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ABSTRACT 

We develop a graph-theoretic characterization of the generic structure at infinity 
of the transfer matrix of a structured system. We show that the generic structure at 
infinity can be determined by means of algorithms from combinatorial optimization 

based on the max-flow min-cut theorem, and on results concerning minimal-cost 
flows. As an application of the obtained characterization, we propose a structural 
version of two well-known disturbance decoupling problems, and we derive graph- 
theoretic necessary and sufficient conditions for the solvability of each of the two 
problems. 

1. INTRODUCTION 

In the present paper we introduce the generic rank and the generic 
orders of the zeros at infinity, together forming the generic structure at 
infinity, of transfer matrices of a general class of structured linear systems. 
We represent structured systems by means of directed graphs, and we 
develop graph-theoretic characterizations of the generic rank and the generic 
orders of the zeros at infinity of the corresponding transfer matrix. We show 

that the obtained characterizations can be checked by means of well-known 
and efficient algorithms from combinatorial optimization. As an application of 
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the obtained characterization, we propose a structural version of two well- 
known disturbance-decoupling problems, and we derive graph-theoretic nec- 
essary and sufficient conditions for the solvability of each of the two 
problems. 

IIaving briefly sketched the contents of the paper, we now want to make 
clear why the study of structured systems is useful. To do this we may 
consider any well-established control problem, formulated for an appropriate 
linear system. For instance, we may think of the pole assignment problem, 
the disturbance-decoupling problem, or the problem of noninteractin~ con- 
trol (cf. Wonham [24]). 

One of the main ideas behind the present paper is that, before applying 
algorithms that check the solvability of the control problem and that compute 
the corresponding feedback control laws, it may be worthwhile to investigate 
if the system has any structure. If so, it may then be useful to try to 
determine, from this structure, whether or not in some structural sense the 
control problem is solvable. Of course, it is therefore required that we have a 
characterization of the structural solvability of the control problem in terms 
of the structure of the system. Furthermore, it is clear that it might be useful 
to have an algorithm by which we can verify the characterization in an 
efficient way. Finally, it should be clear that when we can derive such a 
characterization and algorithm, we obtain a powerful tool which exploits the 
structure present in the system and which, in addition to the existing 
algorithms, helps us to decide about the solvability of the control problem. 

In the present paper we are motivated by the problem of disturbance 
decoupling by state feedback, well known from the geometric approach to 
control theory (cf. Wonham 1241). We recall that the solvability of the 
disturb~~e-d~oupling problem is equivalent to the fact that certain elemen- 
tary transfer matrices have the same rank and have zeros at infinity of the 
same orders. Since we represent structured systems by means of graphs, it is 
therefore clear that our first interest lies in the development of a graph-theo- 
retic characterization of the rank and the orders of the zeros at infinity of the 
transfer matrix of a structured system. 

The outline of the present paper is as follows. In Section 2 we introduce 
structured systems and describe a way in which they can be parametrized. In 
Section 3 we introduce the rank and the orders of the zeros at infinity of 
proper rational matrices. Furthermore, we state a result on the solvability of 
proper rational matrix equations over the proper rational matrices. In Section 
4 we introduce the generic rank and the generic orders of the zeros at 
infinity of the transfer matrix of a structured system. In Section 5 we 
introduce the graphs corresponding to the structured systems, and we recall 
some important notions and results from graph theory. 
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In Section 6 we state our main results. We first prove that the generic 
rank of the transfer matrix of a structured system is equal to the largest 
number of disjoint paths from the set of input vertices to the set of output 
vertices in the graph corresponding to the structured system. If this rank 
equals r, we next prove that the generic orders of the zeros at infinity can be 
determined by computing, for i from 1 to r, the smallest number of state 
vertices appearing in any i-tuple of disjoint paths from the set of input 
vertices to the set of output vertices. 

In Section 7 we discuss some of the computational aspects of the main 
results. We indicate that for a given structured system the generic rank and 
the generic orders of the zeros at infinity can be computed using algorithms 
from combinatorial optimization based on the max-flow mm-cut theorem and 
on results on minimal-cost flows. In Section 8 we propose a structural version 
of the disturbance-decoupling problem and the so-called modified distur- 
bance-decoupling problem, and we apply our main results to obtain a 
graph-theoretic characterization for the solvability of each of the two prob- 
lems. In Section 9 we offer some remarks and comments. 

2. STRUCTURED SYSTEMS 

In this section we introduce structured systems, and we describe how 
these systems can be parametrized. Therefore, we consider the finite-dimen- 
sional linear time invariant system 

i(t)=Ax(t)+Bu(t), (l.la) 

y(t) = Cr(t), (l.lb) 

with state x(t) f n;P”, input u(t) E R’“, and output y(t) E Iwp, and with A, B, 
and C real matrices of dimensions n x n, n X m, and p X n, respectively. To 
give an indication of what we mean by structured systems, we assume that 
the system (1.1) is a series interconnection of the following two subsystems: 

where u,(t) = y,(t), u(t)= zsift), and y(t) = y,(t), and all vectors and 
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matrices have appropriate dimensions. After interconnection of the two 
subsystems it follows that 

Az[~;~ IZ]. B=[Bgl], and c=[O Cal. 

The zeros in the above representation of A, B, and C are matrices with 
entries that are fixed zeros. This means that these entries are always zero, no 
matter what the entries are in the matrices A,, B,, C,, A,, B,, and C,. In 
this paper we call such fixed zeros in A, B and C structural zeros. Entries in 
A, B, and C that are not structural zeros we call structural unknowns, and 
we assume that the values of these entries are unknown and are independent 
of each other. 

In this paper we say that a matrix is structured if each of its entries is 
either a structural zero or a structural unknown, and we call a system of the 
type (1.1) a structured system if the matrices A, B, and C are structured. 

Given a structured system of the type (1.11, we denote the number of 
structural unknowns in A, B, and C by k, and we parametrize the set of all 
nominal systems that correspond to the same structured system by a parame- 
ter A E [Wk. To do this, we number the structural unknowns in A, B, and C 
from 1 to k, and we write hi at the i th structural unknown. We denote the 
nominal values of A, B and C at the parameter value A E IWk by A,, B,, and 
C,. Below we give an example of a structured system of the type (1.11, 
together with a possible parametrization. 

