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Abstract

We introduce a notion of dimension of max–min convex sets, following the approach of tropical convexity. We introduce a 
max–min analogue of the tropical rank of a matrix and show that it is equal to the dimension of the associated polytope. We 
describe the relation between this rank and the notion of strong regularity in max–min algebra, which is traditionally defined in 
terms of unique solvability of linear systems and the trapezoidal property.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/).

Keywords: Max–min algebra; Dimension; Tropical convexity; Tropical rank; Strongly regular matrix

1. Introduction

The max–min semiring is defined as the unit interval B = [0, 1] with the operations a⊕b := max(a, b), as addition, 
and a ⊗ b := min(a, b), as multiplication. The operations are idempotent, max(a, a) = a = min(a, a), and related to 
the order:

max(a, b) = b ⇔ a ≤ b ⇔ min(a, b) = a. (1)

One can naturally extend them to matrices and vectors leading to the max–min (fuzzy) linear algebra of [2,4,12,13,15]. 
Note that in [15] the authors developed a more general version of max–min algebra over arbitrary linearly ordered set, 
but we will not follow this generalization here.

We denote by B(d, m) the set of d × m matrices with entries in B and by Bd the set of d-dimensional vectors with 
entries in B. Both B(d, m) and Bd have a natural structure of semimodule over the semiring B.

A subset V ⊆ Bd is a subsemimodule if u, v ∈ V imply u ⊕ v ∈ V and λ ⊗ v ∈ V for all λ ∈ B. Subsemimodules 
can be thought of as a max–min analogue of subspaces or convex cones (especially in the context of the present 
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paper). In the max–min literature, subsemimodules arise as images of max–min matrices [14] or as eigenspaces. 
A subsemimodule V ⊆ Bd is said to be generated by a subset X ⊆ Bd and it is denoted by V = span⊕(X), if it can be 
represented as a set of all max–min linear combinations

m⊕
i=1

λi ⊗ xi :m ≥ 1, λ1, . . . , λm ∈ B, (2)

of all m-tuples of elements x1, . . . , xm ∈ X.
The max–min segment between x, y ∈ Bd is defined as

[x, y]⊕ = {α ⊗ x ⊕ β ⊗ y | α,β ∈ B, α ⊕ β = 1}. (3)

A set C ⊆ Bd is called max–min convex, if it contains, with any two points x, y, the segment [x, y]⊕ between them. 
For a general subset X ⊆ Bd , define its convex hull conv⊕(X) as the smallest max–min convex set containing X, i.e., 
the smallest set containing X and closed under taking segments (3). As in the ordinary convexity, conv⊕(X) is the set 
of all max–min convex combinations

m⊕
i=1

λi ⊗ xi :m ≥ 1, λ1, . . . , λm ∈ B,

m⊕
i=1

λi = 1, (4)

of all m-tuples of elements x1, . . . , xm ∈ X. The max–min convex hull of a finite set of points is also called a max–min 
convex polytope.

The development of max–min convexity has been mostly inspired by new geometric techniques in max–plus (trop-
ical) linear algebra, like those developed in [1,6,7,16]. The development of tropical (max–plus) convexity was started 
by K. Zimmermann [28], and it gained new impetus after the works of Cohen, Gaubert, Quadrat and Singer [5], and 
Develin and Sturmfels [6]. This development has led to many theoretical and algorithmic results, and in particular, to 
new methods describing the solution set of max–plus linear systems of equations [1,16].

K. Zimmermann [29] also suggested to develop the convex geometry over wider classes of semirings with idem-
potent addition, including the max–min semiring. To the authors’ knowledge, the case of max–min semiring did not 
receive much interest in the past. Some recent developments in max–min convexity include the description of max–
min segments [22,26], max–min semispaces [23] and hyperplanes [17], separation and non-separation results [18,19]. 
See [20] for a survey of max–min convexity that also includes some new results, in particular, colorful extensions of 
the max–min Carathéodory theorem, as well as some applications of the topological Radon theorem.

The present paper aims to develop a new geometric approach to the well-known notions of strong regularity and 
matrix rank in max–min algebra. To this end, it seems to be the first paper that connects max–min linear algebra with 
max–min convexity. Our main result is Theorem 4.5 stating that the “geometric” dimension of a max–min polytope is 
equal to a max–min analogue of the tropical rank of the matrix whose columns are the “vertices” of that polytope.

Let us make some preliminary observations. Note first that any subsemimodule is a max–min convex set. Moreover, 
since any max–min convex combination is just a max–min linear combination with one coefficient equal to 1, we 
obtain that the max–min subsemimodules are precisely the max–min convex sets containing 0. Thus for any X ⊆ Bd , 
we have

span⊕(X) = conv⊕
(
X, {0}).

We conclude that a finitely generated max–min semimodule can also be described as a max–min polytope with one 
“vertex” in the origin.

Conversely, if C ⊆ Bd is a max–min convex set, then

VC := {
(λ ⊗ x,λ)

∣∣ x ∈ C,λ ∈ B
}

is a subsemimodule of Bd+1. This construction is called homogenization.
Although our interest here is mostly theoretical, it is also motivated by the theory of fuzzy sets [27], which has 

numerous applications in computer science and decision theory. For example, in [8] Dubois and Prade developed an 
axiomatic approach to quantitative utility theory. The utility function introduced there relies on the notion of possibilis-
tic mixture, where the possibilistic mixture (which under some natural conditions is also a possibilistic measure [10]) 
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of the possibilistic measures π1, π2 with possibilities α, β, max(α, β) = 1, is defined as max(min(α, π1), min(β, π2)), 
that is, as a point on the max–min segment [π1, π2]. This is a particular case of extended mixtures of decompos-
able measures (which are a family of set functions encompassing probability measures and necessity and possibility 
measures as particular cases), as studied in [9] where the application to utility theory is pointed out.

