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Abstract

We investigate instantons in finite temperature QCD via Witten’s holographic QCD. To study the decon-
finement phase, we use the setup proposed in [1]. We find that the sizes of the instantons are stabilized 
at certain values both in the confinement and deconfinement phases. This agrees with the numerical result 
in the lattice gauge theory. Besides we find that the gravity duals of the large and small instantons in the 
deconfinement phase have different topologies. We also argue that the fluctuation of the topological charges 
is large in confinement phase while it is exponentially suppressed in deconfinement phase, and a continuous 
transition occurs at the Gross–Witten–Wadia (GWW) point. It would be difficult to observe the counterpart 
of this transition in lattice QCD, since the GWW point in QCD may stay at an unstable branch.
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1. Introduction

Although instantons are essential ingredients in QCD, it is difficult to understand their dy-
namics because of the strong coupling nature of the theory. Perturbative calculations are justified 
only for small instantons or at high temperature, and a suitable effective theory which describes 
instantons is not known. Hence we may have to rely on numerical calculations in lattice gauge 
theory to illuminate their properties.

One possible tool for analyzing instantons is holographic QCD proposed by Witten [2]. Al-
though holographic QCD is different from real QCD in quantitive details, it has successfully 
explained various qualitative aspects of large-N QCD [3–6]. (See also [7,8] for recent develop-
ments.) Hence we expect that holography can also reveal the nature of instantons. In particular, 
we focus on the dynamics of instantons at finite temperature in this study.

Through holographic QCD, instantons at low temperature (in confinement phase) have been 
studied in [9–11]. It was shown that the energy of an instanton with a particular size approaches 
zero in the large-N limit, which indicates the large fluctuations of the topological charge in the 
confinement phase. This is consistent with the previous theoretical insights [12] and numerical 
calculations in lattice gauge theory [13].

However, dynamics of instantons in deconfinement phase is less clear. Although the perturba-
tive calculations work in certain circumstances [14], the whole instanton dynamics has not been 
understood. Their dynamics around the critical temperature would be particularly important to 
reveal the mechanism of the phase transition, and hence it is interesting to study it in holographic 
QCD. In this direction, the black D4-brane geometry [4], which was supposed to be the grav-
ity dual of the deconfinement phase, has been studied initially. In particular, some agreements 
with the expected properties of the instantons were reported in Ref. [11]. However there are also 
some disagreements. For example, the instanton density n(ρ, T ), which is the vacuum expecta-
tion value (vev) of the single QCD instanton with a size ρ at temperature T , shows unexpected 
behaviors. In holographic QCD, the instanton density is calculated from the DBI action of a 
D0-brane [9–11], and the result in the black D4-brane background is given by [11]

n(ρ,T ) ∝ e−SDBI =

⎧⎪⎨
⎪⎩

exp

(
−8π2N

λYM

) (
ρ � 1/T

)
0

(
ρ � 1/T

) (1.1)

where λYM is a dimensionless ’t Hooft coupling which we will define below equation (2.1). Thus 
it does not depend on either ρ or T if ρ � 1/T , and the size of the instanton is a moduli in this 
region.

However, both perturbative QCD and numerical calculation in lattice gauge theory predict 
different results. Perturbative QCD predicts that the instanton density for a small instanton at 
T = 0 is

n(ρ,0) ∝ exp

(
− 8π2

g2(ρ)

)
∝ ρ

11N
3 −5, (1.2)

where g2(ρ) is the coupling at scale ρ [14]. Thus small instantons are suppressed. At high tem-
perature T � Tc in the deconfinement phase, because of the electric screening, large instantons 
would be suppressed. Indeed the perturbative calculation shows the large instanton suppression 
as

n(ρ,T ) = n(ρ,0) exp

(
−2N

(πρT )2 − log

(
1 + 1

(ρT )2
))

(1.3)

3 3



M. Hanada et al. / Nuclear Physics B 899 (2015) 631–650 633
for πρT � 1 and g2(T ) � 1 [14]. Although the perturbative calculations are valid only in lim-
ited parameter regimes, such suppressions of small and large instantons would hold for any 
temperature in the deconfinement phase, and then the instanton density would have a peak at 
a finite value. Actually this tendency has been observed in lattice calculations in the deconfine-
ment phase [13].

These results clearly disagree with the holographic result (1.1) in the black D4-brane ge-
ometry. Although holographic QCD cannot reproduce the actual QCD results quantitatively in 
principle [2], qualitative aspects of QCD are expected to be captured. Hence this discrepancy is 
a serious puzzle in holographic QCD. More recently, it has been argued that the black D4-brane 
geometry cannot be identified with the deconfinement phase in four-dimensional QCD; rather, 
a geometry called localized solitonic D3-brane will correspond to the deconfinement phase in 
QCD [1]. In this article, we study the instantons in this new setup, and see that the instanton 
density obtained from the localized D3-brane geometry satisfies the expectations from QCD.

We find that the size distribution of the instantons is peaked at a finite value, and becomes 
delta-functional at large N . Interestingly, the topology of the gravity dual of the stable instan-
tons differs from that of the small ones. Also, we will see that fluctuations of the topological 
charge, which is large in the confinement phase and suppressed in the deconfinement phase, 
would smoothly change at the Gross–Witten–Wadia type (GWW) point [16–18].

This paper is organized as follows. We begin in Section 2 by reviewing the holographic QCD 
at finite temperature and discussing the geometries corresponding to the confinement and decon-
finement phases. Then in Section 3, we argue instantons in the confinement geometry. These two 
sections are mostly a review of the previous studies. In Section 4, we argue instantons in the de-
confinement phase. We also argue the θ dependence and topological susceptibility in Section 5, 
and show that a continuous transition of the susceptibility occur at the GWW point in Section 6.

2. Confinement and deconfinement phase in holographic QCD

In this section we review the confinement and deconfinement phases in four-dimensional 
SU(N) pure Yang–Mills theory in Witten’s holographic QCD model [2]. Let us first consider 
a ten-dimensional Euclidean spacetime, whose x4-direction is compactified on a circle with pe-
riod L4, which we call S1

L4
. We consider N D4-branes wrapping on this circle. For the fermions 

on the branes, we take the anti-periodic boundary condition along S1
L4

so that supersymmetry is 
broken.