EXAMPLE. k = 9, n = 3, m = 2, p = 2; 0 denotes a structural zero, and x 
a structural unknown: 0 A=x [ 

x 0 
0 0 x 0, 1 x 

3. STRUCTURE AT INFINITY 

In the present section we introduce the rank and the orders of the zeros 
at infinity of proper rational matrices. However, we start with a brief 
introduction on rational functions. 
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We call a function a rational function if it can be written as the quotient 
of two pol~omi~s with real coefficients. Given such a representation and 
using the usual notion of degree for nonzero polynomials, we define the 
degree of a nonzero rational function to be the degree of the numerator 
polynomial minus the degree of the denominator polynomial. For rational 
functions identically equal to zero, we define the degree to be - Q). Note that 
polynomials are rational functions and that for polynomials this new notion of 
degree coincides with the usual notion. We call a rational function proper if 
its degree is negative or zero, and strictly proper if its degree is negative. 
This means that, if written as the quotient of two polynomials, a rational 
function is proper if the degree of the numerator polynomial is not larger 
than the degree of the denominator polynomial, and strictly proper if the 
degree of the numerator polynomial is less the degree of the denominator 
polynomial. 

We call a matrix a ~u~~o~l latex if its entries are rational fLlnctions, a 
proper rational matrix if its entries are proper rational fnnctions, and a 
strictly proper rational matrix if its entries are strictly proper rational 
functions. We say that a rational matrix has rank r if there is an ,rth-order 
minor of the matrix that is ~~equaZ to zero, while every r + Ith-order minor 
of the matrix is identically equal to zero. We say that a square proper rational 
matrix is a bicausal rational matrix if the matrix is invertible and if its 
inverse is a proper rational matrix (cf. Hautus and Heymann [lo]). Bicausal 
rational t x t matrices are the units in the ring of proper rational t x t 

matrices. It can be shown that a proper rational matrix is bicausal if and only 
if the determinant of its value at infinity is unequal to zero. Using bicausal 
rational matrices, we can state the following theorem concerning a factoriza- 
tion of proper rational matrices (cf. Descusse and Dion [4], Hautus [8]; also 
compare with the Smith form for polynomial matrices), 

THEOREM 3.1. Given a proper rational matrix T(s), there exists a 
factorization 

T(s)=V(s) rb”’ ; U(s), 
[ I 

t&h U(s) and V(s) bicausal r~tionuZ matrices of suitable d~rne~io~ and 
I’(s) = diag(s+, ~~“2,. , . , s-‘~ 1, where r = rankT(s) and t,, t,, . , ., t, are in- 
tegers that satisfy 0 c t, < t, < 1 * * < t,. 

The integers t,, t,, . . . , t, are known as the orders of the zeros at inanity 
of T(s), and are uniquely determined. We say that two proper rational 
matrices with the same rank also have zeros at infinity of the same orders if 
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the list of the orders of the zeros at infinity for both matrices is the same. 
Using the Cauchy-Binet formula, we can prove the following characterization 
of the orders of the zeros at infinity of a proper rational matrix, where we 
denote mj=X$,,tj for i=I,2 ,..., r (cf. Gantmacher [6, Chapter 6.31, where 
a similar result for polynomial matrices is proved). 

LEMMA 3.2. Let T(s) be a proper rational matrix with a factorization as 
given in Theorem 3.1. Then for any i = 1,2,..., r, every ith-order minor of 
T(s) is a proper rational fiction wife a degree 6 < - mi, and there exists at 
least one &t-order minor of T(s) with a degree 6 such that the equality holds, 
i.e., 6 = - mi. 

Lemma 3.2 implies that the number mi equals the exponent of the 
greatest power of s by which any ith-order minor of the proper rational 
matrix T(s) can be multiplied such that the product remains proper. Clearly, 
we could have used the latter characterization to give an alternative defini- 
tion of the orders of the zeros at infinity in which the use of a factorization of 
a proper rational matrix is avoided. In fact, in the next section, we more or 
less use this aItemative approach to introduce the generic orders of the zeros 
at infinity of the transfer matrix of a structured system. 

We now state a theorem that we need in Section 8 to obtain suitable 
conditions for the solvability of the disturbance decoupling problem and 
the modified disturbance decoupling problem (cf. Emre and Hautus [5], 
Newman [16] and Verghese [21]). 

THEOREM 3.3. Let T(s) and S(s) be proper rat~~l matrices that have 
the sarrz newer of rows. Then there exists a proper rational matrix X(s) of 
suitable dimensions such that T(s)X(s) = S(s) if and only if the rank and the 
sum of the orders of the zeros at infinity of the matrix T(s) and of the 
compound matrix [T(s) S(S)] are the sam.e. 

4. GENERIC STRUCTURE AT INFINITY 

In this section we introduce the generic rank and the generic orders of 
the zeros at infinity of the transfer matrix of a structured system of the type 
(1.11, by giving new meanings to the integers r, ti, and mi for i = 1,2,. . . , r. 
We start with the introduction of the generic rank. 
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Given a structured system of the type (1.11, parametrized by A E I@, we 
denote 

K,(s)=C,(sZ-A,)-‘B,, (4.1) 

and we define 

r=A~yk(rankK,(s)}, R=(A~LQ~lrankK,(s) <r}. (4.2) 

Note that if r = 0, then R =0, where 0 denotes the empty set. 
Following Wonham [24], we call a subset L in I@ an algebraic variety in 

I@ if L can be described as the locus of common zeros of a finite number of 

polynomials rcIi, $a,. . . , rCIt in the indeterminate T = (rl, ra, . . . , ~~1, i.e., L = 

((7,. 72’. . . > Tk)ERkI$'i(T1,T2,...> T~)=O for all i=1,2 ,..., t). We say that 
an algebraic variety L in [Wk is proper if L + [Wk. Now we can state the 
following (cf. van der Woude [25]). 

THEOREM 4.1. R is a proper algebraic variety in [Wk. 

Proof. If r = 0, then R = 0, and R clearly is a proper algebraic variety. 
If r > 0, then using the identity 

(4.3) 

it follows that rank K,(s) = rank M,(s)- n. From the definition of R and our 
notion of rank it is now clear that 

R={h E [Wklevery n+rth order minor of MA(s) is identically equal to zero}. 

Next observe that any minor of the matrix M,(s) is a polynomial in the 
indeterminate s with coefficients that are polynomials in A = (A,, A,, . . . , Ak). 
Furthermore, recall that a polynomial in the indeterminate s is identically 
equal to zero if and only if all its coefficients are zero. Therefore, it follows 
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that R is the locus of common zeros of a finite number of polynomials in A. 
By the definition of r it is clear that R + Rk. So, also if r > 0, the set R is a 
proper algebraic variety in [Wk. n 

The above theorem implies that rank K,(s) = r for almost all A E Rk, 
where “almost all” is to be interpreted as “everywhere except for a proper 
algebraic variety.” Hence, we can think of r as the generic rank of K(s), 
where K(s) formally denotes the transfer matrix of the structured system, i.e. 
K(s) = C(sI - A)-‘& 

By Lemma 3.2 we know that in the unstructured case the orders of the 
zeros at infinity of a transfer matrix are closely related to the degrees of its 
minors. Hence, for the introduction of the generic orders of the zeros at 
infinity of K(s), it seems natural that we first consider a square structured 
system, i.e. m = p, and that we introduce the generic degree of the determi- 
nant of the transfer matrix of such a system. To do this, we consider a square 
structured system of the type (l.l), parametrized by A E Rk, and we assume 
that the generic rank of its transfer matrix is r. 