The paper is organized as follows. The structure of max–min segments is revisited in Section 2. A notion of dimen-
sion in max–min convexity is introduced and studied in Section 3. Our approach is inspired by a geometric idea behind 
the notion the tropical rank [7], that is, a tropically convex polytope can be represented as a union of conventionally 
convex sets, and its dimension can be defined as the greatest dimension of these convex sets. In Section 4 we introduce 
a notion of strong regularity and a notion of rank for a matrix A over the max–min semiring. We show that the rank 
of A, as we introduce it, is equal to the dimension of the max–min convex hull of the columns of A. In Section 5
we show that our notion of strong regularity is equivalent to the one traditionally studied in max–min algebra. Thus 
it is closely related to the unique solvability of max–min linear systems of the type A ⊗ x = b and, further, to the 
trapezoidal property of a matrix as studied, for example, in [2,4,12,14].

2. Max–min segments

In this section we describe general segments in Bd , following [22,26], where complete proofs can be found. Note 
that the description of the segments in [22,26] is done for the equivalent case where B = [−∞, +∞].

Let x = (x1, ..., xd), y = (y1, ..., yd) ∈ Bd , and assume that we are in the case of comparable endpoints, say x ≤ y

in the natural order of Bd . Sorting the set of all coordinates {xi, yi, i = 1, ..., d} we obtain a non-decreasing sequence, 
denoted by t1, t2, . . . , t2d . This sequence divides the set B into 2d + 1 subintervals σ0 = [0, t1], σ1 = [t1, t2], ..., σ2d =
[t2d , 1], with consecutive subintervals having one common endpoint.

Every point z ∈ [x, y]⊕ is represented as z = α ⊗ x ⊕ β ⊗ y, where α = 1 or β = 1. However, case β = 1 yields 
only z = y, so we can assume α = 1. Thus z can be regarded as a function of one parameter β , that is, z(β) =
(z1(β), ..., zd(β)) with β ∈ B. Observe that for β ∈ σ0 we have z(β) = x and for β ∈ σ2d we have z(β) = y. Vectors 
z(β) with β in any other subinterval form a conventional elementary segment. Let us proceed with a formal account 
of all this.

Theorem 2.1. Let x, y ∈ Bd and x ≤ y.

(i) We have

[x, y]⊕ =
2d−1⋃
�=1

{
z(β)

∣∣ β ∈ σ�

}
, (5)

where z(β) = x ⊕ (β ⊗y) and σ� = [t�, t�+1] for � = 1, . . . , 2d −1, and t1, . . . , t2d is the nondecreasing sequence 
whose elements are the coordinates xi, yi for i = 1, . . . , d .

(ii) For each β ∈ B and i, let M(β) = {i: xi ≤ β ≤ yi}, H(β) = {i | β ≥ yi} and L(β) = {i: β ≤ xi}. Then

zi(β) =
{

β, if i ∈ M(β),

xi, if i ∈ L(β),

yi, if i ∈ H(β),

(6)

and M(β), L(β), H(β) do not change in the interior of each interval σ�.
(iii) The sets {z(β) | β ∈ σ�} in (5) are conventional closed segments in Bd (possibly reduced to a point), described 

by (6) where β ∈ σ�.

For incomparable endpoints x � y, y � x, the description can be reduced to that of segments with comparable 
endpoints, by means of the following observation.

Theorem 2.2. Let x, y ∈ Bd . Then [x, y]⊕ is the concatenation of two segments with comparable endpoints, namely 
[x, y]⊕ = [x, x ⊕ y]⊕ ∪ [y, x ⊕ y]⊕.

All types of segments for d = 2 are shown in the right side of Fig. 1.
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Fig. 1. Max–min segments.

The left side of Fig. 1 shows, for the corresponding segments with comparable endpoints, a diagram, where for 
x = (x1, x2, x3) and y = (y1, y2, y3), the intervals [x1, y1], [x2, y2], [x3, y3], are placed over one another, and their 
arrangement induces a tiling of the horizontal axis, which shows the possible values of the parameter β . The partitions 
of the intervals [xi, yi], 1 ≤ i ≤ 3, induced by this tiling are associated with the intervals σl, and show the sets of active 
indices i with zi(β) = β .

Remark 2.3. It follows from the description above that each elementary segment is determined by a partition of the 
set of coordinates in two subsets. For points in the elementary segment, the coordinates in the first subset are constant 
and the coordinates in the second subset are all equal to a parameter running over a 1-dimensional interval. Therefore, 
similarly to the max–plus case (see [21], Remark 4.3) in Bd there are elementary segments in only 2d − 1 directions. 
Elementary segments are the “building blocks” for the max–min segments in Bd , in the sense that every segment 
[x, y] ⊆ Bd is the concatenation of a finite number of elementary subsegments (at most) 2d − 1, respectively 2d − 2, 
in the case of comparable, respectively incomparable, endpoints. In the case of incomparable endpoints, the set of 
coordinates is partitioned in two subsets of comparable coordinates, say of cardinality d1, d2, with d1 + d2 = d . The 
first subset determines at most 2d1 −1 elementary segments, and the second set determines at most 2d2 −1 elementary 
segments, for a total of at most 2d − 2 elementary segments.

We close this section with an observation which we will need further. In this observation, as in the subsequent parts 
of the paper, we will use the conventional arithmetic operations (+, ·). For a real vector y = (y1, . . . , yd) ∈ Rd , we 
define the support of y (with respect to the standard basis), as supp(y) := {i | yi �= 0}.