By taking the large N limit of this system a la Maldacena at low temperature [19,20], we 
obtain the dual gravity description of the compactified five-dimensional SYM theory on the 
D4-branes [2], which consists, at low temperature, of a solitonic D4-brane solution wrapping 
the S1

L4
. The explicit metric and dilaton is given by [20]

ds2 = α′
[

u3/2

√
λ5/4π

(
dt2 +

3∑
i=1

dx2
i + f4(u)dx2

4

)
+

√
λ5/4π

u3/2

(
du2

f4(u)
+ u2d�2

4

)]
,

f4(u) = 1 −
(u0

u

)3
, eφ = λ5

(2π)2N

(
u3/2

√
λ5/4π

)1/2

. (2.1)

This solution also has a non-trivial five form potential which we do not show explicitly. Here 
λp+1 is the ’t Hooft coupling on the Dp-brane world-volume, which is given in terms of the 
string coupling gs and Regge parameter α′ as λp+1 = (2π)p−2gsα

′ (p−3)/2N . We will also use 
the dimensionless coupling λYM ≡ 2λ5/L4.
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Since the x4-cycle shrinks to zero at u = u0, in order to avoid possible conical singularities 
we must choose the asymptotic periodicity L4 as

L4

2π
=

√
λ5/4π

3
u

−1/2
0 . (2.2)

With this choice, the contractible x4-cycle, together with the radial direction u, forms a so-called 
cigar geometry, which is topologically a disc. Note that this gravity solution is reliable in the 
regime λYM � 1 where the stringy corrections are suppressed.

Witten pointed out that four-dimensional pure Yang–Mills theory is obtained in a regime 
λYM � 1, because the KK modes about S1

L4
and matter fields (fermions and adjoint scalars 

which acquire masses via loop corrections) in the five-dimensional super Yang–Mills the-
ory are decoupled. Although this QCD regime (λYM � 1) and the strong coupling regime
(λYM � 1), where the gravity analysis is reliable, are completely opposite, their properties would 
be qualitatively related as far as no transition occurs between them. (This is analogous to the 
strong coupling expansion of the lattice gauge theory.) Indeed there is a lot of evidence which 
supports this connection, and we expect that supergravity analyses capture qualitative aspects of 
large-N QCD.

So far, we have considered four-dimensional pure Yang–Mills theory at zero temperature. In 
order to study properties at finite temperature, we compactify the Euclidean temporal dimension 
to a circle, and identify its circumference β with the inverse temperature, β = 1/T . In four-
dimensional theories with fermions, the anti-periodic boundary condition along the temporal 
circle is imposed for fermions. In Witten’s setup, however, fermions in five-dimensional theo-
ries decouple in the four-dimensional limit λYM → 0, and hence we do not have to impose the 
anti-periodic boundary condition. Rather, Ref. [1] argued that the periodic boundary condition is 
more useful to investigate the QCD deconfinement phase via supergravity.

As we decrease β = 1/T in the geometry (2.1), it reaches O
(
L4/

√
λYM

)
, which is the order 

of the effective string length at u = u0 [3,4]. Below this value, winding modes of the string 
wrapping on the β-cycle could be excited. Thus the gravity description given by (2.1) would be 
valid only if

β � L4√
λYM

. (2.3)

In order to avoid this problem, we perform the T-duality transformation along the t -cycle and go 
to the IIB frame, where the solitonic D4 solution becomes solitonic D3-brane solution uniformly 
smeared on the dual t -cycle.1 From now, t ′ and β ′ denote the dual temporal coordinate and its 
period

1 Note that the T-duality along the t -cycle maps the system to the IIB string theory since the periodicity of the fermions 
along this cycle is taken to be periodic. If we took the anti-periodic boundary condition, the system is mapped to the 0B 
string theory in which the brane solution has not been studied well. Hence Ref. [1] took the periodic boundary condition 
and focused on the IIB supergravity. However, it may be possible to derive similar results from the 0B theory too. Another 
difference in the case with the anti-periodic boundary condition is the existence of the black D4-brane solution which 
is stable for T > 1/L4 at strong coupling (λYM � β/L4). (Note that the black D4-brane solution is not allowed if we 
took the periodic condition.) Although this solution is thermodynamically favored at strong coupling, this solution is 
not related to the four-dimensional QCD [1,15]. (Roughly speaking, this solution is an analogue of the “doubler” in the 
lattice gauge theory.) Indeed this solution is not stable in the weak coupling where we obtain the QCD [1,15], and we 
should remove this solution by hand if we study the QCD through the holographic QCD with the anti-periodic boundary 
condition.
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Fig. 1. The schematic relations among the free energies of various solutions in the GL transition and their topologies. 
The red lines denote the stable solutions. The blue lines denote the meta-stable solutions. The yellow lines denote the 
unstable solutions. The solitonic D4-brane (uniformly smeared solitonic D3) becomes unstable at the GL instability point. 
The non-uniformly smeared solitonic D3-brane solution appears at this GL instability point and merges to the localized 
solitonic D3-brane solution at the merger point. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

β ′ ≡ (2π)2

β
= (2π)2T . (2.4)

In this frame, the mass of the winding strings become heavier as β decreases (hence the dual 
radius β ′ increases) as opposed to those in the IIA frame, and we can explore the model at higher 
temperature.