If m = p = r, we define 

4 = max {degdet K,( s)], Q = {A E Rk(degdet K,(s) < q}, (4.4a) 
hEuP 

and if m = p > r, which means that det K,(s) = 0 for all A E Rk and all s, we 
define 

(J-CO, Q=0. (4.4b) 

In the above, deg stands for degree and det for determinant. Now we can 
state the following. 

THEOREM 4.2. Q is contained in a proper algebraic variety in [Wk. 

Proof. If m = p > r, then Q = 0, and Q clearly is contained in a proper 
algebraic variety. If m = p = r, then it easily follows from (4.3) and (4.4a) 
that 

q+n= max (degdetM,(s)} (>O), 
AE!Rk 

(4.5a) 

and that 

Q={AERkIdegdetM,(s) <q+n} (4.5b) 
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As in the proof of Theorem 4.1, it is clear that det M,(s) is a polynomial in 
the indeterminate s with coefficients that are polynomials in A E Rk. By the 
above description of Q, it is therefore clear that Q is contained in the 
algebraic variety in UP defined as the set of A E Rk for which the coefficient 
of ~4~” in the 4 + nth order polynomial det M,(s) is equal to zero. By the 
definition of 4 it moreover follows that this algebraic variety is proper. So, 
also if m = p = r, the set Q is contained in a proper algebraic variety. n 

Theorem 4.2 implies that for a square structured system of the type (1.11, 
parametrized by A E Rk, we have that if m = p > r, then degdet K,(s) = q = 

--c4 for all A l IWk, and that if m= p = r, then degdet K,(s)= q, with 
- 00 < q < 0, for almost all A E Rk. Hence, for a square structured system of 
the type (l.l), we can think of q as the generic degree of the determinant of 

K(s). 
In the remainder of the present section we return to a general structured 

system of the type (1.11, and we do not assume any more that the system is 
square. Then, using the above, we can introduce the generic orders of the 
zeros at infinity of the transfer matrix K(s). To that end, we note that for 
every A E Rk, any minor of K,(s) corresponds to the determinant of the 
transfer matrix of a square subsystem of the system (1.1) at the parameter 
value A. Therefore, it is clear that we can consider the generic degree of such 
a minor to be the generic degree of the determinant of the transfer matrix of 
the corresponding square structured subsystem. Since there are only a finite 
number of minors of the same order, we can take the maximum of the 
generic degrees of all these minors. We define m, as minus the maximum of 
the generic degrees of all ith-order minors of K(s), where 1~ i < r, with r 

the generic rank of K(s). We can now easily prove that 

mj = - Ay;k (max(deg Kk( s)l K:( ) . s 1s an ith-order minor of Kh( s)}} 

(4.6) 

for i = 1 2 , >..., r, and that O,<m, < m2 < .** <m,. In addition, we can 
prove in the same way as in Theorems 4.1 and 4.2 that the set of parameter 
values A E Rk for which all ith-order minors of K,(s) have degree less than 
- mi is contained in a proper algebraic variety in [Wk. 

Now, in the spirit of Theorem 3.1 and Lemma 3.2, we define for 
i=l,2 , . . . , r the integers ti, given by 

ti = m, -m,_, (4.71 

with m, = 0, to be the generic orders of the teros at infinity of K(s). 
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FIG. 1. 

5. GRAPHS 

In the previous section we introduced the generic rank and the generic 
orders of the zeros at infinity of the transfer matrix K(s). In the next section 
we describe how these notions can be related to the structure of systems of 
the type (1.1). For this purpose, we represent a structured system of the type 
(1.1) by a directed graph. This graph, denoted G(V, E), consists of a vertex 
set V with tr + m + p vertices and an edge set E of k directed edges 
(ordered pairs). The set V is defined as V= U U X U Y, where U= 

{ ui,ua ,..., urn}, X=(x,,x, ,..., x,}, Y=(y,,y, ,..., y,}, and U denotes the 
union. The set E is defined as E =((~~,x~)lb~,~ #O)U{(xj,xi)~ai,j#O}U 
{(Xj, Yi) I Ci,j f O}. H ere, for instance, the ordered pair (uj,xi) represents a 
directed edge from the vertex uj to the vertex xi, and bi, j + 0 means that 
the entry bj, j in the matrix B is a structural unknown entry. U, X, and Y are 
called the sets of input vertices, state vertices, and output vertices, respec- 
tively. In Figure 1 we have depicted the graph G(V, E) corresponding to the 
structured system in the example of Section 2. 

In Section 2 we considered a structured system of the type (1.11, and we 
assumed that the system contained k structural unknowns, numbered from 1 

to k. We parametrized all nominal systems that correspond to the same 
structured system with a parameter A E Rk by writing Ai at the ith struc- 
tural unknown. Using this numbering, we can also number the edges in E 
from 1 to k, and we can introduce the nominal (or weighted) directed graph 
G,(V, E) at the parameter value A E R k by weighting the i th edge of the 
graph G(V, E) by hi. In Figure 2 we have depicted the graph G,(V, E) that 
is obtained from the graph in Figure 1 by weighting the edges in accordance 
to the parametrization described in the example of Section 2. 
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FIG. 2. 

Given the graph G(V, E) [or Gh(V, El], we say that there is a self-loop at 
the vertex u E V if (v,v) E E. We say that there exists a path from the 
vertex v to the vertex v’ if there are vertices wi, wa, . . . , w, in V such that 
v=w 1’ or= w,, and (w~,w~+~)EE for i=I,2 ,..., 7-l. If, in addition, 
2, E u and o’ E Y, we say that there is a path from U to Y. If we have a path 
from o to u’ with u = o’, we say that the path is c2osed. If a path consists of 
distinct vertices, we say that the path is simple, and if a path is both simple 
and closed, we call it a cycle. Clearly, a self-loop is a cycle. We say that an 
I-tuple of paths (cycles) in G(V, E) are disjoint if each pair of paths (cycles) 
of the I-tuple have no vertices in common. 

The weighted graph G,(V, E) can be considered to be a special case of a 
so-called Coates gruph associated to a real square matrix (cf. Chen [2]). For a 
real nominal T x T matrix M that has I nonzero entries, the associated 
Coates graph, denoted G,, is a graph with a vertex set V, of r vertices and 
an edge set E, of 2 directed and weighted edges. If the vertex set is given 
by V,=(v,,..., v,}, then the edge set E, consists of edges weighted mi,j 
and directed from vj to oi precisely if mi,j # 0, i.e., E, = {(uj, vi)1 mi,j # O}. 