Lemma 2.4. Let y ∈ Bd and let u ∈Rd be a nonnegative real vector with support supp(u) = M such that y + u ∈ Bd . 
Then the following are equivalent:

(i) [y, y + u]⊕ contains only vectors y + u′ with u′ proportional to u;
(ii) for all i, j ∈ M we have yi = yj and ui = uj .

Proof. (i) ⇒ (ii): By contradiction, let the condition of (ii) be violated. Suppose first that yi �= yj for some i, j ∈ M , 
and let M ′ ⊆ M be the proper subset of indices attaining mini∈M yi . By Theorem 2.1 (see also the left part of Fig. 1) 
it follows that there is a nonnegative vector u′ such that supp(u′) = M ′ and y + u′ belongs to the first subsegment of 
[y, y + u]⊕. As M ′ is a proper subset of M , it follows that u′ is non-proportional to u.

Suppose now that yi = yj for all i, j ∈ M but ui �= uj for some i, j ∈ M . Let M ′′ ⊆ M be the proper subset of 
indices attaining maxi∈M ui . By Theorem 2.1 (see also the left part of Fig. 1) it follows that there is a nonnegative 
vector u′′ such that supp(u′′) = M ′′ and y + u − u′′ belongs to the last subsegment of [y, y + u]⊕. As M ′′ is a proper 
subset of M , it follows that u − u′′ is non-proportional to u.
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Fig. 2. Max–min convex sets in B2.

(ii) ⇒ (i): By Theorem 2.1, in this case [y, y + u]⊕ is just the ordinary segment {y + u′ | u′ = λu, 0 ≤ λ ≤ 1}. �
3. Dimension and max–min polytropes

The dimension of a max–min convex set can be introduced in the spirit of the tropical rank, see for instance Develin, 
Santos and Sturmfels [7, Section 4]. In this set-up we expect polytopes to be representable as complexes of cells that 
are convex both in the usual and in the new sense. We are interested in the interplay between these convexities, similar 
to the case of tropical (max–plus) mathematics.

In what follows Bd has the usual Euclidean topology. If C ⊆ Bd , we denote by C the closure of C and by int(C)

the interior of C.

Definition 3.1. A max–min convex set C ⊆ Bd , for 0 ≤ k ≤ d , is called a k-dimensional open (resp. closed) max–min 
polytrope if it is also a k-dimensional relatively open (resp. closed) conventionally convex set.

This concept is a max–min analogue of the so-called polytropes, i.e., the sets which are (traditionally) convex and 
tropically convex at the same time, see Joswig and Kulas [11]. Various types of convex sets are shown in Fig. 2.

Definition 3.2. The dimension of a max–min convex set C ⊆ Bd , denoted by dim(C), is the greatest k such that C
contains a k-dimensional open polytrope.

Remark 3.3. Occasionally the notation dim will be also used for the usual dimension of (conventionally) linear spaces 
and convex sets — making sure that this will not lead to any confusion.

Note that if the max–min convex set C ⊆ Bd has dimension d , then C has nonempty interior.
In what follows we will make use of the usual linear algebra and the usual convexity. For a convex set C ⊆Rd , let 

C −y := {z−y: z ∈ C}, and let Lin(C −y) be the least conventionally linear space containing C−y. From the convex 
analysis, recall that C is relatively open if C − y is open in Lin(C − y) for some, and hence for all y ∈ C. In this case, 
for any u ∈ Lin(C − y) there is ε > 0 such that y + εu ∈ C and, conversely, if y + u ∈ C then u ∈ Lin(C − y).

Observe that if C is closed under componentwise maxima ⊕, as in the case when it is a polytrope, then for each 
pair u, v ∈ Lin(C − y) we have y + εu, y + εv ∈ C for some ε > 0 and (y + εu) ⊕ (y + εv) = y + ε(u ⊕ v) ∈ C, 
hence u ⊕v ∈ Lin(C −y). So Lin(C −y) is also closed under taking componentwise maxima. In particular, it follows 
that Lin(C − y) has a vector whose support contains the support of any other vector in Lin(C − y), that is, a vector 
whose support is the largest (by inclusion).

The following auxiliary lemma, about the conventional linear algebra, will be needed in the proof of Theorem 3.5.
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Lemma 3.4. Let L ⊆ Rn be a linear subspace. Assume that there exists a nonnegative vector e ∈ L whose support is 
the largest in L (by inclusion). Then:

Lin
(
L ∩Rn+

) = L (7)

and, in particular, dim(Lin(L ∩Rn+)) = dim(L).

Proof. As L ∩ Rn+ ⊆ L, we always have Lin(L ∩ Rn+) = L, so it suffices to prove that L can be generated by some 
vectors in L ∩Rn+, under the given condition.

Let {f1, . . . , fk} be a basis for L. For every i = 1, . . . , k, there exists mi > 0 such that F := {f1 + m1e, . . . , fk +
mke} is a family of nonnegative vectors in L ∩ Rn+. The family F̃ := F ∪ {e} is a family of nonnegative vectors in 
L ∩Rn+ that generates L (since it generates all the base vectors), so (7) holds. �

The following result investigates some of the interplay between the max–min and conventional convexities. For a 
monograph in conventional convexity see, e.g., Rockafellar [25].