As β decreases, the uniformly smeared solitonic D3-brane solution becomes thermodynam-
ically unstable at a certain temperature, which is called the Gregory–Laflamme (GL) instability 
point [21],2 and is numerically given by [22]

βGL,inst 
 14.4
L4

λYM
. (2.5)

See also Fig. 1. It is expected that, even before β is lowered all the way down to βGL,inst, the 
smeared solitonic D3-brane solution becomes meta-stable and undergoes a first order Gregory–
Laflamme (GL) transition at an inverse temperature βGL which is approximately given by [1]

βGL ∼
(

3

2

)7
L4

λYM
= 17.1

L4

λYM
, (2.6)

leading to a more stable configuration of D3-branes localized on the dual cycle, whose topology 
is different from the smeared D3-brane solution. See Fig. 1. This figure also shows that the 
localized solitonic D3-brane solution ceases to exist if β is too large; intuitively, if β were too 
large, the dual cycle would become smaller than the size of the localized soliton, which is not 
possible. The metric of the localized solitonic D3-brane geometry is approximately given by that 
of D3-branes on R9 × S1

L4
for a sufficiently large radius β ′ of the dual cycle [22,23], which we 

will see in Section 4.1.
It is argued in [1] that this localized solitonic D3-brane geometry can naturally be regarded as 

a counterpart of the deconfinement phase in QCD, and the confinement/deconfinement transition 
can be identified with the GL transition with the transition temperature3

2 GL instabilities have been studying in black strings which are the double Wick rotation (t ′ ↔ x4) of the smeared 
soliton. As far as thermodynamical properties, we can read off the soliton results from the black hole ones.

3 Indeed there are various evidences which show the resemblance between the GL transition and the confinement/de-
confinement transition. We can show that the phase transition in the five-dimensional SYM theory at strong coupling 
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T = 1

βGL
∼ Tc ≡

(
2

3

)7
λYM

L4
. (2.7)

In addition to the uniformly smeared D3-brane and localized D3-brane solutions, there is an-
other solution: solitonic D3-brane non-uniformly smeared on the t ′-cycle. This solution describes 
the D3-branes localized on the t ′-circle but there is no gap. (See Fig. 1.) Thus this has the same 
topology to the uniformly smeared solitonic D3-brane geometry while the translation symmetry 
is broken. The metric of this solution is perturbatively derived in [22]. This non-uniform solution 
arises at the GL instability point. Although the behavior of the non-uniform solution has not fully 
understood, it is expected that this solution merges with the localized solitonic D3-brane solution 
as shown in Fig. 1 [25,33–36]. This point is called “merger point.”

What is the corresponding phase to the non-uniform solution in QCD? Recall that we have 
taken the T-duality along t -circle and the T-duality maps the locations of the branes to the eigen-

values of the Polyakov loop operator exp
(
i
∮
β

A0

)
. Thus the non-uniform D3-brane solution 

describes a phase characterized by the non-uniform eigenvalue distribution of the Polyakov 
loop operator. Indeed such a phase is well known in large-N gauge theories although it may 
be unstable [37–39]. In particular, the merger point is an analogue of the GWW point in the 
two-dimensional Lattice gauge theory [16–18]. In Section 6, we will discuss the importance of 
the merger point for understanding how the difference of the topological fluctuations at low and 
high temperatures arises.

3. Instanton in confinement phase

Now we consider instantons. First we review the instantons in confinement phase in holo-
graphic QCD. In the bulk theory, the QCD instanton corresponds to the D0-brane winding on the 
x4-circle [9–11]. Then the brane configuration of this system is summarized as

(0) 1 2 3 (4) 5 6 7 8 9
N D4-branes − − − − −
D0-brane (QCD instanton) −

(3.1)

Here the parentheses denote the compact directions. To investigate the potential for an instanton 
we evaluate the DBI action of the single D0-brane. Refs. [10,11] showed that the DBI action in 
the solitonic D4-brane geometry (2.1), which will correspond to the confinement phase, is

SD0 = 8π2N

λYM

√
1 − u3

0

u3
(3.2)

where u is the position of the D0-brane along the radial coordinate. Therefore the D0-brane is 
attracted toward the horizon of the D4-soliton (u = u0), and the classical action disappears when 
it arrives at the horizon.4 This result can intuitively be understood through the cartoon of the 

indeed occurs around (2.6) by applying the analysis in [24]. Several calculations in low-dimensional gauge theories 
also agree with this proposal [25–28]. Besides [29–32] revealed that the confinement/deconfinement transitions exhibit 
similar properties to the GL transitions.

4 If we evaluate the backreaction of the D0-brane, we see that the energy of the D0-brane is not exactly zero. The 
solitonic D4-brane solution with non-zero D0-brane charge (D0–D4 geometry) has been calculated in [10], and the 
D0-branes cost the energy ∼ V3L7

4n2
0/λ3

5, where n0 ≡ N0/βV3 is the charge density for N0 D0-branes and V3 is the 
spatial volume of R3 in QCD. Here we have assumed that the density n0 is small and uniform on the four-dimensional 
space. See also [40,41] for the application of the D0–D4 geometry to holographic QCD.
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Fig. 2. Brane configurations of the QCD instanton: (a) D0-brane in the solitonic D4-brane geometry, which describes 
the confinement phase, and (b) D0-brane in the black D4-brane geometry, although it does not correspond to any QCD 
phases. In the confinement case, the D0-brane can shrink to a point at the tip of the soliton and the DBI action becomes 
zero. In the black D4-brane background, the effective length of the D0-brane does not depend on the position, and hence, 
the potential is constant as in equation (1.1).

brane configuration depicted in Fig. 2(a). Since the D0-brane can shrink to a point at the tip of 
the soliton, the DBI action becomes zero there.

Now we interpret this result as the corresponding QCD instanton dynamics. The position 
u of the D0-brane would be related to the size ρ of the instanton [10,11]. In the case of the 
extremal Dp-brane geometries, this relation can be understood explicitly. Roughly speaking, in 
these geometries, the typical energy scale at the radial position u is given by u(5−p)/2/

√
λp where 

λp is the ’’t Hooft coupling on the Dp-branes [20,42,43] and hence the size of the instanton is 
related to its inverse 

√
λp/u(5−p)/2. Indeed this relation has been confirmed in the AdS5/CFT4

case [4,44–47]. However this argument cannot be applied to the confinement geometry (2.1) at 
finite temperature, since there are two energy scales 

√
u/L4λYM and 

√
u0/L4λYM.5 (Through 

(2.2), the latter becomes 
√

u0/L4λYM ∼ 1/L4, which is the same order to the glueball masses 
in the holographic QCD [3].) Although we do not have explicit relation between ρ and u in the 
confinement geometry, we naively assume [10,11]

ρ ∼
√

L4λYM

u
. (3.3)