We define paths, cycles, disjoint paths, and disjoint cycles for Coates 
graphs in the same way as for G(V, E), and we define a cycle family for a 
Coates graph to be a number of disjoint cycles such that each vertex of the 
graph belongs to precisely one cycle, in which case we say that the cycle 
family spans the graph. We define the weight of a cycle family to be the 
product of the weights of the edges that constitute the cycle family. If Cy 
denotes a cycle family, we denote its weight by W(Cy), and we denote by 
n(Cy) the total number of disjoint cycles the cycle family consists of. Now we 
can state the following classical result (cf. Chen [2, Theorem 3.111, where we 
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FIG. 3. 

denote by Cf the set of all cycle families in the Coates graph G, associated 
to the T x 7 matrix M, and where, as before, det stands for determinant. 

THEOREM 5.1. det M = ( - 1)’ c (- l)“‘cy’W(Cy). 
CYECf 

As an example, we have depicted in Figure 3 the Coates graph G,*(,, 
corresponding to the square matrix M,(O) defined in (4.11, with A,, B,, and 
C, as described in the example of Section 2. 

In the remainder of the present section we consider a structured system 
of the type (l.l), parametrized by A E R’ k, for which the number of inputs 
and the number of outputs are equal, i.e., m = p. Hence, the system is square 
and also the nominal matrix M,(O) is square. We now can obtain the Coates 

graph GM*(,) corresponding to the matrix M,(O) directly from the graph 
G,(V, E). We can do this by identifying in the vertex set V the ith input 
vertex with the ith output vertex, for i = 1,2,. . . , m. We then obtain a graph 
with a vertex set consisting of n + m vertices, and with a weighted edge set 
similar to EMACoj. Conversely, if we have a Coates graph GM,(,,) with 
V MA(O) = (0 I,...,v,,2)“+1,...,v,+,“}, we can obtain the graph G,,(V, E) by 
replacing each vertex vn + i with two vertices ui and yi for i = 1,2,. . . , m, and 
by replacing each edge of the form (D,+~, v) E EMACoj with the edge (ui, v), 
and each edge of the form (n’, D,+~) E EMACOj with the edge (u’, yi), where 
i=l,2 , . . . ,m. We then obtain a graph with a vertex set consisting of 
n + m + m vertices and with an edge set similar to E. 

Furthermore, with the vertex set of the Coates graph GMAco, given as 

V&(O) = Ie,, 02,. . . , vn+,l, we can make the following observation. If there 
exists a cycle in GnrAcoj that contains exactly /_L vertices of the set 
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iv ,,+l,...,v,,+,J th en there exists in G,(V, E) [and also in G(V, E)] a 
CL-tuple of disjoint paths from U to Y. To see this, we may assume without 
loss of generality that the /_L vertices of the cycle in IV,+ 1,. . . , v, +,,,I are in 
fact the vertices v,+~,v,+~, . . . ,v,,+~, and that in the cycle Vi+” precedes 
vi+,,+r for i= 1,2,...,~ -I, and that v,+& precedes v,+r. Here we say that 
the vertex v precedes the vertex v’ if there is a part of the cycle that 
constitutes a simple path from v to v’ that besides v and v’ does not contain 
any other vertex of the set {v,+ r, v, +a,, . . , v,+,). Then it easily follows that 
in the graph G,(V, E) the paths from the vertex ui to the vertex yi+r, for 
i=l,2 , . . . , p - 1, together with the path from the vertex uIL to the vertex yi, 
constitute a p-tuple of disjoint paths in G,(V, E) from U to Y. Using the 
same reasoning, it follows that if there is a cycle family in GM,(0) that 
contains (necessarily) all the vertices of the set {v,, r, . . . , v, +J, then there is 
an m-tuple of disjoint paths in G,(V, E) [and in G(V, E)] from U to Y. 

6. MAIN RESULTS 

In this section we state the main results of this paper. The results 
describe relations between the graph G(V, E) associated to a structured 
system of type (1.11, and the generic rank and the generic orders of the zeros 
at infinity of the corresponding transfer matrix. We recall that X, U, and Y 
denote the sets of state vertices, input vertices, and output vertices, respec- 
tively, of the graph G(V, E). As a first result we state the following theorem, 
in which we use r as defined in (4.2) (cf. van der Woude [25]). 

THEOREM 6.1. The largest number of disjoint paths in G(V, E) from U to 
Y is equal to r. 

Proof. We start the proof by considering the case that r > 0. By the 
definition of r and the notion of rank introduced in Section 3, it follows that 
there is a parameter h E Rk for which there is an rth-order minor of K,(s) 
unequal to zero. Without loss of generality we may assume that this rth-order 
minor is det C-$sZ - Ax)-‘Bf, where B; denotes the first r columns of 
B,, Ci denotes the first r rows of C,, and we have substituted h = h. Since 
the minor is nonzero, there exists a real number S such that 
det C$?cr - A%)-‘Bf # 0 and det(Ax - F1) # 0. Using (4.31, it now follows 
that det M;(s) # 0, where 

M;(s) = 
AA-s1 B; 

[ 1 c; 0’ 
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By Theorem 5.1 this implies that in the Coates graph associated to the 
nominal matrix M;(S) there is at least one spanning cycle family. Now we let 
A, 8, and c^ be structured matrices for which Ai - 81, Bi, and Ci, respec- 
tively, can occur as the nominal values. Clearly, we can take A = A + E, 
8 = B’, and c^ = C’, where B’ denotes the first r columns of B, C’ denotes 
the first r rows of C, and E denotes a structured matrix with only structural 
unknowns on its diagonal. By the remarks at the end of the previous section 
it now follows that in the graph of the structured system described by A, B”, L1 
and C there exists an r-tuple of disjoint paths from the set of input vertices 
to the set of output vertices. Since in the context of disjoint paths the 
self-loops introduced by E are of no interest, it follows that in the graph of 
the structured system described by A, B’, and C’ there are r disjoint paths 
from the set of input vertices to the set of output vertices. Because B’ is a 
part of 23 and C’ is a part of C, it now follows that n, > r > 0, where we 
have denoted by n+ the largest number of disjoint paths in G(V, E) from U 
to Y. The latter also implies that if n + = 0, which means that there is no path 
in G(V, E) from U to Y, then r = 0. 

Next we consider the case that we have an n+-tuple of disjoint paths in 
G(V, E) and in G,(V, E) horn U to Y with n, > 0, where n+ is as defined 
above, and we concentrate on the subgraph built up from the vertices and 
edges in the n+-tuple of paths only. It is easy to see that this subgraph 
corresponds to n+ totally decoupled structured single-input single-output 
systems that each have a transfer function with a generic rank equal to 1. The 
n, subsystems can be obtained from the original system by specifying that 
some of the structural unknowns are in fact zero. This comes down to saying 
that the parameter A, which parametrizes Gh(V, E) and also the system (1.11, 
is restricted to some proper subset L in Rk. Therefore, since L c Rk, it is 
clear that 0 < n+ = maxh E L rank K,(s) < r. This also implies that if r = 0, 
meaning that K,(s) = 0 for all A E Rk and all s, then n, = 0. 

