Balanced star decompositions of regular multigraphs and λ-fold complete bipartite graphs

Hung-Chih Leea, Chiang Linb,*

aDepartment of Information Management, Ling Tung College, Taichung, Taiwan 408, ROC
bDepartment of Mathematics, National Central University, Chung-Li, Taiwan 320, ROC

Received 20 November 2003; received in revised form 9 March 2005; accepted 5 April 2005
Available online 2 September 2005

Abstract

Let S_k denote the star with k edges. A balanced S_k-decomposition of a multigraph G is a family \mathcal{D} of subgraphs of G whose edge sets form a partition of the edge set of G such that each member of \mathcal{D} is isomorphic to S_k, and every vertex of G belongs to the same number of members in \mathcal{D}. In this paper, we obtain the following results:

(1) A necessary and sufficient condition for an r-regular multigraph to have a balanced S_k-decomposition.
(2) A necessary and sufficient condition for the λ-fold complete bipartite graph $\lambda K_{m,n}$ to have a balanced S_k-decomposition.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Balanced star decompositions; Regular multigraphs; λ-fold complete bipartite graphs

1. Introduction and preliminaries

For an integer $k \geq 1$, let S_k denote the star with k edges. For $k \geq 2$, the vertex of degree k in S_k is called the center of S_k and any vertex of degree 1 is called an endvertex of S_k. Let G be a multigraph. A decomposition of G is a family of subgraphs of G whose edge sets form a partition of the edge set of G. For $k \geq 1$, an S_k-decomposition of G is a decomposition...
of G of which each member is isomorphic to S_k. An S_k-decomposition of G is \textit{balanced} if every vertex of G belongs to the same number of members in the decomposition. For $k \geq 2$, an S_k-decomposition of G is \textit{center balanced} if every vertex of G is the center of the same number of members in the decomposition.

Suppose that G is a multigraph. Let x and y be distinct vertices of G. We use $\deg_G(x)$ to denote the number of edges incident with x, and $e_G(x, y)$ to denote the number of edges joining x and y. When the multigraph G is clear from the context, $\deg x$ is used instead of $\deg_G(x)$. If $\deg_G(x)$ is a constant for all vertices x in G, then G is a \textit{regular multigraph}; furthermore, if the constant is r, we say that G is r-\textit{regular}.

For a graph G and a positive integer λ, we use λG to denote the multigraph obtained from G by replacing each edge e of G by λ edges with the same ends as e. In this paper, λ is always a positive integer. Let K_m denote the complete graph on m vertices, let $K_m(n)$ denote the complete m-partite graph of which each part has n vertices, and let $K_{m,n}$ denote the complete bipartite graph with parts of cardinalities m and n. Obviously $\lambda K_m(n)$ is a regular multigraph, and $\lambda K_m(1) = K_m$. A necessary and sufficient condition for $\lambda K_m(n)$ to have a balanced S_k-decomposition was obtained by Huang [4]. A more general result for $\lambda K_m(n)$ was obtained by Ushio [9]. To generalize these results (Corollaries 2.4, 2.5 in this paper), we consider in Section 2 the balanced S_k-decomposition of regular multigraphs and have Theorem 2.2 as the main result. In Section 3 we consider the balanced S_k-decomposition of $\lambda K_{m,n}$. It is easy to see that a multigraph has a balanced S_1-decomposition if and only if it is regular. Thus every regular multigraph has a balanced S_1-decomposition, and $\lambda K_{m,n}$ has a balanced S_1-decomposition if and only if $m = n$. We consider the balanced S_k-decomposition for $k \geq 2$. Hereafter we let k be an integer ≥ 2 unless otherwise stated.