Theorem 3.5. Let d ≥ 1, 0 ≤ k ≤ d . Let C ⊆ Bd be a k-dimensional open polytrope. Then for each point y ∈ C there 
exist pairwise disjoint index sets J1, . . . , Jk ⊆ {1, . . . , d} and scalars t1, . . . , tk ∈ B such that

(i) y� = ti for each � ∈ Ji and i ∈ {1, . . . , k};
(ii) for some sufficiently small ε > 0, the set

Bε
y(J1, . . . , Jk) :=

k×
i=1

{
zJi | zJi

� = si , ∀� ∈ Ji, ti − ε < si < ti + ε
}

×
�/∈J

{y�}, (8)

where J = J1 ∪ . . . ∪ Jk and zJi denotes a (sub)vector with components indexed by Ji , is contained in C.

Proof. Assume C is not a point. Given y ∈ C, consider Lin(C −y). We will show that it has a nonnegative orthogonal 
basis. First, observe that the max–min segments connecting y with other points of C give rise to some nontrivial 
nonnegative vectors in Lin(C − y). This follows from the description of max–min segments given in Theorem 2.1.

Let us first show that the largest support of nonnegative vectors in Lin(C − y) is equal to the largest support among 
all vectors of Lin(C − y). By contradiction, assume that the largest support of a nonnegative vector is a proper subset 
M ⊂ {1, . . . , d}, achieved by a vector f ∈ Lin(C − y), and that there is a vector g ∈ Lin(C − y) with some negative 
coordinates and support suppg � M . At least one of the vectors g and g′ := −g has some positive coordinates, whose 
indices do not belong to M . As C is max–min convex, we have f ⊕g ∈ Lin(C −y) and f ⊕g′ ∈ Lin(C −y), and then 
at least one of the vectors f ⊕g and f ⊕g′ is a nonnegative vector whose support strictly includes M , a contradiction.

Thus we can assume that Lin(C−y) contains nonnegative vectors with the largest support, hence by Lemma 3.4 the 
linear span of its nonnegative part, the convex cone K := Lin(C − y) ∩Rd+, has the same dimension k as Lin(C − y). 
As K is closed, by the usual Minkowski theorem [25, Corollary 18.5.1] it can be represented as the set of positive 
linear combinations of its extremal rays (recall that w ∈ K is called extremal if u + v = w and u, v ∈ K imply that u
and v are proportional with w), which generate the whole Lin(C − y). We will prove that the extremal rays of K have 
pairwise disjoint supports.

By contradiction, let u and v be extremal rays of K , not proportional with each other, with L := suppu ∩suppv �= ∅. 
We can assume that supp(u) = supp(v) = L or that suppu �= suppv and (suppv)\L �= ∅. Take λ > 0 and μ > 0 such 
that λvi > 2ui and ui > μvi for all i ∈ L. Hence we have (λv−u)i > μvi for all i ∈ L. The vector w = μv ⊕ (λv −u)

is nonnegative, below λv, and not proportional to v: in the case when supp(u) = supp(v) = L it is equal to λv − u, 
and in the other case we have wi = μvi for i ∈ (suppv)\L and wi > μvi for i ∈ L. We see that w and λv − w are in 
K not being proportional to v, which contradicts that v is extremal.

Thus we have proved that Lin(C − y) has an orthonormal basis consisting of nonnegative vectors whose supports 
are pairwise disjoint. The vectors of this basis (no more than d) also generate the cone K = Lin(C − y) ∩ Rd+ being 
the extremals of K . Now we use that C is max–min convex and investigate the properties of y and the vectors of that 
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basis. For a vector u from the basis, there exists ε > 0 such that y + εu belongs to C. From Lemma 2.4 we see that 
unless all components of u are equal to each other and the corresponding components of y are equal to each other, we 
can find a vector u′ ≤ u such that y +u′ ∈ [y, y + εu]⊕ ⊆ C, where u′ is non-proportional to u. Then u = (u −u′) +u′
is not an extremal of K , a contradiction.

So we obtained that for each u in the nonnegative orthogonal basis of Lin(C − y), all nonzero components of u
are equal to each other, and the corresponding coordinates of y are equal to each other. Since the supports of the base 
vectors are pairwise disjoint, this implies that C contains a set of the form (8). More precisely, if the base vectors are 
denoted by g1, . . . , gk then we take Ji = supp(gi) for i = 1, . . . , k. Since we can find ε such that y + εgi ∈ C for all i, 
we obtain that Bε

y(J1, . . . , Jk) ⊆ C. �
Definition 3.6. A set of the form (8) will be called a (k-dimensional, open) quasibox.

Lemma 3.7. A k-dimensional quasibox is a k-dimensional polytrope.

Proof. A quasibox is obviously conventionally convex, so we only need to show that it is max–min convex. Let B :=
Bε

y(J1, . . . , Jk) be a quasibox defined by (8), z, ζ ∈ B and τ ∈ [z, ζ ]⊕. Then τ� = y�, � /∈ J and ti − ε < τ� < ti + ε if 
� ∈ Ji due to the inequality

min(x, y) ≤ max
(
min(α, x),min(β, y)

) ≤ max(x, y),

which is true for all x, y ∈ B and α, β ∈ B such that max(α, β) = 1, and which can be easily checked by looking at all 
possible orders on {x, y, α, β}. �
Remark 3.8. As Fig. 2 shows, there are many polytropes that are not quasiboxes.

Corollary 3.9. The dimension dim(C) of a max–min convex set C ⊆ Bd is equal to the greatest number k such that C
contains a k-dimensional open quasibox.

