Dg

R
...

Dfn

R = {fn} ∪
⋃

g∈newouterR(fn)
Dg

R

(where f1 = f and f2, . . . , fn are all the defined symbols successively occurring
in newouterR(f1) ∪ · · · ∪ newouterR(fn)) and compute the (least) solutions
Df1

R , . . . ,D
fn

R by using fixpoint techniques (see [11,16]).

Example 6.9 (Continuing Example 6.8) Since newouterR(sel) = {sel} and
newouterR(first) = {first, sel}, we have the system:

Dfirst
R = {first} ∪ Dsel

R ∪ Dfirst
R

Dsel
R = {sel} ∪ Dsel

R

which has a simple solution: Dfirst
R = {first, sel} and Dsel

R = {sel}. Note
that from �∈ Dfirst

R and from �∈ Dsel
R

8383

Alpuente, Escobar, and Lucas

The set evf (F ,X) of terms is given as follows: (1) X ⊆ evf (F ,X), (2)
g(t) ∈ evf (F ,X) if g ∈ Df

R, and (3) c(t1, . . . , tk) ∈ evf (F ,X) if c ∈ C∗
sort(f) and

t1, . . . , tk ∈ evf (F ,X). If we do not require (1) (and change the inductive case
(3) to be c(t1, . . . , tk) ∈ gevf (F ,X) if c ∈ C∗

sort(f) and t1, . . . , tk ∈ gevf (F ,X)),

then we are defining the set gevf (F ,X). Roughly speaking, if we rewrite on
a term t = g(t) for some g ∈ Df

R, then every possible reduct of t belongs to
evf (F ,X). If t is ground, then we only need to consider gevf (F ,X).

We now define the program transformation. First, we give the new signa-
ture. Note that the transformation is parametric w.r.t. a TRS R = (F , R) =
(C � D, R) and a defined symbol f ∈ D.

Definition 6.10 Given a TRS R = (F , R) = (C � D, R) and f ∈ D, we let
F f = F � C′ � D′ �Quote � Unquote, where: c′ ∈ C′ ⇔ c ∈ C∗

sort(f) ∧ ar(c′) =

ar(c) and g′ ∈ D′ ⇔ g ∈ Df
R ∧ ar(g′) = ar(g). Quote and Unquote are as

above.

The transformation introduces rules to deal with the different symbols that
we consider, according to the informal description above.

Definition 6.11 [Transformation V] Let R = (F , R) = (C �D, R) be a TRS
and f ∈ D. We let Vf (R) = (Ff , R ∪ S ∪Q ∪ U), where:

• S = {g′(l) → κf (r) | g(l) → r ∈ R ∧ g ∈ Df
R}, where

κf (x) = quotesort(x)(x), for x ∈ X , κf (g(t)) = g′(t) if g ∈ Df
R, and

κf (c(t)) = c′(κf (t)) if c ∈ C.

• Rules in Q define symbols quoteτ in order to rename external constructors
c ∈ C∗

τ (where τ = sort(f)) to constructors c′ ∈ C′ where c, c′ : τ1×· · ·×τk →
τ ′, and outermost application of g ∈ Df

R to outermost applications of the
corresponding g′ ∈ D′.

Q = {quoteτ ′(c(x1, . . . , xk)) → c′(quoteτ1
(x1), . . . , quoteτk

(xk)) | c ∈ C∗
τ}

∪ {quotesort(g)(g(x1, . . . , xk)) → g′(x1, . . . , xk) | g ∈ Df
R}

• Rules in U define symbols in Unquote exactly as in the previous transfor-
mation Eτ .

Given an E-strategy map ϕ, we define the new E-strategy map ϕ′; we let
ϕ′ = Emapf (ϕ) as follows: ϕ′(g) = ϕ(f) if g ∈ D, ϕ′(g′) = ϕ(g) if g ∈ Df

R,
ϕ′(c) = ϕ(c) if c ∈ C, and ϕ(c′) = (1 · · · ar(c′)) if c′ ∈ C′, ϕ(quoteτ) = (0)
and ϕ(unquoteτ) = (1 0) for all sort τ ; and ϕ(fc) = (1 · · · ar(c) 0) for each
c ∈ C∗

sort(f) such that µϕ(c) �= {1, . . . , ar(c)}.
For the new transformation, we have similar results as for the simpler one.