The proof of the present theorem can now be completed by combining all 
the obtained relations between r and n+. n 

From Section 4 it is immediate that Theorem 6.1 implies that the generic 
rank of K(s) is equal to the largest number of disjoint paths in G(V, E) from 
U to Y. Hence, we have obtained a graph-theoretic characterization of the 
generic rank of the transfer matrix K(s). To obtain a graph-theoretic charac- 
terization of the generic orders of the zeros at infinity of the transfer matrix 
K(s), we need the following theorem, formulated for a square structured 
system with a transfer matrix that has a generic rank r equal to m = p. In the 
theorem we use 9 as defined in (4.4a). 

THEOREM 6.2. of m = p = I-, then the smallest number of state vertices in 
any r-tuple of disjoint path-s in G(V, E) from U to Y is equal to - 9. 
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Proof. By the definition (4.4a) of q, there exists a h E Rk for which 
&g&t Kx( s) = q with - 00 < q < 0. Then, from (4.3) it follows that 

degdet MI(s) = n + q with 0 < n + q < n. Hence, det M;i(s) is equal to an 
n + q&order polynomial in the indeterminate s. By Theorem 5.1 this means 
that in the Coates graph GM,,S, there is at least one cycle family with a 
weight that is equal to an n + q&order polynomial in the indeterminate s. 
Now note that a factor s + (Y in the product making up the weight of a cycle 
family precisely corresponds to a self-loop at one of the vertices vi,. . . , u, in 
the vertex set VMXcS, = (v,, . . . , TV,+,} of GMXcs). This implies that the above 
cycle family consists of at least n + q + 1 disjoint cycles, of which exactly 
n + q are self-loops at n + q vertices in the subset {vi,. . . , on}. The other 
n -(n + q) = - q vertices in the subset {vi,. . . , v,,) appear in the remaining 
cycles of the cycle family. These remaining cycles cannot be self-loops, and 
have weights that are independent of the indeterminate s. Also these cycles 
contain all the vertices of the set {on + i, . . . , v, +,,J. By the remarks at the end 
of the previous section, it now follows that these cycles correspond with r 
disjoint paths in the graph G(V, E) from U to Y. It is clear that these r 
disjoint paths contain at most - q state vertices. Hence, n _ < - q, where we 
have denoted by n_ the smallest number of state vertices in any r-tuple of 
disjoint paths in G(V, E) from U to Y. 

Conversely, suppose that for a given h E Rk, there is a set of r simple and 
disjoint paths in Gx (V, E) fr om U to Y, and that the r paths contain n_ state 
vertices with n_ as defined above. Then consider the Coates graph associ- 
ated to the matrix A+(s) obtained by identifying the vertices ui with yi for 
i=l,2,..., r. The r-tuple disjoint paths in Gx(V, E) induce a number of 
disjoint cycles in GMX,S,. It is clear that for almost all values of s there is a 
self-loop with a nonzero weight at each of the vertices u i, . . . , v, in the vertex 
set {v i, . . . , v,+,} of GM,,s,. So clearly, at the n - n_ vertices in {vi,. . . , u,,} 
that do not appear in the disjoint cycles induced by the r disjoint paths in 
Gx (V, E) from U to Y, there is a self-loop with a nonzero weight for almost 
all values of s. The product of the weights of these self-loop is a polynomial 
of degree n - n_ in the value of s. Since the weights of the disjoint cycles 
induced in G MX(S) by the r disjoint paths in Gx (V, E) from U to Y are 

independent of the value of s (the paths are simple), it follows that the cycle 
family constituted by the self-loops and the disjoint cycles has a weight that 
is a polynomial of degree n - n_ in the value s. Because each cycle family 
contributes to det &(s), this implies that n - n_ Q n + q, which in turn 
implies that - q Q n_. n 

The above theorem was formulated for a square structured system. We 
now return to a general system of the type (1.1) that is not necessarily 
square. If the transfer matrix of the system K(s) has a generic rank equal to 
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r, then for i=I,2 ,..., r, every ith-order minor of K(s) has a generic rank 
less than or equal to - m,, and there exists at least one ith-order minor of 
K(s) that has a generic degree equal to - m,. This immediately follows from 
the properties of the numbers m, defined in (4.6). Since each minor of K(s) 
corresponds to the determinant of the transfer matrix of a square subsystem, 
the next theorem immediately follows from Theorem 6.2 and the way in 
which the numbers mi were introduced in Section 4. In the theorem we 
assume that the generic rank of K(s) is equal to r, and we assume that the 
generic orders of the zeros at infinity are defined by (4.7). 

THEOREM 6.3. For i = 1,2,..., r, the smallest number of state z;ertices in 

any i-tuple of disjoint paths in G(V, E) f rom U to Y is equal to mj = C:=, tj. 

To illustrate the results of this section, we return to the structured system 
in the example of Section 2. From the graph in Figure 1 and Theorem 6.1, it 
follows that the generic rank r of the transfer matrix K(s) equals 2. In 
addition, it follows from Theorem 6.3 that the generic orders of the zeros at 
infinity satisfy t, = 1 and t, = 1. The generic rank and the generic orders of 
the zeros at infinity could also have been determined by considering 

1 

K*(S) = s3_S2* 
4 -sA,A,+ A,h2A4 

(s - A,)A,A,A, 4s - A,)W, 
’ (s2 - A,A,)A,A, + A,A,A,A, 1 sA,A,A, ’ 

but it is clear that computing and manipulating K,(s) may be more cumber- 
some than working with the simple graph in Figure 1. However, for systems 
larger than the one in the example of Section 2, the graphs may become 
more complicated, and it may not be possible to determine the generic rank 
and the generic orders of the zeros at infinity by hand. In such cases, we can 
use some efficient algorithms from combinatorial optimization. We discuss 
these algorithms in the next section. 

To conclude this section, we note that its results are closely related to 
results in Reinschke [17, Section 321. There, starting from the point of view 
of closed-loop systems, graph-theoretic characterizations of the rank and the 
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orders of the zeros at infinity are given in terms of so-called feedback edges 
and feedback cycles. 

7. COMPUTATIONAL ASPECTS 

In the previous section we derived a graph-theoretic characterization of 
the generic rank and the generic orders of the zeros at infinity of the transfer 
matrix of a structured system. In the present section, we describe how these 
generic rank and generic orders can be computed by means of algorithms 
from combinatorial optimization. 