Suppose that G is a multigraph, \mathcal{D} is an S_k-decomposition of G, and x is any vertex of G. In what follows, let $u_{\mathcal{D}}(x)$ be the number of S_k’s in \mathcal{D} of which x is the center, $v_{\mathcal{D}}(x)$ be the number of S_k’s in \mathcal{D} of which x is an endvertex and $t_{\mathcal{D}}(x)$ be the number of S_k’s in \mathcal{D} of which x is a vertex.

By the definitions, we have

\begin{equation}
 u_{\mathcal{D}}(x) + v_{\mathcal{D}}(x) = t_{\mathcal{D}}(x). \tag{1}
\end{equation}

Counting the edges incident with x, we have

\begin{equation}
 u_{\mathcal{D}}(x)k + v_{\mathcal{D}}(x) = \deg_G(x). \tag{2}
\end{equation}

From (1) and (2), we obtain

\begin{equation}
 u_{\mathcal{D}}(x) = \frac{\deg_G(x) - t_{\mathcal{D}}(x)}{k - 1}, \tag{3}
\end{equation}

equivalently,

\begin{equation}
 t_{\mathcal{D}}(x) = \deg_G(x) - (k - 1)u_{\mathcal{D}}(x). \tag{4}
\end{equation}

Also, from the definitions, \mathcal{D} is center balanced if and only if $u_{\mathcal{D}}(x)$ is a constant for all $x \in V(G)$. And \mathcal{D} is balanced if and only if $t_{\mathcal{D}}(x)$ is a constant for all $x \in V(G)$.
We need some more notations and results for our discussions. Suppose that \(G \) is a multidigraph. Let \(x \) and \(y \) be distinct vertices of \(G \). We use \(\deg^+_G(x) \) to denote the number of edges oriented from \(x \), \(\deg^-_G(x) \) the number of edges oriented to \(x \), and \(e^+_G(x, y) \) the number of edges oriented from \(x \) to \(y \). When the multidigraph \(G \) is clear from the context, \(\deg^+_x \), \(\deg^-_x \), and \(e^+_G(x, y) \) are used instead of \(\deg^+_G(x) \), \(\deg^-_G(x) \), and \(e^+_G(x, y) \), respectively.

A multistar is a star with multiple edges allowed.

Proposition 1.1 ([Lin et al. [5, Proposition 1.3]]). Suppose that \(H \) is a multistar. Then \(H \) has an \(S_k \)-decomposition if and only if there exists a nonnegative integer \(l \) such that \(|E(H)| = l|k \) and \(e_H(w, x) \leq l \) where \(w \) is the center of \(H \) and \(x \) is any endvertex.

The following corollary follows immediately from Proposition 1.1.

Corollary 1.2. Let \(G \) be a multigraph with vertex set \(\{x_1, x_2, \ldots, x_n\} \) and \(l_1, l_2, \ldots, l_n \) be nonnegative integers. Then \(G \) has an \(S_k \)-decomposition such that in this decomposition there are \(l_i \) stars with centers at \(x_i \) for \(i = 1, 2, \ldots, n \) if and only if there exists an orientation \(\vec{G} \) of \(G \) such that for \(1 \leq i, j \leq n \) with \(i \neq j \), \(\deg^+_{\vec{G}}(x_i) = l_i k \) and \(e^+_{\vec{G}}(x_i, x_j) \leq l_i \).

Letting \(l_1 = l_2 = \cdots = l_n \) in Corollary 1.2, we obtain a result on center balanced \(S_k \)-decompositions as follows:

Corollary 1.3. Let \(G \) be a multigraph. Then \(G \) has a center balanced \(S_k \)-decomposition if and only if there is an orientation \(\vec{G} \) of \(G \) such that for some integer \(l \), \(\deg^+_G(x) = l|k \) for every vertex \(x \) and \(e^+_G(x, y) \leq l \) for every pair of vertices \(x, y \).