Proof. Let k = dim(C). Then C contains a k-dimensional (relatively) open polytrope and, by Theorem 3.5, it also 
contains a k-dimensional open quasibox. A quasibox of greater dimension cannot be contained in C, since any quasi-
box is a polytrope. �

We now investigate the change of dimension under homogenization. In fact, unlike in the usual convexity or max–
plus convexity, the set λ ⊗ C := {λ ⊗ x | x ∈ C} does not look like a homothety of C, since the multiplication is not 
invertible. In particular, the dimension can also change. Consider the following example displayed on Fig. 3. Let λ
decrease from 1 to 0. Before λ reaches λ4 we have λ ⊗ C = C. As λ decreases from λ4 to λ3, we see that λ ⊗ C is 
steadily “swept” towards the origin, but it still has a two-dimensional region so that dim(λ ⊗ C) = 2. The set λ ⊗ C

becomes one-dimensional at λ = λ3, consisting of two segments, one horizontal and one vertical. At λ = λ2 the set 
λ ⊗ C becomes a single vertical segment, and at λ = λ1 it shrinks to a point. The point moves towards the origin 
along the diagonal as λ gets closer to 0. The last subfigure displays the convex hull conv⊕(0, C), which is the least 
subsemimodule containing C, and also the projection of VC ⊆ B3 onto the first k = 2 coordinates.

Lemma 3.10. Let C ⊆ Bd be a max–min convex set. Then dim(λ ⊗ C) ≤ dim(C) for all 0 ≤ λ ≤ 1.

Proof. Let k = dim(λ ⊗ C). Then for some y ∈ C that satisfies condition (i) of Theorem 3.5, for some numbers 
t1, . . . , tk , and some subsets J1, . . . , Jk of {1, . . . , d}, the set λ ⊗C contains a quasibox Bε

y(J1, . . . , Jk) defined by (8). 
As Bε

y(J1, . . . , Jk) ⊆ λ ⊗ C we obtain that λ ≥ ti + ε for all i = 1, . . . , k. Now let y = λ ⊗ u for some u ∈ C and 
consider any point z ∈ Bε

y(J1, . . . , Jk) with z ≥ y. Since λ ≥ ti + ε for all i = 1, . . . , k, we have uj = yj for all 
j ∈ J1 ∪ . . . ∪ Jk , and hence the components (u ⊕ z)j with j ∈ J1 ∪ . . . ∪ Jk are equal to those of y ⊕ z = z. The 
components (u ⊕ z)j with j /∈ J1 ∪ . . . ∪ Jk are equal to those of u, due to the fact that in this case the components 
of z coincide to the components of y and due to the formula max(a, min(a, b)) = a, which is true for all a, b ∈ B. So 
these components of u are independent of z. It follows that the points u ⊕ z, for z ≥ y and z ∈ Bε

y(J1, . . . , Jk), form 

a set which contains Bε/2
x (J1, . . . , Jk), where x� = ti + ε/2 for each � ∈ Ji and i ∈ {1, . . . , k} and x� = u� for � /∈
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Fig. 3. The behavior of λ ⊗ C.

J1 ∪ . . .∪Jk . However, z = λ ⊗ v for some v ∈ C and hence u ⊕ z = u ⊕λv ∈ C. It follows that Bε/2
x (J1, . . . , Jk) ⊆ C

and dimC ≥ k. The proof is complete. �
Theorem 3.11. Let C ⊆ Bd be a max–min convex set and let VC ⊆ Bd+1 be the homogenization of C. Then dim(VC) =
dim(C) + 1.

Proof. We first prove that dim(VC) ≤ dim(C) + 1. Suppose by contradiction that dim(VC) > dim(C) + 1. Then VC

contains a polytrope of dimension at least dim(C) + 2. For some μ, the section of VC by {u ∈ Bd+1 | ud+1 = μ} has 
a nontrivial intersection with that polytrope, and that intersection is a polytrope of dimension at least dim(C) + 1. 
But the section of VC by {u ∈ Bd+1 | ud+1 = μ} is exactly (μ ⊗ C, μ), and the dimension of μ ⊗ C does not exceed 
dim(C) by Lemma 3.10. This contradiction shows that dim(VC) ≤ dim(C) + 1.

We now prove that dim(VC) ≥ dim(C) + 1. For this, let k = dim(C) and let C contain a quasibox Bε
y(J1, . . . , Jk)

defined by (8) as in Theorem 3.5. Choosing a small enough ε we can assume that ti + ε < 1 for all i = 1, . . . , k. Let 
Jk+1 consist of the index d + 1 and all indices of the components of y that are equal to 1. Choose ε such that 1 − 2ε is 
greater than all ti +ε and any coordinate of y not equal to 1, and set tk+1 := 1 −ε. Define the components of ỹ ∈ Bd+1

by ỹ� = ti for each � ∈ Ji and i ∈ {1, . . . , k + 1}, and ỹ� = y� otherwise. Then the homogenization of Bε
y(J1, . . . , Jk), 

which is by definition the set

{
(μ ⊗ x,μ)

∣∣ x ∈ Bε
y(J1, . . . , Jk), μ ∈ B

}
,

contains the quasibox Bε
ỹ
(J1, . . . , Jk+1). As this homogenization is contained in VC , the dimension of VC is at least 

k + 1. �
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4. Dimension equals rank

In the remaining part of the paper, following the parallel with the tropical rank considered by Develin, Santos and 
Sturmfels [7] in the max–plus algebra, we investigate how our notion of dimension relates with the notion of strong 
regularity in max–min algebra. For A ∈B(d, m + 1), the ith column will be denoted by A•i .

Definition 4.1. A matrix A ∈ B(k, k +1) is called strongly regular if there exists an index j : 1 ≤ j ≤ k +1, a bijection 
π : {1, . . . , k} → {1, . . . , k + 1}\{j} and coefficients λ1, . . . , λj−1, λj+1, . . . , λk+1 ∈ B such that in the matrix

A[λ] := (λ1 ⊗ A•1, . . . , λj−1 ⊗ A•j−1,A•j , λj+1 ⊗ A•j+1, . . . , λk+1 ⊗ A•k+1) (9)

the maximum in each row i ∈ {1, . . . , k} equals λπ(i) and is attained only by the term π(i) ∈ {1, . . . , k + 1}\{j}. We 
will say that the coefficients λi and bijection π certify the strong regularity of A.