Therefore, in addition to the graph G(V, E), we introduce a second type 
of graph corresponding to a structured system of the type (1.1). This new 
type of graph, denoted G(V,8), consists of a vertex set V and an edge set l?. 
The set V is given by V = (a} U(u,, u,, . . . , urn) U(x;, XL,. . . , XL) U 

(Xp.X&.> r,O)UIY1,Ye,,..,Yp)U(b), and the edge set E is given by 
{(f&u,)1 i = 1, . . ..m) u {(uj,x;> lbi j # 0) u {(X~$x;)Iai,j # 0) u {<+Ji>l 

ci,jZO~UKyj,b)lj=l ,..., p) U((xi, x0> I i = 1,. . . , n). Again, for instance, 
the ordered pair (uj, rf) represents a directed edge from the vertex uj to the 
vertex x,!, and b, j # 0 means that the entry !_J,,~ in the matrix B is a 
structural unknown entry. We call the vertices a and b in G(V, J?;> the 
source and the sink, respectively. It is easy to see that any i-tuple of disjoint 
paths in G(V, E) from U to Y is in one-to-one correspondence with an 
i-tuple of paths in G(v, I?;> fr om a to b, in which each pair of paths, apart 
from a and b, have no vertices in common (compare Figure 1 with Fig- 
ure 4). 

In the remainder of this section we think of the graph G(V, 8) as a 
network in which there is a flow from the source a to the sink b. We only 
allow nonnegative flows in the directions of the edges of the network, and we 
assume that all edges have a (maximal flow) capacity equal to 1. In Figure 4 
we have depicted the graph G(V, E) associated to the structured system of 
the example in Section 2. The number above each edge denotes its capacity. 

Using algorithms based on the celebrated max-flow min-cut theorem, we 
can compute the maximal flow in the network G(V, 8) from a to b (cf. 
Lawler [ll, Section 4.31). Moreover, using standard results we can prove the 
following (cf. Lawler [ 111). 

THEOREM 7.1. The maximal flow in G<v, 2) from a to b is equal to the 
largest number of disjoint paths in G(V, E) from U to Y. 
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FIG. 4. 

Hence, by algorithms based on the max-flow mm-cut theorem, we can 
compute the largest number of disjoint paths in G(V, E) from U to Y, and 
consequently, we can compute the generic rank of the transfer matrix of the 
underlying structured system. As before, we denote this generic rank by r. 

To compute the generic orders of the zeros at infinity of the transfer 
matrix of the structured system, we proved in the previous section that we 
have to compute, for i = 1,. . . , r, the smallest number of state vertices 
appearing in any i-tuple of disjoint paths in G(V, E) from U to Y. These 
numbers can also be computed by means of a well-known algorithm from 
combinatorial optimization. To do this, we modify to the graph G(V, I?) by 
also attaching costs to flows along the edges. To flows along each of the n 
edges from x,! to x0 we attach a cost factor 1, and to flows along all the other 
edges we attach a cost factor 0. The actual costs of a flow along an edge are 
then given by the product of the cost factor and the strength of the flow, and 
the cost associated to a flow in the network is given by the sum of the costs of 
the flows along the edges. More precisely, the above means that if, for 
i = 1,2 , . . . ,n, the flow along the edge (x!,x~:> E I? has a strength oi, then 
the cost associated to the total flow in G(V, 2) from a to b is equal to 
E~=i(a, X 1) = x7=1 oi. In Figure 5 we have depicted the graph of Figure 4 
where in addition to the capacity also a cost factor is attached to each edge. 
The two numbers above each edge denote the capacity and the cost factor in 
that order. 

Let the maximal flow in G(17, E) from a to b have strength t. Then it is 
easy to see that if the smallest number of state vertices in any r-tuple of 
disjoint paths in G(V, E) from U to Y is equal to I, the minimal cost 
associated to a maximal flow in G(v, 2:) from a to b is less than or equal to 1. 
The converse is also true. In fact, using standard results we can prove the 
following (cf. Lawler [ll]). 
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FIG. 5. 

THEOREM 7.2. For i = 1 2 , 
strength i in G(v, 8) f 

, . . . , r, the minimal cost associated to a flow of 
rom a to b is equal to the smallest number of state 

vertices appearing in any i-tuple of disjoint paths in G(V, E) from U to Y. 

Hence, based on Theorem 7.2, we can apply a well-known algorithm that 
computes the minimal costs of successive flows in G(v, 8) from a to b, from 
a flow of strength zero up to the maximal flow r (cf. Lawler [ll, Section 4.71). 
The obtained sequence of minimal costs can then be used to compute the 
generic orders of the zeros at infinity of K(s), using Theorem 6.3 and (4.7). 

8. APPLICATION 

In the present section we propose structural versions of the well-known 
disturbance-decoupling problem and the so-called modified disturbance- 
decoupling problem, and we apply our main results to obtain graph-theoretic 
conditions for the solvability of each of the two problems. To formulate the 
problems, we consider the following extension of the system (1.1): 

i(t)=Ax(t)+Bu(t)+Gd(t), (8.la) 

y(t)=&(t). (8.lb) 

Here x(t), u(t), y(t), A, B, and C are as in the description of the system 
(1.11, d(t) E R’ denotes th e d’ t b IS ur ante input, and G is an n X 1 matrix. Like 
A, B, and C, we assume that G is a structured matrix. We denote the total 
number of structural unknowns in A, B, C, and G by k’. Parametrizing the 
structural unknowns and collecting all parameters in the vector A’ E Rk’, we 
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denote by A,., BAt, CA,, and G,, the nominal values of A, B, C, and G for a 
given A’ E I@‘. Note that the compound matrix [B G] can be considered to 
be the input matrix for the system (8.1) in the same way as the matrix B is 
the input matrix for the system (1.1). As with the system (l.l), we can 
associate graphs G(V’, E’) and G,.(V’, E’) to the system (8.1). The graph 
G(V’, E’) consists of a vertex set V’= V U D and an edge set E’= E U 
{(dj, xi)1 gi, j + 0). Here D = (d,, d,, . . . , d,), called the set of disturbance 
vertices; and V and E are the vertex set and the edge set, respectively, of the 
graph G(V, E) associated to the system (1.1). The graph G,.(V’, E’) is 
obtained from G(V’, E’) by weighting each edge in E’ with the appropriate 
component of A’ E Rk’. 

Following Emre and Hautus [5], we say that for a given A’ E Rk’ the 
mod$ed disturbance decoupling problem for the system (8.1) is solvable if 
there is a real m x n matrix F and a real m X Z matrix H, representing a 
feedback law u(t) = Fx(t)+ Hd(t), such that C,,(sZ -[Ah’ + B,.F])-’ 
(GA, + B,.H) = 0 (see also Wonham [24, Exercise 4.101). Using the results of 
Emre and Hautus [5], it can be shown that for a given A’ E I@’ the modified 
disturbance-decoupling problem for the system (8.1) is solvable if and only if 
there exists a proper rational m x 2 matrix X(s) such that K,,(s)X(s)= 
L,.(s). Here we have denoted K,(s) = C,.(sZ - AA,)- ‘B,,, and L,.(s) = 
C,.( sZ - A,)- ‘Gn,. 