This assumption would be valid at least when u � u0 where u0 would be irrelevant or when 
u ∼ u0 where the two energy scales are coincident. Once we admit this assumption, the equation 
(3.2) indicates a suppression of a small instanton in the confinement phase, which is qualitatively 
consistent with the perturbative QCD (1.2). At u ∼ u0 (ρ ∼ √

L4λYM/u0 ∼ L4), the instanton 
can exist with the zero value of the DBI action, which would imply that the fluctuation of the 
topological charge is large [9]. Moreover a larger instanton cannot exist. Thus the instanton 
density has a sharp peak at

5 In the AdS5/CFT4 correspondence [48,49], we read off 〈TrF ∧ F 〉 in the gauge theory from the boundary value of 
the RR scalar field which is sourced by a D-instanton in the bulk [4,44–47]. Hence the wave equation of the scalar in the 
AdS5 fixes the instanton dynamics on the boundary. Importantly the wave equation for the S-wave can be rescaled so 
that it is described by a single dimensionless parameter λ3k2/u2 where k is the longitudinal momentum [43]. It leads us 
to the scaling behavior ρ ∼ 1/k ∼ √

λ3/u of the size ρ of the instanton corresponding to the D-instanton located at u. 
Similar scaling, with the dimensionless parameter λpk2/u(5−p), would be obtained in other extremal Dp-brane cases 
too. However the metric of the confinement geometry (2.1) involves the additional factor f = 1 − (u0/u)3 and the scaled 
wave equation depends on both λ4k2/u and λ4k2/u0. Thus we obtain two energy scales 

√
u/L4λYM and 

√
u0/L4λYM.
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Fig. 3. Brane configurations of the QCD instanton in the T-dual picture: (a) the confinement phase (D1-brane in the 
smeared D3-brane geometry) and (b) the deconfinement phase (D1-brane in the localized D3-brane geometry). In the 
confinement case, the D1-brane can shrink as the D0-brane in the solitonic D4-brane geometry. In the deconfinement 
case, the D1-brane remains a finite volume and the DBI action is always non-zero.

ρpeak ∼ L4 (3.4)

for large N . The location of the peak does not depend on temperature. This would be related to 
the large-N volume independence [50,51]. Remarkably the lattice calculation in the confinement 
phase yields a similar sharp and temperature independent peak in the instanton density [13].

4. Instanton in deconfinement phase

To investigate the thermodynamics of QCD at high temperature through holography, we need 
to take the T-dual along the Euclidean time circle as argued in Section 2. Then the brane config-
uration (3.1) is mapped to the IIB frame:

(0′) 1 2 3 (4) 5 6 7 8 9
N D3-branes − − − −
D1-brane (QCD instanton) − −

(4.1)

Thus we should consider a D1-brane instead of a D0-brane to study the dynamics of the QCD 
instanton.

At T < Tc , the stable geometry in the IIB frame is the uniformly smeared D3-branes, which is 
the T-dual of the solitonic D4-brane geometry (2.1), and the instanton is described by a D1-brane 
on this geometry. (See Fig. 3(a).) Since the T-duality retains the values of the classical action, the 
results in the confinement phase discussed in the previous section remain the same.

At T > Tc, the stable geometry is given by the localized D3-branes. We study the dynamics 
of the D1-brane on this geometry by using the probe approximation.

4.1. Geometry of localized D3-branes on a circle

First we explain the details of the localized solitonic D3-brane solution, which corresponds to 
the deconfinement phase. In this geometry, the D3-branes are localized on t ′-cycle, where t ′ is 
the Euclidean time direction in the IIB frame. We set the location of their center of mass to be 
t ′ = 0. Then because of the periodicity t ′ = t ′ + β ′ (β ′ = 4π2T ), their mirror images sit around 
t ′ = nβ ′ (n = ±1, ±2, . . .). Since the D3-branes and their mirrors are gravitationally interacting, 
each “horizon” is stretched along t ′-direction, and the spherical symmetry is broken. Because it 
is difficult to treat this effect exactly, we use an approximation which is justified at T/TGL � 1, 
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where the interaction becomes weak. In particular, at the leading order of this expansion, we can 
treat the horizon spherically symmetric, and we do not consider higher order corrections in this 
paper for simplicity.6

Although such localized solitonic solutions have not been investigated well, localized black 
brane geometries, which are just the double Wick rotation of the solitonic brane geometries, have 
been studied very actively in the context of the Gregory–Laflamme instability, and we can borrow 
the results. We consider the wick rotation of the black D3-brane localized on S1-circle [22,23], 
and then, the metric takes the following form

ds2 = H−1/2

[
3∑

i=0

dx2
i + f dx2

4

]
+ H 1/2

[
A

f
dR2 + A

Kd−2
dv2 + KR2d�2

4

]
, (4.2)

where

f = 1 − R3
0

R3
, (4.3)

and A and K are functions of R and v. Here, x4 is not the Euclidean time direction, but that for 
S1

L4
as in the IIA frame. The Euclidean time coordinate, t ′, is included in the (R, v)-plane.

In order to simplify the analysis, we consider two regions: asymptotic region and near region 
[22,23,52].7 In the asymptotic region (i.e. u � uH or t ′ � uH ), effects of the black hole can be 
calculated by solving linearized equations, and then, the metric is given by

ds2 = α′
[
H−1/2

(
3∑

i=1

dx2
i + (1 + 2
)dx2

4

)
+ H 1/2(1 − 1

2

)
(
du2 + dt ′ 2 + u2d�2

4

)]
,

H =
∑
n

2λ5/β

(u2 + (t ′ − nβ ′)2)2
, eφ = λ5

2πNβ
,


 = −u4
H

2

∑
n

(
1

u2 + (t ′ − nβ ′)2

)2

, uH =√2λ5T
π

2L4
, β ′ = (2π)2

β
= (2π)2T .