Remark 4.2. In Definition 4.1, the coefficients λi are all nonzero. Furthermore, by slightly decreasing these coeffi-
cients we can assume that they are all different and distinct from 1 and the entries of A.

For A ∈ B(d, m + 1), let conv⊕(A) denote the max–min convex hull of the columns of A.

Definition 4.3. Let A ∈ B(d, m + 1). We call the max–min rank and denote by rank(A) the largest integer k such that 
A contains a strongly regular k × (k + 1) submatrix.

Remark 4.4. Note that the definition of strong regularity is introduced here for k × (k + 1) rectangular matrices. 
A more usual “square” version of this definition will appear in the next section, and we will show that it is equivalent 
to the one studied in [2,12].

The following theorem can be considered as one of the main result of this paper.

Theorem 4.5. Let A = (aij ) ∈ B(d, m + 1). Then dim(conv⊕(A)) = rank(A).

Proof. We first suppose that A contains a strongly regular k × (k + 1) submatrix, and show that dim(conv⊕(A))

is at least k. Without loss of generality we assume that this strongly regular submatrix is extracted from the first 
k rows and k + 1 columns of A, and that j = k + 1 in (9). Let A′ be the submatrix of A extracted from the first 
k +1 columns. Since conv⊕(A′) ⊆ conv⊕(A), we have dim(conv⊕(A′)) ≤ dim(conv⊕(A)), so it suffices to prove that 
dim(conv⊕(A′)) ≥ k. For each column i : 1 ≤ i ≤ k there is a row where the maximum in A′[λ] (9) is attained only 
by the ith term. We assume that the λ1, . . . , λk are all different and distinct from the entries of A′. With this, let Ji , 
for 1 ≤ i ≤ k, be the set of rows of A′[λ] where the only maximum is attained by the ith column and equals λi . Let 
J = J1 ∪ . . .∪ Jk and for � /∈ J , if such indices exist, let α� be the maximum of the �th row of A′[λ]. Observe that this 
maximum is equal to an entry of A. For each i: 1 ≤ i ≤ k, set

mi := max
{
max{α�:� /∈ J,α� < λi},max{λs ⊗ a�s :� ∈ Ji, s �= i}},

κ := min
1≤i≤k

(λi − mi). (10)

If the set {α�: � /∈ J, α� < λi} is empty, then we assume that its maximum is zero. Observe that max{λs ⊗ a�s : � ∈
Ji, s �= i} < λi by the definition of Ji , hence mi < λi . For any vector ε = (ε1, . . . , εk) such that 0 ≤ εi < κ for all 
i = 1, . . . , k, define the vector-function y(ε):

y�(ε) =
{

λi − εi, if � ∈ Ji and 1 ≤ i ≤ k,

α�, if � /∈ J.
(11)

Using the definition of κ and the fact that y(0) is the max–min linear combination of the columns of A′ with coef-
ficients λ1, . . . , λk, 1, we obtain that y(ε) is the max–min linear combination of the columns of A′ with coefficients 
λ1 − ε1, . . . , λk − εk, 1 for any ε: 0 ≤ εi < κ where i = 1, . . . , k. Denote y := y(κ/2, . . . , κ/2). Then the quasibox
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B
κ/2
y (J1, . . . , Jk) = {

y(ε) : 0 < εi < κ, i = 1, . . . , k
}
,

is contained in conv⊕(A′) and in conv⊕(A). Since Bκ/2
y (J1, . . . , Jk) is a k-dimensional quasibox, this shows that 

dim(conv⊕(A)) ≥ k.
Next, we have to show that given k = dim(conv⊕(A)), there is a strongly regular k × (k + 1) submatrix. By 

Theorem 3.5, conv⊕(A) contains a k-dimensional quasibox (8). Then taking an element from each Ji , consider the 
submatrix of A extracted from the corresponding k rows. Denote it by A′′ ∈ B(k, m + 1). Assume that the rows 
are {1, . . . , k}. We will show that this submatrix contains a strongly regular k × (k + 1) submatrix. Indeed, being 
equal to the projection of conv⊕(A) onto the first k coordinates ((z1, . . . , zk, . . . , zd) �→ (z1, . . . , zk)), conv⊕(A′′)
contains the projection of the k-dimensional quasibox mentioned above, and this is a usual k-dimensional box. This 
box contains a point x = (x1, . . . , xk) whose all coordinates are different, and distinct from the coefficients of A′′. 
Since x ∈ conv⊕(A′′), possibly permuting the columns of A′′ we obtain that (x1, . . . , xk) are the row maxima of the 
matrix(

μ1 ⊗ A′′•1, . . . ,μm ⊗ A′′•m,A′′•m+1

)
.

Since xi are not equal to any entries of A′′ and are all different, we obtain that there is a k-element set N ⊆ {1, . . . , m}
and a bijection π : {1, . . . , k} → N such that xi = μπ(i) for all i = 1, . . . , k, with all terms except for π(i) being less 
than xi . This implies that the k × (k + 1) submatrix extracted from rows 1, . . . , k and columns π(1), . . . , π(k), m + 1
is strongly regular. �
Corollary 4.6. Let m ≥ d and A ∈ B(d, m + 1). Then conv⊕(A) has nonempty interior if and only if A contains a 
d × (d + 1) strongly regular submatrix.