2. Balanced \(S_k \)-decomposition of regular multigraphs

This section is devoted to prove a necessary and sufficient condition for regular multigraphs to have balanced \(S_k \)-decompositions. We begin with the following lemma:

Lemma 2.1. Let \(\mathcal{D} \) be an \(S_k \)-decomposition of a regular multigraph \(G \). Then \(\mathcal{D} \) is balanced if and only if \(\mathcal{D} \) is center balanced.

Proof. Let \(G \) be an \(r \)-regular multigraph and let \(\mathcal{D} \) be an \(S_k \)-decomposition of \(G \).

Necessity: Suppose that \(\mathcal{D} \) is balanced. Let \(r \) be the number of \(S_k \)'s in \(\mathcal{D} \) to which each vertex of \(G \) belongs. Let \(x \in V(G) \). By (3), we have
\[
u_\mathcal{D}(x) = (\deg_G(x) - t_\mathcal{D}(x))/(k - 1) = (r - t)/(k - 1),
\] which is a constant. Hence \(\mathcal{D} \) is center balanced.

Sufficiency: Suppose that \(\mathcal{D} \) is center balanced. Let \(u \) be the number of \(S_k \)'s in \(\mathcal{D} \) of which each vertex of \(G \) is the center. Let \(x \in V(G) \). By (4), \(t_\mathcal{D}(x) = \deg_G(x) - (k - 1)\nu_\mathcal{D}(x) = r - (k - 1)u \), which is a constant. Hence \(\mathcal{D} \) is balanced. \(\square \)

Now we prove the main result of this section.
Theorem 2.2. Let G be an r-regular multigraph ($r \geq 1$). Then the following conditions are equivalent.

(A) G has a balanced S_k-decomposition.
(B) G has a center balanced S_k-decomposition.
(C) $r \equiv 0 \pmod {2k}$ and $e_G(x, y) \leq r/k$ for all $x, y \in V(G)$ with $x \neq y$.

Proof. By Lemma 2.1, (A) and (B) are equivalent. We now show that (B) \iff (C).

(B) \implies (C): Suppose that $|V(G)| = n$. Then $|E(G)| = nr/2$. Let \mathcal{D} be a center balanced S_k-decomposition of G, and let u be the number of S_k's in \mathcal{D} of which each vertex of G is the center. Then $|\mathcal{D}| = |E(G)|/k = nr/2k$, and hence $u = |\mathcal{D}| / n = r/2k$. Thus $r \equiv 0 \pmod {2k}$.

For all $x, y \in V(G)$ with $x \neq y$, each edge joining x and y belongs to an S_k in \mathcal{D} with center at either x or y. Thus $e_G(x, y) \leq 2u = r/k$.

(C) \implies (B): By the assumption, $r = 2kl$ for some positive integer l, and $e_G(x, y) \leq r/k = 2l$ for all $x, y \in V(G)$ with $x \neq y$. To show the existence of a center balanced S_k-decomposition of G, by the sufficiency of Corollary 1.3, it suffices to show that there exists an orientation \tilde{G} of G such that $\deg_{\tilde{G}}^+(x) = kl$ for every vertex x and $\deg_{\tilde{G}}^+(x, y) \leq l$ for every pair of vertices x and y. Now we construct such \tilde{G}.

Let G_1 be a spanning subgraph of G such that for every pair of vertices $x, y \in V(G)$ there are $e_G(x, y)$ edges joining x and y if $e_G(x, y)$ is even, and there are $e_G(x, y) - 1$ edges joining x and y if $e_G(x, y)$ is odd. Let $G_2 = G - E(G_1)$. Note that there are even number of edges joining every pair of vertices in G_1, and that G_2 is a simple graph. For every $x \in V(G_2)$,

$$\deg_{G_2}(x) = \deg_G(x) - \deg_{G_1}(x) = r - \sum_{y \neq x} e_{G_1}(x, y).$$