(4.4)

Note that mirrors contribute to the metric. In the near region (i.e. u, t ′ ∼ uH ), the effect of the 
black hole becomes much larger than that of the mirror images. In this limit, the metric is given 
by

ds2 = α′

⎡
⎢⎣H−1/2

⎛
⎜⎝ 3∑

i=1

dx2
i +

⎛
⎝1 − r4

0
r4

1 + r4
0

r4

⎞
⎠

2

dx2
4

⎞
⎟⎠+ H 1/2

(
1 + r4

0

r4

)(
dr2 + r2d�2

5

)⎤⎥⎦ ,

H = 2λ5/β

r4

(
1 + r4

0

r4

)−2

, r0 = uH√
2

= π
√

λ5T

2L4
, eφ = λ5

2πNβ
, (4.5)

6 Although this approximation is valid only for high temperature T/Tc � 1, the qualitative properties of the localized 
D3-brane would not be changed even around Tc as indicated in the numerical calculation of the localized black holes 
[33].

7 In this paper, we use the approximated form for localized neutral black holes in [52]. It is straightforward to obtain 
the geometry for D3-branes from that for the neutral black holes [22,23].
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where we have defined the coordinate r such that it approaches to the Newtonian gauge as r � r0.
In the following, we introduce a midpoint r1, and treat r < r1 and r > r1 as near and asymp-

totic regions, respectively.

4.2. The D1-brane in the asymptotic region

We first consider a D1-brane located in the asymptotic region where the background metric 
is approximated by (4.4). By regarding the brane configuration (4.1) and the symmetry of the 
background geometry, the D1-brane will be embedded in t ′, x4 and u space. We take (t ′, x4) as 
the world volume coordinates on the D1-brane, and then the induced metric is given by

ds2
D1 = α′

[
H−1/2(1 + 2
)dx2

4 + H 1/2
(

1 − 1

2



)(
1 +

(
dU(t ′)

dt ′

)2
)

dt ′ 2

]
. (4.6)

Then the DBI action in the asymptotic region becomes

SD1 = 1

(2π)α′

(2π)2
β∫

0

dt ′
L4∫

0

dx4e
−φ
√

detgD1

= NβL4

λ5

(2π)2
β∫

0

dt ′
(

1 + 3

4



)√
1 +

(
dU(t ′)

dt ′

)2

(u � β ′ � uH ). (4.7)

Since t ′ dependence of 
 can be neglected for large u, we approximate that U(t ′) is constant. 
Then we obtain

SD1 = 8π2N

λYM
− N

3π5

26

λYMT

u3L2
4

+ · · · (4.8)

The second term indicates that the D1-brane is attracted toward the D3-branes (u = 0). This 
is similar to the confinement geometry case (3.2), although the potential is now proportional 
to temperature. Around T ∼ Tc, this term becomes ∼ Nu3

0/λYMu3 which is the same order to 
the attractive potential in the confinement phase (3.2) at large u, and it becomes stronger as 
temperature increases.

This result is valid only for u � uH and the approximation becomes worse as u approaches 
to uH . At u ∼ uH , (4.8) behaves as

SD1 − 8π2N

λYM
∼ − N

λYM

√
Tc

T
, (4.9)

and for u < uH the above discussion will completely break down.

4.3. The D1-brane near D3-branes

Since the D1-brane is attracted toward the D3-branes, the D1-brane would be stabilized at 
u = 0 and would stretch between the D3-branes and their mirror image along the compact t ′
circle as depicted in (b) of Fig. 3. In Appendix A, we demonstrate that the stable classical solution 
of the DBI action is given by this configuration indeed.
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Note that the hypersurface at u = 0 of the localized D3-brane geometry has a topology of 
S2 × R3 × S4, and the stable D1-brane wraps on this S2. On the other hand, the D1-brane in the 
asymptotic region (u � uH ) winds t ′- and x4-cycles which compose a topology of T 2. Thus the 
topology of this D1-brane differs from that of the stable D1-brane at u = 0 which winds S2. This 
is because the stable D1-brane reaches the “horizon” of the D3-brane where the x4-direction 
shrinks. It indicates that the D1-brane in the asymptotic region cannot continue to the stable 
D1-brane at u = 0 smoothly. When the D1-brane reaches the “horizon,” the topology changes. 
We will later see that the D1-brane in the asymptotic region describes a small instanton, and it 
means that the small instanton does not smoothly continue to the stable instanton.

Let us compute the value of the DBI action for the stable D1-brane at u = 0.8 Near the 
D3-branes or their mirror image, the metric can be approximated by that for the near region 
(4.5). However, around the middle between the D3-branes and their mirror, the metric cannot 
be described by that for the near region but should be approximated by that for the asymptotic 
region (4.4).

To evaluate the DBI action for the stable D1-brane at u = 0, it is convenient to rewrite the 
metric (4.4) and (4.5) in the following combined expression:

ds2 = α′
[
H−1/2

(
3∑

i=1

dx2
i + f4dx2

4

)
+ H 1/2fr

(
dr2 + r2d�2

5

)]
, (4.10)

where f4, fr and H are functions of r and one of the angular coordinates of S5, which are related 
to u and t ′. In the asymptotic region, they approach to

f4 = 1 + 2
, fr = 1 − 1

2

, H =

∑
n

2λ5/β

(u2 + (t ′ − nβ ′)2)2
, (4.11)

with r2 = u2 + t ′ 2. In the near region, the geometry has spherical symmetry on S5 at the leading 
order and they become

f4 =
⎛
⎝1 − r4

0
r4

1 + r4
0

r4

⎞
⎠

2

, fr = 1 + r4
0

r4
, H = 2λ5/β

r4

(
1 + r4

0

r4

)−2

, (4.12)

as is shown in (4.4) and (4.5).
In this metric, u = 0 corresponds to a fixed direction in S5 and r can be chosen to be identified 

to t ′ when u = 0. Then, the induced metric on the D1-brane at u = 0 is expressed as

ds2
D1 = α′ [H−1/2f4dx2

4 + H 1/2fr(t
′)dt ′ 2

]
, (4.13)

and the DBI action is given by

SD1 = 2
Nβ

λ5

β ′/2∫
r0

dt ′
L4∫

0

dx4
√

f4fr . (4.14)