From Theorem 3.3 it is now immediate that for a given A’ E iRk’ the 
modified disturbance-decoupling problem for the system (8.1) is solvable if 
and only if the rank and the sum of the orders of the zeros at infinity of 
K,.(s) and [K,,(s) L,,,(s)] are equal. 

In the spirit of the present paper, we say that the modified disturbance- 
decoupling problem for the structured system (8.1) is generically solvable if 
the set of parameter values A’ E Rk’ for which the rank and/or the sum of 
the orders of the zeros at infinity of K,(s) and of [K,*(s) L,,-(S)] are not 
equal is contained in a proper variety in Rk’. The following theorem is now 
an immediate consequence of Theorems .6.1 and 6.3. 

THEOREM 8.1. The modified disturbance-decoupling problem fm the 
structured system (8.1) is generically solvable if and only if 

(a) the largest number of disjoint paths in G(V, E) from U to Y is equal to 
the largest number of disjoint paths in G(V’, E’) from U U D to Y, say r, and 

(b) the smallest number of state vertices (vertices in the set X) in any 
r-tuple of disjoint paths in G(V, E) from U to Y is equal to the smallest 
number of state vertices in any r-tuple of disjoint paths in G(V’, E’) from 
U u D to Y. 
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We continue with the disturbance-decoupling problem. Following 
Wonham [24], we say that for a given A’ E Rk’ the disturbance-decoupling 
problem for the system (8.1) is solvable if there is a real nz X n matrix F, 
representing a feedback law u(t) = Fx(t), such that C,.(sZ -[Ah’ + 
Z&S])-‘G,, = 0. 

By the results of Hautus [9], it follows that the disturbance-decoupling 
problem for the system (8.1) for a given A’ E Rk’ is solvable if and only if 
there exists a strictly proper rational m X I matrix X(s) such that K,.(s)X(s) 
= L,,(S). Clearly, the latter is equivalent to the existence of a proper rational 
matrix X’(s) such that K,.(s)As-‘X’(s) = L,,(s), where A is an arbitrary 
constant nonsingular diagonal matrix. Therefore, to derive conditions for the 
solvability of a structural version of the disturbance-decoupling problem, it 
turns out to be useful to extend the structured system (8.1) as follows: 

c(t) = Nw(t), (8.2) 

where N denotes a square structured matrix with only structural unknowns 
on the diagonal. The compound system made up of (8.1) and (8.2) is again a 
structured system and is described by 

y(t) =Cx(t). (8.3b) 

Note that the control input u(t) of the system (8.1) is part of the state of 
the system (8.3), and that w(t) is the control input of (8.3). We denote the 
total number of structural unknowns in A, B, C, G, and N by k”, i.e., 
k”= k’+ n. Parametrizing the structural unknowns and collecting all the 
parameters in A” E Rk”, we denote by A,., B,., C,.., G,., and Nh” the nominal 
values of A, B, C, G, and N for a given A” E Rk”. Furthermore, as before, we 
denote K,(s) = C,.(sZ - A,..)-‘B,.. and L,,(s) = C,.(sZ - A,.)-‘Gh”. 

It is now easy to see that there is a strictly proper rational matrix X(s) 
such that K,.(s)X(s) = L,.(s) if and only if there is a proper rational matrix 
X’(s) such that K,..(s)N,.s-‘X’(s) = L,.(s), for all A”E Rk” for which Nr is 
nonsingular. Furthermore, it is easy to see that K,.(s)N,.s-’ and L,.(S) are 
the transfer matrices of the system (8.3) from the control input to the output 
and from the disturbance input to the output, respectively, at A” E Rk”. 
Moreover, note that the system (8.3) is of the same type as the system (8.1), 
for which we have formulated a structural version of the modified distur- 
bance-decoupling problem. 



166 J. W. VAN DER WOUDE 

Based on the above observations, we say that the disturbance-decoupling 
problem for the structured system (8.1) is generically solvable if the modified 
disturbance-decoupling problem for the structured system (8.3) is generically 
solvable. 

We can now apply Theorem 8.1 to the system (8.3) to obtain a graph-the- 
oretic characterization for the generic solvability of the disturbance-decou- 
pling problem for the structured system (8.1) in terms of the graph of the 
system (8.3). To do this, we have to modify the graphs G(V’, E’) and 
G,(V’, E’) to make them correspond to the structured system (8.3). For 
instance, we have to add the set W of ‘<new” input vertices. However, it is 
easy to see that the characterization obtained in this way is equivalent to the 
following characterization, which is entirely in terms of the graphs G(V, E) 
and G(V’, E’). 

THEOREM 8.2. The disturbance-decoupling problem for the structured 
system (8.1) is generically solvable if and only if 

(a) the largest number of disjoint paths in G(V, E) from U to Y is equal to 
the largest number of disjoint paths in G(V’, E’) from U U D to Y, say r, and 

(b) the smallest number of vertices in X U U in any r-tuple of disjoint 
paths in G(V, E) f rom U to Y is equal to the smallest number of vertices in 
X U U in any r-tuple of disjoint paths in G(V’, E’) from U U D to Y. 

Note that for the generic solvability of the modified disturbance-decou- 
pling problem only the number of state vertices in a tuple of disjoint paths is 
relevant, while for the generic solvability of the disturbance-decoupling 
problem the number of both state and input vertices in a tuple of disjoint 
paths is relevant. 

9. REMARKS AND CONCLUSIONS 

In this paper we have studied a general type of structured systems. We 
introduced the structured systems in Section 2 as systems of which only the 
zero-nonzero structure is given, where we assumed the nonzeros, called 
structural unknowns, to be entries of the system matrices of which the values 
are unknown and independent of each other. Also in Section 2 we described 
how the structured systems can be parametrized by a parameter A E lRk, 
where k denoted the number of structural unknowns. 

In Section 4 we used the parametrization to introduce the generic rank 
and generic orders of the zeros at infinity of the transfer matrix of a 
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structured system. For the introduction of these notions, we assumed that the 
parameter space was [Wk. However, it is easy to see that we could have 
restricted ourselves to parameter spaces that are open nonempty subsets in 
Rk. Such parameter spaces are sometimes more realistic, because in practical 
situations there may be components of the parameter vector A that only can 
have values in an (open) subset of R. Then, using the techniques of Section 
4, we can show that if the overall parameter space is an open nonempty 
subset in Rk, the main results of this paper are still valid. 