Theorem 6.12 Let R = (F , R) = (C�D, R) be a TRS. Let ϕ be a regular E-
strategy map. Let f ∈ D, t ∈ evf (F ,X), and δ ∈ T (C). Let R′ = Vf (R) and
ϕ′ = Emapf(ϕ). If δ ∈ evalϕ′(unquotesort(t)(quotesort(t)(t))), then t→∗

R δ.

8484

Alpuente, Escobar, and Lucas

Theorem 6.13 Let R = (F , R) = (C�D, R) be a TRS. Let ϕ be a regular E-
strategy map. Let f ∈ D, t ∈ evf (F ,X), and δ ∈ T (C). Let R′ = Vf (R) and
ϕ′ = Emapf(ϕ). If δ ∈ evalϕ(t), then δ ∈ evalϕ′(unquotesort(t)(quotesort(t)(t))).

Theorem 6.14 Let R = (F , R) = (C �D, R) be a left-linear, confluent TRS.
Let ϕ be a regular E-strategy map such that ϕ ∈ CMR and R is ϕ-terminating.
Let f ∈ D, t ∈ evf (F ,X), and δ ∈ T (C). Let R′ = Vf (R) and ϕ′ =
Emapf (ϕ). If t→∗

R δ, then δ ∈ evalϕ′(unquotesort(t)(quotesort(t)(t))).

Example 6.15 The following OBJ3 program:

obj EXAMPLE-TR is

sorts Nat LNat .

ops 0 0’ : -> Nat .

ops s s’ : Nat -> Nat [strat (1)] .

ops nil nil’ : -> LNat .

op cons : Nat LNat -> LNat [strat (1)] .

op cons’ : Nat LNat -> LNat [strat (1 2)] .

op fcons : Nat LNat -> LNat [strat (1 2 0)] .

op from : Nat -> LNat [strat (1 0)] .

ops sel sel’ : Nat LNat -> Nat [strat (1 2 0)] .

ops first first’ : Nat LNat -> LNat [strat (1 2 0)] .

op quote : Nat -> Nat [strat (0)] .

op unquote : Nat -> Nat [strat (1 0)] .

op quote’ : LNat -> LNat [strat (0)] .

op unquote’ : LNat -> LNat [strat (1 0)] .

vars X Y : Nat .

var Z : LNat .

eq sel(s(X),cons(Y,Z)) = sel(X,Z) .

eq sel(0,cons(X,Z)) = X .

eq first(0,Z) = nil .

eq first(s(X),cons(Y,Z)) = cons(Y,first(X,Z)) .

eq from(X) = cons(X,from(s(X))) .

eq sel’(s(X),cons(Y,Z)) = sel’(X,Z) .

eq sel’(0,cons(X,Z)) = quote(X) .

eq first’(0,Z) = nil’ .

eq first’(s(X),cons(Y,Z)) = cons’(quote(Y),first’(X,Z)) .

eq quote(0) = 0’ .

eq quote’(cons(X,Z)) = cons’(quote(X),quote’(Z)) .

eq quote’(nil) = nil’ .

eq quote(s(X)) = s’(quote(X)) .

eq quote(sel(X,Z)) = sel’(X,Z) .

eq quote’(first(X,Z)) = first’(X,Z) .

eq unquote(0’) = 0 .

eq unquote(s’(X)) = s(unquote(X)) .

eq unquote’(nil’) = nil .

8585

Alpuente, Escobar, and Lucas

eq unquote’(cons’(X,Z)) = fcons(unquote(X),unquote’(Z)) .

eq fcons(X,Z) = cons(X,Z) .

endo

is the new transformed version of the OBJ program in Example 1.1. Now, the
evaluation of unquote’(quote’(first(s(0),from(0)))) yields:

Maude> reduce unquote’(quote’(first(s(0), from(0)))) .

reduce in EXAMPLE-TR : unquote’(quote’(first(s(0), from(0)))) .

rewrites: 10 in -10ms cpu (0ms real) (~ rewrites/second)

result LNat: cons(0, nil)

By using the context-sensitive recursive path ordering (CSRPO) of [2] we
can even prove termination of the program in Example 6.15.