8 If we could calculate the value of the DBI action for the appropriate configuration of the D1-brane corresponding to 
the QCD instanton with size ρ, we would obtain the potential for ρ as we did for the solitonic D4-brane background in 
Section 3. Since the localized D3-brane does not have the isometry along t ′-cycle, it is difficult to specify the configura-
tion for a specific size of the instanton. For this reason, we calculate the action only for the stable classical solution. We 
will discuss a related issue in Section 4.4.
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In order to calculate this action, we introduce a mid-point r1 and divide the t ′-integration into 
two parts, that for the asymptotic region and that for the near region:

SD1 = Snear + Sasymp . (4.15)

We will soon see that the final result is independent of r1.
The integration for the near region can be calculated as

Snear = 2
NβL4

λ5

r1∫
r0

dt ′
1 − r4

0
t ′ 4√

1 + r4
0

t ′ 4

= 2
NβL4r0

λ5

(
−√

2 + r1

r0
+O

((
r0

r1

)3
))

. (4.16)

Here, we are assuming r0 � β ′, and hence, we can take r1 � r0. In the asymptotic region, we 
can neglect 
 since it gives contributions at O(r4

0 ), and hence the DBI action can be calculated 
as

Sasymp = 2NβL4

λ5

β ′/2∫
r1

dt ′ +O(r3
0 ) = NβL4

λ5

(
β ′ − 2r1 +O(r3

0 )
)

. (4.17)

By summing these two results, we obtain

SD1 = NβL4

λ5

(
β ′ − 23/2r0 +O(r3

0 )
)

(4.18)

which does not depend on r1. By using β ′ = (2π)2T , we finally obtain

SD1 = 8π2N

λYM

(
1 − 1

4π

√
λYM

L4T

)
= 8π2N

λYM

(
1 − 37/2

211/2π

√
Tc

T

)
. (4.19)

Thus the DBI action is finite and the topological fluctuation is exponentially suppressed at large 
N . 9

Note that the value of the action (4.19) for the stable D1-brane at u = 0 is the same order to 
(4.9) for u ∼ uH which is extrapolated from the DBI action (4.8) for large u. It would indicate 
that the potential (4.8) at large u continues to the value (4.19). Recall that the topologies of the 
D1-brane at large u and u = 0 are different, and the topology change occurs when the D1-brane 
reaches the “horizon” of the soliton. Since the value of the classical action is related to the area 
of the D1-brane, it would be continuous through the topology change. However, its (higher) 
derivative with respect to some deformation parameters of the D1-brane may not be continuous.

4.4. Size of instantons in the deconfinement phase

We have calculated the DBI action of the D1-branes. Now we argue the relation between the 
size ρ of the QCD instantons and the radial location u of the D1-branes, as we have done for the 

9 If we use the dilute gas approximation, we obtain χt ∝ e−SD1 in the localized D3-brane geometry where χt is the 
topological susceptibility.



M. Hanada et al. / Nuclear Physics B 899 (2015) 631–650 643
confinement phase in Section 3. The relation is more complicated than that for the confinement 
geometry (2.1), since we have taken the T-dual on the temporal circle and the energy in the IIA 
frame would appear in an unusual manner. Furthermore, the metric can analytically be expressed 
only by a couple of the approximated forms for two patches.

Fortunately the asymptotic metric (4.4) has an approximate isometry along the temporal circle 
if u is sufficiently large, and we can consider the IIA frame by taking the T-dual again. There 
the typical energy scale is 

√
u/L4λYM for the D1-brane which is located at u. This is the same 

scale to that of the confinement geometry, since the localized D3-brane geometry (4.4) asymptot-
ically approaches to the smeared D3-brane geometry [1], which is the T-dual of the confinement 
geometry (2.1).

For the near D3-brane metric (4.5), the isometry along the temporal circle is broken. Hence 
the T-dual picture in the IIA side is not clear and it is hard to see the relation. If we con-
sider only the near region, there typical energy scales would be naively r/

√
λYML4T and 

rH /
√

λYML4T ∼ 1/L4 for the D1-brane located at r . However we need to consider the con-
nection to the asymptotic region, where the aforementioned different scalings arise, to estimate 
the energy of the gauge theory on the boundary. (See footnote 5 and [43].) Furthermore, the 
D1-brane for the stable configuration at u = 0 is stretched along r direction, and it makes the 
situation more complicated.

However, for small instantons the contribution of the near region would be irrelevant and the 
asymptotic metric (4.4) would dominate for obtaining the relation to the instanton size. Then it 
would be possible that the ρ–u relation (3.3) in the confinement geometry holds approximately 
even in the deconfinement phase. Under this assumption, the DBI action (4.8) is rewritten as

SD1 − 8π2N

λYM
∼ −N

T T 5
c ρ6

λ7
YM

+ · · · (4.20)

The value of this action is larger for smaller ρ and it suggests that the small size instanton would 
be suppressed.

For the stable D1-brane at u = 0, we cannot estimate the instanton size because of the diffi-
culties mentioned above. However the distance between the D1-brane at u = 0 and the boundary 
(u = ∞) is finite, which implies that the instanton size for the D1-brane at u = 0 would be finite. 
We presume that this corresponds to the largest instanton in QCD and a larger instanton is not 
allowed. Thus the instanton density would have a sharp peak at this value of ρ at large N .

Although we cannot calculate this largest size, we can estimate the lower bound for this size 
by using the relation (3.3) in the asymptotic region and substituting u = uH ,

ρ ∼
√

λYML4

uH

∼
(

λYML3
4

T

) 1
4

. (4.21)

Note that this lower bound of the peak size (4.21) increases as T decrease and reaches ρ ∼ L4

around T ∼ Tc, which is the same order to the peak size of the instanton in the confinement 
phase (3.4).10

10 Recall that the value of the DBI action at u ∼ uH (4.9) obtained from the potential (4.8) for large u is the same order 
to the DBI action at u = 0 (4.19). Thus, the size (4.21) obtained from the relation (3.3) at u ∼ uH provides the order of 
the largest size of the instanton (the D1-brane at u = 0), if it has a similar property.
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5. θ -vacuum and topological susceptibility