Since $r = 2kl$ is even and each $e_{G_1}(x, y)$ is even, we see that $\deg_{G_2}(x)$ is even. By a well known theorem of Euler, each nontrivial component of G_2 has an Euler tour. (An Euler tour in a graph is a closed walk which traverses each edge of the graph exactly once. See, for example [1, pp. 51–52] for this result.) Now we orient the edges of G. Begin with those of G_2. The edges in each nontrivial component of G_2 are oriented as follows. Suppose that $x_1, x_2, x_3, \ldots, x_p, x_1$ is an Euler tour of a nontrivial component of G_2. Then, for $i = 1, 2, \ldots, p$, we orient the edge $x_i x_{i+1}$ from x_i to x_{i+1}, where $x_{p+1} = x_1$. Thus, for each $x \in V(G_2)$ there are the same number of edges in G_2 oriented from x as those oriented to x. As to the edges in G_1, among the edges joining every pair of vertices x and y, half of them are oriented from x to y, and the other half from y to x. Let \tilde{G} be the digraph thus obtained from G.

We have, for each $x \in V(\tilde{G})$

$$\deg_{\tilde{G}}^+(x) = \deg_{G_1}(x)/2 + \deg_{G_2}(x)/2 = \deg_G(x)/2 = r/2 = kl.$$

And for every $x, y \in V(\tilde{G})$ with $x \neq y$,

$$e_{\tilde{G}}(x, y) \leq l.$$
if $e_G(x, y)$ is even, then $e_G^+(x, y) = e_G(x, y)/2 \leq l$;
if $e_G(x, y)$ is odd, then $e_G(x, y) \leq 2l - 1$, and hence

$$e_G^+(x, y) \leq e_G(x, y)/2 + e_G(x, y) = (e_G(x, y) - 1)/2 + 1 \leq (2l - 2)/2 + 1 = l.$$

This completes the proof. \[QED\]

An immediate corollary follows from Theorem 2.2.

Corollary 2.3. Let G be a d-regular simple graph ($d \geq 1$). Then λG has a balanced S_k-decomposition if and only if $\lambda d \equiv 0 \pmod{2k}$ and $k \leq d$.

We now apply Corollary 2.3 to the following regular graphs: complete graphs, balanced complete m-partite graphs, cubes, circulant graphs and crowns. The definitions of balanced complete m-partite graphs, cubes, circulant graphs and crowns will be given below. First since the complete graph K_m is $(m - 1)$-regular, we have:

Corollary 2.4 (Bosák [2, p. 107], Huang [4], Ushio [9]). λK_m has a balanced S_k-decomposition if and only if $\lambda (m - 1) \equiv 0 \pmod{2k}$ and $k \leq m - 1$.

Recall that $K_m(n)$ is the complete m-partite graph of which each part has n vertices. This graph is called a balanced complete m-partite graph. Obviously $K_m(n)$ is $(m - 1)n$-regular.

Corollary 2.5 (Bosák [2, p. 105], Ushio [9]). $\lambda K_m(n)$ has a balanced S_k-decomposition if and only if $\lambda (m - 1)n \equiv 0 \pmod{2k}$ and $k \leq (m - 1)n$.

For a positive integer n, let Q_n denote the n-dimensional cube, i.e., Q_n is the graph with vertex set $\{(a_1, a_2, \ldots, a_n) : a_i = 0$ or $1, \ i = 1, 2, \ldots, n\}$ such that two vertices are adjacent if and only if they differ in exactly one component. Obviously Q_n is n-regular.

Corollary 2.6. λQ_n has a balanced S_k-decomposition if and only if $\lambda n \equiv 0 \pmod{2k}$ and $k \leq n$.

For an integer $n \geq 3$, let n_1, n_2, \ldots, n_p be positive integers with $n_1 < n_2 < \cdots < n_p \leq n/2$. Then the circulant graph $C_n(n_1, n_2, \ldots, n_p)$ is the graph with vertex set $\{v_1, v_2, \ldots, v_n\}$ and edge set $\{v_i v_j : i, j \equiv i + n_t \pmod{n}, 1 \leq t \leq p\}$. It is obvious that when n is even and $n_p = n/2$, $C_n(n_1, n_2, \ldots, n_p)$ is $(2p - 1)$-regular; otherwise it is $2p$-regular.