Proof. The corollary follows from Theorem 4.5 and Theorem 3.5. �
5. Strong regularity: the link to max–min algebra

In this section we establish a close relation between our notion of strong regularity and the one usually studied in 
max–min algebra [2–4,12,14]. With this in mind, let us define the notion of strong regularity for square matrices, as a 
slight variation of Definition 4.1.

Definition 5.1. A matrix A ∈ B(k, k) is called strongly regular if there exists a bijection π : {1, . . . , k} → {1, . . . , k}
and coefficients λ1, . . . , λk ∈ B such that in the matrix

A[λ] := (λ1 ⊗ A•1, . . . , λk ⊗ A•k) (12)

the maximum in each row i ∈ {1, . . . , k} equals λπ(i) and is attained only by the term π(i) ∈ {1, . . . , k}. We will say 
that the coefficients λi and bijection π certify the strong regularity of A.

Remark 5.2. As in Definition 4.1, the coefficients λ1, . . . , λk can be assumed to be different from each other, distinct 
from the entries of A, 0 and 1.

We will show later that this notion coincides with the one studied in max–min algebra. The proof of the following 
statement is omitted.

Lemma 5.3. A ∈ B(k, k) is strongly regular in the sense of Definition 5.1 if and only if [A 0], where 0 is the k
component column of all zeros, is strongly regular in the sense of Definition 4.1.

For A ∈ B(m, n) define Â ∈ B(m + 1, n) by

Â :=
(

A

1

)
, (13)

where 1 denotes the n-component row of all ones. Note that if A ∈B(k, k + 1) then Â ∈ B(k + 1, k + 1) is square.
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The mapping A → Â can be seen as a special case of homogenization. Indeed, if we set C := conv⊕(A), then we 
have VC = span⊕(Â). This has the following immediate corollary.

Corollary 5.4. A ∈ B(k, k + 1) is strongly regular (in the sense of Definition 4.1) if and only if Â ∈ B(k + 1, k + 1) is 
strongly regular (in the sense of Definition 5.1).

Proof. By Theorem 4.5, A ∈ B(k, k + 1) is strongly regular if and only if dim(conv⊕(A)) = k, and Â (that is, [Â 0]) 
is strongly regular if and only if dim(conv⊕([Â 0])) = dim(span⊕(Â)) = k + 1. Theorem 3.11 implies that these 
statements are equivalent. �
Definition 5.5. A matrix A ∈ B(m, n) is called trapezoidal if the following condition holds:

aii >

i⊕
�=1

n⊕
t=�+1

a�t ∀i = 1, . . . ,m. (14)

We now show that for A ∈ B(k, k) our notion of strong regularity is equivalent to the trapezoidal property, and 
hence it coincides with the strong regularity in max–min algebra introduced in [2].

Remark 5.6. In fact, the equivalence between Definition 5.1 and Definition 5.5 (for square matrices) is known in 
max–min algebra. It follows, for instance, from Butkovič and Szabo [3, Theorem 2]. However, we prefer to write the 
proofs of Proposition 5.7 and Theorem 5.8 below for the sake of completeness and convenience of the reader.

Proposition 5.7. A ∈ B(k, k + 1) (or A ∈ B(k, k)) is strongly regular if and only if there exist permutation matrices 
P and Q such that PAQ is trapezoidal.

Proof. We can assume that A ∈ B(k, k + 1), since the other case is reduced to that case by adjoining to A ∈ B(k, k)

a zero column.
For the “if” part, we can assume that A is trapezoidal. For every row index i, we let λi := αi + εi , where αi equal 

the right-hand side of (14) and εi are such that ε1 < . . . < εk and αi + εi < aii . Observe that α1 ≤ . . . ≤ αk , and 
hence λ1 < . . . < λk . For t > i we obtain λi ⊗ aii > λt ⊗ ait since aii > λi > ait by construction. For t < i we obtain 
λi ⊗ aii > λt ⊗ ait since λi ⊗ aii = λi > λt . Thus the coefficients λ1, . . . , λk and the identity permutation certify that 
A is strongly regular.

The “only if” part: Let A be strongly regular. Applying row and column permutations if necessary (which 
corresponds to taking PAQ as in the claim) we can assume that the strong regularity is certified by the iden-
tity permutation π : {1, . . . , k} → {1, . . . , k} and λ1, . . . , λk , which are distinct from the entries of A and satisfy 
0 < λ1 < λ2 < . . . < λk < 1. In particular, we have λi < aii for all i. For each i, we then have λi > ait for all t > i, 
since λi > λt ⊗ ait and λi < λt . Hence we also have aii > λi > λ� > a�t for all � < i and � < t . Thus the trapezoidal 
property follows. �

Recall that by Corollary 5.4, A ∈ B(k, k + 1) is strongly regular if and only if Â is strongly regular. In fact, this 
is also easy to see by means of the trapezoidal property. We now conclude with the following observation, which is 
similar to [2, Theorem 3].

Theorem 5.8. Let A ∈ B(d, k + 1) with d ≥ k. Then the following are equivalent:

(i) there exists a vector b ∈ Bd such that the system A ⊗ x = b has a positive solution, which is also the unique 
solution that satisfies 

⊕k+1
i=1 xi = 1;

(ii) there exists a vector b̂ ∈ Bd+1 such that the system Â ⊗ x = b̂ has a positive solution, which is also the unique 
solution to that system;

(iii) Â contains a (k + 1) × (k + 1) strongly regular submatrix;
(iv) A contains a k × (k + 1) strongly regular submatrix.
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Proof. (i) ⇒ (ii): Take b̂ = (b1)T . Observe that 
⊕k+1

i=1 xi = 1 is satisfied for any solution of Â ⊗ x = b̂, and then (i) 
shows that it is unique.