We have studied the instantons in the deconfinement phase. The results show that the instan-
ton density has the sharp peak at a finite instanton size but the energy at this size is still finite. 
This implies that the topological fluctuation would be suppressed in the deconfinement phase. 
On the other hand, the zero energy of the instantons in the confinement phase implies the large 
fluctuation of the topological charge. To confirm this picture, we investigate the instanton ef-
fects in θ -vacuum and estimate the topological susceptibility χt , which is defined by the second 
derivative of the free energy with respect to θ parameter:

χt ≡ d2F

dθ2
. (5.1)

We show that the topological susceptibility is indeed suppressed in the localized D3-brane ge-
ometry consistently with the finite value of the DBI action.11

We first recall the topological charge at low temperature [9,11]. The confinement phase cor-
responds to the solitonic D4-brane geometry, and the instanton is described by the (Euclidean) 
D0-brane wrapped on the x4-direction. Thus the topological charge corresponds to the “RR-
charge” and can be estimated from the configuration of the RR 1-form C1. The parameter θ , 
which is the chemical potential of the instanton, corresponds to the boundary condition of C1:

θ =
∫

S1
L4

C1 , (5.2)

where integration is over S1
L4

, which is x4-direction at the boundary u → ∞. In the case of the 
solitonic D4-brane geometry, S1

L4
is the boundary of a disk D. By using the Stokes theorem, it 

can be written in terms of the field strength F2 = dC1:

θ =
∫
D

F2 . (5.3)

This implies that the field strength is proportional to θ . Then, the classical action for the bulk 
RR-field is estimated as

S ∼
∫

F 2 ∝ θ2 . (5.4)

Therefore, the free energy has finite quadratic term of θ , indicating the topological susceptibility 
χt is finite. Thus the fluctuation of the topological charge is large [9].

Now, we turn to the localized D3-brane geometry. In this case, the instanton corresponds to 
the D1-brane which is wrapped on the torus T 2 of the (x4, t ′)-plane. The parameter θ is related 
to the boundary condition of the RR 2-form C2:

θ =
∫
T 2

C2 (5.5)

where the integration is performed at the boundary u → ∞. In order to see the contributions of 
this boundary condition to the free energy, we consider the Stokes theorem:

11 For lattice studies, see e.g. [54–56].
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∫
∂M

C2 =
∫
M

F3 (5.6)

where F3 is the field strength associated to C2 and M is the three-dimensional space of (u, x4, t ′). 
The S1 circle of x4 shrinks to a point at r = r0, which can approximately be expressed in the 
(u, t ′)-coordinates as

u2 + t ′ 2 ∼ r2
0 . (5.7)

Thus the x4-direction can shrink only at |t ′| � r0. The space continues to u = 0 in the other 
region, and connected to the opposite side of S4. Then, the boundary of M consists of two tori, 
T 2+ and T 2− at u = ∞ with opposite angles, and the Stokes theorem provides us with∫

M

F3 =
∫
T 2+

C2 −
∫
T 2−

C2 , (5.8)

where the minus sign in the last term comes from the difference of the orientation for two tori. 
The 2-form field C2 takes the same value on T 2+ and T 2− since they are the opposite points on 
S4 and we assume that the solution has the spherical symmetry. This implies cancellation in the 
r.h.s., and hence, the field strength is not constrained by θ . Thus the topological susceptibility χt

vanishes and the fluctuation is suppressed as we expected.12

6. Continuous transition of topological fluctuation at GWW point

As we have shown in Section 4, the DBI action of the D1-brane in the localized solitonic 
D3-brane geometry remains finite and the topological charge fluctuation is exponentially sup-
pressed even at the critical temperature (2.6). This is not surprising since the confinement/decon-
finement transition (GL transition) is of first order.

As in Fig. 1, the localized D3-brane branch is connected to the confinement geometry (uni-
formly smeared D3-brane) through the non-uniformly smeared D3-brane geometry. By tracking 
this, we can see how the physics in the deconfinement phase changes to that in the confine-
ment phase. Then an important question is where and how the suppression of the topological 
fluctuation in the localized D3-brane geometry changes to the large fluctuation in the confine-
ment geometry. We propose that it will occur at the merger point where the localized solitonic 
D3-brane geometry merges to the non-uniformly smeared solitonic D3-brane geometry and the 
topology changes. Since there is no “gap” along t ′-circle in the non-uniform D3-brane geometry 
similar to the uniform D3-brane geometry, the DBI action of the D1-brane in this geometry can 

12 The black D4-brane geometry also shows χt = 0 [11], even though it does not provide the correct instanton density. 
In this case, (u, x4) plane is terminated at the horizon, and hence it has the topology of the cylinder. The parameter θ is 
given in terms of the RR 1-form by

θ =
∫
C

F2 −
∫

S1
H

C1 , (5.9)

where S1
H

is the x4 circle at the horizon. Now F2 can be zero by adjusting the second term according to θ , and then, 
the topological susceptibility χt is zero. We can explain χt = 0 in a similar fashion even in the case of the localized 
D3-branes. If we restrict (u, x4, t ′) plane to u ≥ 0 by using the spherical symmetry on S4, the integration of C2 at u = 0
appears instead of the last term in (5.8). It can be adjusted such that it cancels the integration of C2 at the boundary.
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be zero. On the other hand in the localized D3-brane geometry, due to the existence of the gap, 
the DBI action is finite. As this gap is becoming smaller, the DBI action will be smaller and 
would reach zero at the merger point. Therefore the continuous transition would occur at the 
merger point.

This is also consistent with the analysis in the θ -vacuum. If the geometry has only single 
boundary, the field strength of the RR-field is constrained by θ and the topological susceptibility 
becomes finite. In the localized D3-brane geometry, x4-direction does not shrink in a specific 
region and then, the 3-form flux reach to the opposite side of S4. This effectively plays the role of 
different two boundaries. However, the “gap” would close at the merger point, and then, the flux 
cannot pass to the opposite side. This implies that the topological fluctuation is not suppressed at 
the merger point.13

Recall that the merger point will correspond to the Gross–Witten–Wadia type transition 
point in the gauge theory [16–18], where the topology of the eigenvalue distribution of the 
Polyakov loop operator changes. It indicates that the topology of the eigenvalue distribution 
of the Polyakov loop is crucial for the topological fluctuation in QCD. It sounds reasonable since 
both the Polyakov loop and instantons are related to the configurations of the gauge fields.