Corollary 2.7. $\lambda C_n(n_1, n_2, \ldots, n_p)$ has a balanced S_k-decomposition if and only if

$$\begin{cases}
\lambda (2p - 1) \equiv 0 \pmod{2k}, & k \leq 2p - 1 \text{ when } n \text{ is even and } n_p = n/2, \\
\lambda p \equiv 0 \pmod{k}, & k \leq 2p \text{ otherwise}.
\end{cases}$$
For a positive integer \(n \), let \(n_1, n_2, \ldots, n_p \) be positive integers with \(n_1 < n_2 < \cdots < n_p \leq n \). Then the crown \(CR_n(n_1, n_2, \ldots, n_p) \) is the graph with vertex set \(\{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n\} \) and edge set \(\{a_ib_j : i = 1, 2, \ldots, n, j \equiv i + n_t (\text{mod } n), 1 \leq t \leq p\} \). It is easy to see that \(CR_n(n_1, n_2, \ldots, n_p) \) is \(p \)-regular.

Corollary 2.8. \(\lambda CR_n(n_1, n_2, \ldots, n_p) \) has a balanced \(S_k \)-decomposition if and only if \(\lambda p \equiv 0 \pmod{2^k} \) and \(k \leq p \).

Remark. In the following we list the known results about \(S_k \)-decompositions (not necessarily balanced) of the above regular graphs. Here \(k \geq 1 \).

Proposition 2.9 (Bosák [2, p. 104], Tarsi [6]). Let \(m \geq 2 \) be an integer. Then \(\lambda K_m \) has an \(S_k \)-decomposition if and only if
\[
\lambda m(m - 1) \equiv 0 \pmod{2k}
\]
and
\[
m \geq \begin{cases}
2k & \lambda = 1, \\
k + 1 & \lambda \text{ is even}, \\
k + 1 + k/\lambda & \lambda \geq 3 \text{ is odd}.
\end{cases}
\]

Proposition 2.10 (Bosák [2, p. 105], Ushio et al. [10]). Let \(m \geq 2 \) be an integer. Then \(K_m(n) \) has an \(S_k \)-decomposition if and only if \(m(m - 1)n^2 \equiv 0 \pmod{2k} \) and \(mn \geq 2k \).

The following result about \(S_k \)-decompositions of \(n \)-dimensional cubes was obtained by Bryant et al. [3]. Their proof used the existence of Hamming codes of length \(2^m - 1 \) and constructions based on properties of finite vector space.

Proposition 2.11 (Bryant et al. [3, Theorem 1]). The \(n \)-dimensional cube \(Q_n \) has an \(S_k \)-decomposition if and only if \(n^2 \equiv 0 \pmod{k} \) and \(k \leq n \).

Investigations of \(S_k \)-decompositions of circulant graphs and crowns appeared in [5].

Proposition 2.12 (Lin et al. [5, Theorem 3.4]). Let \(p, n \) be positive integers with \(n \geq 3, p < n/2 \). The circulant graph \(C_n(1, 2, 3, \ldots, p) \) has an \(S_k \)-decomposition if and only if \(np \equiv 0 \pmod{k} \) and \(k \leq p + 1 \).

Proposition 2.13 (Lin et al. [5, Corollary 3.2]). Let \(\lambda, p, n \) be positive integers with \(n \geq 3, p < n/2 \). The circulant multigraph \(\lambda C_n(1, 2, 3, \ldots, p) \) has an \(S_k \)-decomposition if \(\lambda np \equiv 0 \pmod{k} \) and \(k \leq p \).