Example 6.16 Consider again the evaluation of the non-terminating expres-
sion from(0) using the program in Example 6.15. Now, we obtain:

Maude> reduce unquote’(quote’(from(0))) .

reduce in EXAMPLE-TR : unquote’(quote’(from(0))) .

rewrites: 0 in -10ms cpu (0ms real) (~ rewrites/second)

result LNat: unquote’(quote’(from(0)))

General conditions under which this second transformation preserves ter-
mination of the original program should be further investigated.

7 Conclusions and Related work

We summarize the contributions of this paper as follows:

• We first clarify our notion of correct and complete computations with (pos-
itive) strategy annotations. As there is no standard, commonly accepted
terminology, current definitions are rather misleading and we think this
may cause an erroneous understanding (e.g., compare the mix of different
concepts for the notion of correctness/completeness in [18,19,21]).

• We demonstrate that previously known approaches for computing normal
forms with (non-terminating) OBJ programs using positive strategy an-
notations (e.g., Nakamura and Ogata’s technique of ‘completing’ head-
normalizing E-strategy maps ϕ for obtaining a normalizing one ϕ′) are not
completely satisfactory in practice: they do ensure correctness (that is, that
computed E-normal forms are normal forms) but the desired definedness do
not.

• We ascertain the conditions (on ϕ) ensuring that OBJ programs using (pos-
itive) strategy annotations do compute the value of any given expression
(Theorem 5.4). As shown in Example 5.6, termination of the program (un-
der ϕ) is essential for achieving correct (and complete) computations.

• Theorem 5.4 requires that all arguments of constructor symbols be replac-

8686

Alpuente, Escobar, and Lucas

ing. This may incur in unnecessary nontermination. Thus, we have for-
malized a transformation which can achieve (correct and) complete com-
putations without worsening the termination behavior. Our technique dif-
fers from Nakamura and Ogata’s (or Nagaya’s) approach: we only relax
the replacement restrictions associated to the (constructor) symbols after a
thorough analysis of their role in the computation.

The only work addressing completeness of the E-strategy (w.r.t. normaliza-
tion) is Nagaya’s thesis (although completeness is called ‘normalizability’ in
Nagaya’s terminology). Nagaya establishes conditions (on the TRS and the
E-strategy ϕ) ensuring that ϕ is normalizing, i.e., it is able to compute a nor-
mal form of a term whenever it exists [17]. However, these results only apply
to a rather restricted subclass of orthogonal TRSs. In this paper, we have
focused on the functional evaluation semantics, i.e., computations leading to
constructor terms or values. We are able to deal with more general programs
(represented by left-linear and confluent TRSs); as a counterpart, the ter-
mination of the program must be proved either before or after transforming
it to ensure correctness and completeness (regarding functional evaluation).
In CSR, normal forms of a term t can be obtained by successively comput-
ing its µ-normal forms s, and continuing the evaluation of t by (recursively)
normalizing the maximal non-replacing subterms of s (normalization via µ-
normalization [10,12]). In OBJ programs, we could proceed in a similar way
provided that E-normal forms are µ-normal forms. Unfortunately, we would
need a ‘meta-operation’ that uses evalϕ to obtain partially evaluated results
(i.e., E-normal forms) and then ‘jumps’ into the non-replacing parts of them
in order to obtain normal forms. Of course, this procedure is not directly avail-
able in current OBJ implementations. The possibility of achieving a similar
effect by using program transformation is a subject of future work.

Acknowledgements.

We would like to thank Cristina Borralleras for providing a proof of ter-
mination of the TRS that correspond to the program of Example 6.15 using
CSRPO. We also thank the anonymous referees for their helpful remarks.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[2] C. Borralleras, S. Lucas, and A. Rubio. Recursive Path Orderings can
be Context-Sensitive. In A. Voronkov, editor, Proc. of 18th International
Conference on Automated Deduction, CADE’02, LNAI 2392:314-331, Springer-
Verlag, Berlin, 2002.