On the other hand, the translation symmetry along t ′-circle, which is broken in both the 
localized D3-brane and the non-uniformly smeared D3-brane geometry, is not critical for the 
topological fluctuation. This translation symmetry correspond to the ZN symmetry, which char-
acterizes the confinement [1], and we predict that this symmetry is not directly connected to the 
large fluctuation of the topological charge.
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Fig. 4. Schematic plots of the D1-brane in (u, t ′) space. The red lines describe the D1-brane which obeys the equation of 
motion (A.4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Appendix A. Stable configuration of D1-brane in the localized D3-brane geometry

In Section 4.3, we calculated the DBI action for the stable configuration of the D1-brane, in 
which the D1-brane is stretched between the D3-branes and their mirror images at u = 0. Here, 
we argue that this configuration is the only stable configuration of the D1-brane which wraps on 
t ′- and x4-directions.

We consider the D1-brane which is embedded in the three-dimensional space of (u, t ′, x4). To 
investigate the D1-brane in this space, we express the background metric (4.10) as

ds2 = α′
[
H−1/2

(
3∑

i=1

dx2
i + f4dx2

4

)
+ H 1/2fr

(
dr2 + r2dθ2 + r2 sin2 θd�2

4

)]
, (A.1)

and choose the coordinate θ so that the three-dimensional space of (u, t ′, x4) is parameterized 
by (r, θ, x4), and θ = 0 (and θ = π ) corresponds to u = 0. Then the D1-brane lies on (r, θ, x4)

space and the induced metric on it is given by

ds2 = α′ [H−1/2f4dx2
4 + H 1/2fr

(
1 + r2θ ′ 2

)
dr2

]
, (A.2)

where θ is a function of r and θ ′ = dθ/dr . The DBI action can be expressed as

SD1 = 2
Nβ

λ5

β ′/2∫
rs

dr

L4∫
0

dx4

√
f4fr(1 + r2θ ′ 2) . (A.3)

Since θ dependence of f4 and fr are negligible if r0 � β ′ as we argued in Section 4.3, we can 
solve the equation of motion for θ as

θ ′ = c1

r

√
r2f4fr − c2

1

, (A.4)

where c1 is a constant.
If c1 = 0, θ becomes a constant, and the solution describes the D1-brane which is orthogonal 

to the “horizon” at r = r0 and extends straightly to outside with a fixed angle θ0. (See Fig. 4.) 
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If we choose θ = 0 (and π ) so that the D1-brane lies along u = 0, we obtain the stable solution 
which we investigated in Section 4.3.

If c1 �= 0, the brane is curved in the (r, θ)-plane. For small c1 (� r0), the solution behaves 
around r = r0 as

θ = θ0 +
√

c1

21/4r0

(√
r − rc + · · ·) , rc = r0 + 1

23/2
c1 +O(c2

1) (A.5)

This solution describes the D1-brane which does not reach to r = r0, but turns at r = rc and goes 
back to the outside of the near region. (See Fig. 4.) Since (A.4) indicates θ ′ → 0 as r → ∞, the 
D1-brane asymptotically extends to angles θ0 ± θ1 as r → ∞ where the asymptotic value θ1 is 
fixed by c1. The solution (A.5) indicates that θ1 will decrease as rc decreases and achieves θ1 = 0
at rc = r0 (c1 = 0). Indeed we can confirm that θ1 approaches to the maximum π/2 as rc → ∞
by solving (A.4) explicitly.

So far we have not considered the periodicity of t ′-cycle, and now we impose it to the solu-
tions. We demand that the solutions are smoothly connected at t ′ = ±β ′/2 which are the middle 
points between the D3-brane and its mirrors. This leads the following boundary conditions:

U(t ′ = ±β ′/2) = U0 ,
dU(t ′)

dt ′

∣∣∣∣
t ′=±β ′/2

= 0 , (A.6)

where we have taken the coordinates (u, t ′) and U(t ′) is the profile of the D1-brane in these 
coordinates. Then we immediately notice that the possible solutions are c1 = 0 with θ = 0 and 
c1 �= 0 with θ0 = π/2 and θ1 = π/2 (rc = ∞) only. These are the constant u solutions at u = 0
and u = ∞ respectively. Thus u = 0 is the only stable solution of the D1-brane in the localized 
D3-brane geometry.

However, the higher order corrections of r0 might be relevant in the intermediate region be-
tween the asymptotic region and near region. Although the D1-brane is approximated by straight 
configuration in the asymptotic region in the above analysis, the higher order correction may 
bend the D1-brane and it might allow other solutions. In order to be a solution which satisfies 
the boundary condition (A.6) with U0 �= 0, it must go toward the D3-brane from t ′ = β ′/2. Let 
us see whether it happens. The DBI action of the D1-brane in the asymptotic region is given by 
(4.7). By assuming U ′ � 1, the equation of motion becomes

d2U(t ′)
dt ′ 2

= 3

4

∂


∂u

∣∣∣∣
u=U(t ′)

(A.7)

We solve this equation around t ′ = β ′/2 with the boundary condition (A.6) and obtain

U(t ′) ∼ U0 + 3

8

∂


∂u

∣∣∣∣ u=U0
t ′=β/2

t ′ 2 + · · · . (A.8)

Since ∂u
 > 0 for u �= 0 from (4.4), the D1-brane goes away from the D3-branes for U0 �= 0. 
Therefore the higher order corrections of r0 does not change the result. Hence the D1-brane 
located at u = 0 is the only stable configuration even if we take into account the corrections 
of r0.

It would be worth comparing with the case of D3–D7 system [53] in which the D7-brane has 
non-trivial stable configurations. In this case, the D7-brane is not straight outside the horizon 
and approaches to U = const. This is because the D7-brane wraps on the S3 and hence tends to 
stay in the region with small radius due to the tension of these directions. On the other hand, the 
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D1-brane does not wrap no cycle other than x4 and t ′ and hence extends straightly in the near 
region.
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