The main results of this paper, presented in Section 6, relate the generic 
rank and the generic orders of the zeros at infinity of the transfer matrix of a 
structured system (1.1) to properties of the corresponding graph G(V, E). 
This graph was introduced in Section 5. We showed that the generic rank of 
the transfer matrix of structured system can be determined by calculating the 
largest number of disjoint paths in G(V, E) from the set of input vertices U 
to the set of output vertices Y. The generic orders of the zeros at infinity of 
the transfer matrix can be determined by calculating the smallest number of 
state vertices in any i-tuple of disjoint paths in G(V, E) from U to Y, for 
5=1,2 , . . .,r, where t is the generic rank of the transfer matrix of the 
structured system. For simple systems these numbers can be determined by 
hand; for complicated systems we indicated in Section 7 that these numbers 
can be determined by means of max-flow min-cut and minimal-cost flow 
algorithms (cf. Lawler [ll]). 

As an application of our results we proposed structural versions of the 
well-known disturbance-decoupling problem and the so-called modified dis- 
turbance-decoupling problem for a structured system of the type (8.1) (cf. 
Wonham [24], Emre and Hautus [5]>, and we derived necessary and suffi- 
cient conditions for the structural solvability of the problems in terms of the 
graphs G(V, E) and G(V’, E’). Results concerning the solvability of a struc- 
tural version of dual problems like, for instance, the disturbance decoupled 
estimation problem (cf. Schumacher [IS]) can be obtained in a similar way. 

In van der Woude [25], we derived conditions for the solvability of a 
structural version of the almost disturbance-decoupling problem (cf. Willems 
[22]). We also indicated there that with the obtained results, conditions for 
the solvability of structural versions of the almost disturbance decoupled 
estimation problem and the almost disturbancedecoupling problem with 

measurement feedback (cf. Willems [23]) can be derived in a straightforward 
way. 

Conditions concerning the solvability of structural versions of the distur- 
bance-decoupling problem with measurement feedback (cf. Akashi and Imai 
[l], Schumacher [18]) and the disturbance-decoupling problem with pole 
assignment (cf. Wonham [24]) are topics of future investigation, Clearly, in 
view of the unstructured case, in the latter problem the notion of structural 
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controllability will play an important role (cf. Glover and Silverman [7], Lin 
[13], Murota [15], and Shields and Pearson [19]). Also a topic of future 
investigation is how the results of the present paper can be extended to 
descriptor or singular systems (cf. Lewis [12]). Finally, another important 
matter for future investigation is, once the generic solvability of a control 
problem has been established, is it possible to actually solve the control 
problem by a structured control law, and how can it be determined (cf. 
Linneman [ 14])? 

After having submitted this paper for publication, we became aware of a 

recent paper by Suda, Wan, and Ueno [20] and one by Commault, Dion, and 
Perez [3]. Both papers contain results similar to the results in the present 
paper which were obtained simultaneously and independently of ours. 

REFERENCES 

1 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

H. Akashi and H. Imai, Disturbance localization and output deadbeat control 
through an observer in discrete time linear multivariable systems, IEEE Trans. 
Automat. Control AC-24:621-627 (1979). 
W. K. Chen, Applied Graph Theory, North Holland, Amsterdam, 1971. 
C. Commault, J. M. Dion, and A. Perez, Disturbance Rejection for Structured 
Systems, Report, Laboratoire d’Automatique de Grenoble (URA CNRS), 1989 
submitted to ZEEE Trans. Automat. Control. 
J. Descusse and J. M. Dion, On the structure at infinity of linear square 
decoupled systems, ZEEE Trans. Automat. Control AC-27:971-974 (1982). 
E. Emre and M. L. J. Hautus, A polynomial characterization of (A, RI-invariant 
and reachability subspaces, SIAM J. Control Optim. 18:420-436 (1980). 
F. R. Gantmacher, Matrix Theory, Chelsea, New York, 1977. 
K. Glover and L. M. Silverman, Characterization of structural controllability, 

IEEE Trans. Automat. Control AC-21:534-537 (1976). 
M. L. J. Hautus, The formal Laplace transform for smooth linear systems, in 
Lecture Notes in Econom. and Math. Systems, 131, Springer-Verlag, New York, 
pp. 29-47. 
M. L. J. Hautus, (A,B)-invariant and stabilizability subspaces, a frequency 
domain description, Automatica 16:703-707 (1980). 
M. L. J. Hautus and M. Heymann, Linear feedback-an algebraic approach, 
SZAM J. Control Optim. 16:83-105 (1978). 
E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rine- 
hart and Winston, New York, 1976. 
F. L. Lewis, A survey of linear singular systems, Circuits, Systems Signal Process. 
5:3-36 (1986). 
C. T. Lin, Structural controllability, ZEEE Trans. Automat. Control AC- 

19:201-208 (1974). 



STRUCTURED SYSTEMS 169 

14 

15 

16 
17 

18 

19 

20 

21 

22 

23 

24 

25 

A. Linneman, Entwurf von dynamischen Reglem vorgegebenen Musters, Report 
109, Univ. of Bremen, 1983. 
K. Murota, Systems Analysis by Graphs and Matroids, Springer-Verlag, New 
York, 1987. 
M. Newman, Integral Matrices, Academic, New York, 1972. 
K. J. Reinschke, Multivariable Control: A Graph-Theoretic Approach, Springer- 
Verlag, New York, 1988. 
J. M. Schumacher, Compensator synthesis using (C, A, B&pairs, IEEE Trans. 
Automat. Control AC-25:1133-1138 (1980). 
R. W. Shields and J. B. Pearson, Structural controllability of multi-input linear 

systems, IEEE Trans. Automat. Control AC-21:203-212 (1976). 
N. Suda, B. Wan, and I. Ueno, The orders of infinite zeros of structured systems 

(in Japanese), Trans. Sot. Instrum. and Control Engrs. 25:32-38 (1989). 
G. C. Verghese, Infinite-Frequency Behavior in Generalized Dynamical Sys- 
tems, Ph.D. Dissertation, Dept. of Electrical Engineering, Stanford Univ., Stan- 
ford, Calif., 1978. 
J. C. Willems, Almost invariant subspaces: An approach to high gain feedback 

design-part I: Almost controlled invariant subspaces, IEEE Trans. Automat. 
Control AC-26~235-252 (1981). 
J. C. Willems, Almost invariant subspaces: An approach to high gain feedback 
design-part II: Almost conditionally invariant subspaces, IEEE Trans. Automat. 
Control AC-27:1071-1085 (1982). 
W. M. Wonham, Linear Multivariable Control: A Geometric Control, 3rd ed., 

Springer-Verlag, New York, 1985. 
J. W. van der Woude, A Graph Theoretic Characterization for the Rank of the 

Transfer Matrix of a Structured System, Report 08-8819, Centre for Mathemat- 
ics and Computer Science; Math. Control Signals Systems, to appear. 

Received 25 October 1989; final manuscript accepted 20 February 1990 