[3] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. Electronic
Notes in Theoretical Computer Science, volume 4, Elsevier Sciences, 1996.

8787

Alpuente, Escobar, and Lucas

[4] S. Eker. Term Rewriting with Operator Evaluation Strategies. Electronic Notes
in Theoretical Computer Science, volume 15, Elsevier Sciences, 1998.

[5] O. Fissore, I. Gnaedig, and H. Kirchner. Induction for termination with local
strategies. Electronic Notes in Theoretical Computer Science, volume 58(2),
Elsevier Sciences, 2001.

[6] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In Conference Record of the 12th Annual ACM Symposium on Principles of
Programming Languages, POPL’85, pages 52-66, ACM Press, 1985.

[7] K. Futatsugi and A. Nakagawa. An Overview of CAFE Specification
Environment – An algebraic approach for creating, verifying, and maintaining
formal specification over networks –. In Proc. of 1st International Conference
on Formal Engineering Methods, 1997.

[8] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering
with OBJ: algebraic specification in action, Kluwer, 2000.

[9] S. Lucas. Context-sensitive computations in functional and functional logic
programs. Journal of Functional and Logic Programming, 1998(1):1-61, The
MIT Press, 1998.

[10] S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
Academic Press, to appear.

[11] S. Lucas. Rewriting with replacement restrictions. PhD Thesis, DSIC,
Universidad Politécnica de Valencia, in spanish, October 1998.

[12] S. Lucas. Termination of (Canonical) Context-Sensitive Rewriting. In Sophie
Tison, editor, Proc. 13th International Conference on Rewriting Techniques and
Applications (RTA’02), LNCS 2378:296-310, Springer-Verlag, Berlin, 2002.

[13] S. Lucas. Termination of on-demand rewriting and termination of OBJ
programs. In Proc. of 3rd International Conference on Principles and Practice
of Declarative Programming, PPDP’01, pages 82-93, ACM Press, 2001.

[14] S. Lucas. Termination of Rewriting With Strategy Annotations. In R.
Nieuwenhuis and A. Voronkov, editors, Proc. of 8th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, LPAR’01, LNAI
2250:669-684, Springer-Verlag, Berlin, 2001.

[15] S. Lucas. Transfinite Rewriting Semantics for Term Rewriting Systems. In
A. Middeldorp, editor, Proc. of 12th International Conference on Rewriting
Techniques and Applications, RTA’01, LNCS 2051:216-230. Springer-Verlag,
Berlin, 2001.

[16] S. Lucas. Transformations for Efficient Evaluations in Functional Programming.
In H. Glaser and P. Hartel, editors, Proc of 9th International Symposium on
Programming Languages, Implementations, Logics and Programs, PLILP’97,
LNCS 1292:127-141, Springer-Verlag, Berlin, 1997.

8888

Alpuente, Escobar, and Lucas

[17] T. Nagaya. Reduction Strategies for Term Rewriting Systems. PhD Thesis,
School of Information Science, Japan Advanced Institute of Science and
Technology, March 1999.

[18] M. Nakamura and K. Futatsugi. Completeness and strictness analysis for the
evaluation strategy. In Y. Toyama, editor, Proc. of 1th International Workshop
on Rewriting y Proof and Computation, RPC’01, pages 80-89, RIEC, Tohoku
University, 2001.

[19] M. Nakamura and K. Ogata. The evaluation strategy for head normal form
with and without on-demand flags. Electronic Notes in Theoretical Computer
Science, volume 36, Elsevier Sciences, 2001.

[20] K. Ogata and K. Futatsugi. Implementation of Term Rewritings with the
Evaluation Strategy. In H. Glaser and P. Hartel, editors, Proc of 9th
International Symposium on Programming Languages, Implementations, Logics
and Programs, PLILP’97, LNCS 1292:225-239, Springer-Verlag, Berlin, 1997.

[21] J. van de Pol. Just-in-time: on Strategy Annotations. Electronic Notes in
Theoretical Computer Science, volume 57, Elsevier Sciences, 2001.

8989