(ii) ⇒ (iii): For this we can exploit, e.g., [2, Theorem 3].
(iii) ⇔ (iv): Equivalence between these statements follows from Theorem 4.5 and Theorem 3.11. Alternatively, we 

can use the existence of permutation matrices P and Q such that A or Â have a trapezoidal submatrix (Proposition 5.7).
(iv) ⇒ (i): Let λ1, . . . , λk and the identity permutation certify the strong regularity of the k × (k + 1) submatrix 

extracted from the first k rows of A. Assume that the values of λ1, . . . , λk are all different and distinct from the entries 
of A, as well as 0 and 1. Define the components of b to be the maxima in the rows of A[λ], then the first k components 
of b are equal to λ1, . . . , λk .

Let A′ be the strongly regular k × (k + 1) submatrix extracted from the first k rows of A. The corresponding 
subvector of b is b′ = (λ1, . . . , λk), and x = (λ1, . . . , λk, 1) is a solution to A′ ⊗ x = b′ and A ⊗ x = b. As the entries 
of b′ are all different from the entries of A′, any other solution y with a component equal to 1 contains all these 
components λ1, . . . , λk, 1, possibly permuted. However, then x ⊕ y is also a solution where some of the components 
λi are lost, since we chose them to be all different. This is a contradiction, which shows that A′ ⊗ x = b′ is uniquely 
solvable with (λ1, . . . , λk, 1) (requiring one 1 component), which implies the same for A ⊗ x = b. �

In particular, A ∈ B(d, k+1) contains a strongly regular k× (k+1) submatrix if and only if there exist permutation 
matrices P and Q such that P ÂQ contains a trapezoidal (k +1) × (k +1) submatrix. To find such a submatrix, that is, 
to verify that the equivalent conditions of Theorem 5.8 hold, we can apply the strongly polynomial algorithm of [2].

We conclude with two sufficient conditions for a matrix to have low rank.

Proposition 5.9. If A ∈ B(d, m + 1) is such that for any λ1, . . . , λm+1 ∈ B with λj = 1 for some j ∈ {1, . . . , m + 1}
there exist k columns such that the maximum in every row of A[λ] (9) is attained in one of these k columns, then 
dim(conv⊕(A)) ≤ k.

Proof. Observe that there is no regular s × (s + 1) submatrix with s > k, and apply Theorem 4.5. �
Corollary 5.10 (Sufficient condition for dim(conv⊕(A)) ≤ 2). Let A = (aij ) ∈ B(d, m) satisfy

max
1≤k≤d

aki ≤ min
1≤k≤n

ak,i+1, ∀i: 1 ≤ i ≤ m. (15)

Then dim(conv⊕(A)) ≤ 2.

Proof. Let x be a max–min convex combination of the columns of A, with coefficients λ1, . . . , λm such that λj = 1
for some j ∈ {1, . . . , m}. Consider the matrix A[λ] (9). We will show that there are two columns where all row maxima 
of (9) are attained. For this, let I be the set of column indices i where λi > mink aki , and let J be the complement of 
this set.

Considering the submatrix of A[λ] (9) extracted from the columns in I we see that all row maxima are attained in 
the column with the biggest index. All coefficients of a column in J are equal to each other. Therefore, in the submatrix 
of A[λ] extracted from the columns in J there is also a column where all row maxima are attained. This column and 
the column with the biggest index in I are the two columns where all row maxima of A[λ] are attained (possibly, there 
may be other such columns, but they are redundant). By Proposition 5.9 this shows that dim(conv⊕(A)) ≤ 2. �
Example 5.11. The max–min polytope conv⊕(A) ⊆ B3 generated by the matrix

A =
(

.01 .02 .03 .04

.05 .06 .07 .08

.09 .10 .11 .12

)
(16)

has non-empty interior, meaning that dim(conv⊕(A)) = 3. To see that A is strongly regular, choose j = 1 and λ2 =
.10, λ3 = .07, λ4 = .04. A trapezoidal form of A can be obtained by reversing the order of columns:

A =
(

.04 .03 .02 .01

.08 .07 .06 .05

.12 .11 .10 .09

)
. (17)
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Example 5.12. The max–min polytope conv⊕(A) ⊆ B3 generated by the matrix

A =
(

.01 .04 .07 .10

.02 .05 .08 .11

.03 .06 .09 .12

)
(18)

has dim(conv⊕(A)) = 2. The inequality dim(conv⊕(A)) ≤ 2 follows from Corollary 5.10, as condition (15) is satisfied 
for all i: 1 ≤ i ≤ 3. A regular 2 × 3 submatrix can be extracted from rows 1 and 3 and columns 1, 3, 4: set j = 1, 
λ3 = .09 and λ4 = .08.

6. Concluding remarks

In this paper we introduce the notion of dimension of a max–min convex set and show that it is equivalent to a 
notion of matrix rank based on the strong regularity for the matrices in max–min algebra [2].

Since the max–min convex combinations also appear as mixtures of possibilistic measures in the framework of 
Dubois and Prade’s possibility theory [8], this paper can be seen as a contribution towards the geometry of such 
mixtures. More generally, it might be interesting to look for more applications of max–min convexity in the possibility 
theory.

From the theoretical perspective, we developed a max–min analogue of the geometric interpretation of tropical 
rank. In max–plus (tropical) convexity, such interpretation also involves the notion of tropical cellular decomposi-
tion [6], whose max–min analogue is still unknown.

Furthermore, it is plausible that the results of this paper might be generalizable to the setting of [15], and also to 
the L-convexities and biconvexities of [24].
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