Proposition 2.14 (Lin et al. [5, Theorem 2.2]). Let \(p, n \) be positive integers with \(p \leq n \). The multicrown \(\lambda CR_n(1, 2, 3, \ldots, p) \) has an \(S_k \)-decomposition if and only if \(\lambda np \equiv 0 \pmod{k} \) and \(k \leq p \).

Further investigations of \(S_k \)-decompositions of \(\lambda K_m(n), \lambda Q_n, \lambda C_n(1, 2, \ldots, p), C_n(n_1, n_2, \ldots, n_p) \), and \(CR_n(n_1, n_2, \ldots, n_p) \) are worthwhile.
3. Balanced S_k-decomposition and center balanced S_k-decomposition of λ-fold complete bipartite graphs

The multigraph $\lambda K_{m,n}$ is called a λ-fold complete bipartite graph. In this section, we consider the balanced S_k-decompositions and the center balanced S_k-decompositions of $\lambda K_{m,n}$. In the following discussions, let (M, N) be the bipartition of $\lambda K_{m,n}$ with $|M| = m$ and $|N| = n$. Let us begin with a lemma about S_k-decomposition of $\lambda K_{m,n}$.

Lemma 3.1. Let $m \geq n \geq 1$, $m \geq k \geq 2$ be integers. Suppose that u_1, u_2 are nonnegative integers and λ is a positive integer such that

$$mu_1k + nu_2k = \lambda mn.$$ \hfill (5)

And in addition to (5),

$$u_1 = 0 \quad \text{if } k > n.$$ \hfill (6)

Then there exists an S_k-decomposition \mathcal{D} of $\lambda K_{m,n}$ such that for each $x \in M$, there are $u_1 S_k$’s in \mathcal{D} with centers at x, and for each $y \in N$, there are $u_2 S_k$’s in \mathcal{D} with centers at y.

Proof. Let $M = \{x_0, x_1, \ldots, x_{m-1}\}$, $N = \{y_0, y_1, \ldots, y_{n-1}\}$. By the sufficiency of Corollary 1.2, it suffices to show that there exists an orientation of $\lambda K_{m,n}$ such that, with this orientation, for $x \in M$, $y \in N$

$$\deg^+ x = u_1k,$$ \hfill (7)

$$e^+(x, y) \leq u_1,$$ \hfill (8)

$$\deg^+ y = u_2k,$$ \hfill (9)

$$e^+(y, x) \leq u_2.$$ \hfill (10)

For this end, we orient the edges of $\lambda K_{m,n}$. First consider the case $u_2 = 0$. We have, by (5), $u_1k = \lambda n$ and hence $u_1 > 0$, which implies, by (6), $k \leq n$; in turn, it implies $u_1 \geq \lambda$. We orient all edges in $\lambda K_{m,n}$ from M to N. Then for $x \in M$, $y \in N$, we have $\deg^+ x = \lambda n = u_1k$, $e^+(x, y) = \lambda \leq u_1$, $\deg^+ y = 0 = u_2k$, and $e^+(y, x) = 0 \leq u_2$. Thus (7)–(10) hold.

Now consider the case $u_2 > 0$. First, for $j = 0, 1, 2, \ldots, n-1$, the edges $y_{j}x_{j+u_2k}$, $y_{j}x_{j+u_2k+1}$, $y_{j}x_{j+u_2k+2}$, \ldots, $y_{j}x_{j+(u_2k-1)}$ are all oriented outward from y_j where the subscripts of x are taken modulo m. Note that from each y_j, we orient u_2k edges. Since the degree of each y_j in $\lambda K_{m,n}$ is λm and by (5), $u_2k \leq \lambda m$, these assure us that there are enough edges for the above orientation. Note also that if $u_2k > m$, oriented edges with multiplicity greater than one occur. The edges which are not oriented yet are all oriented from M to N.

We check that the orientation satisfies (7)–(10). From the construction of the orientation, it is easy to see that for all $y_j \in N$, and all $x_j, x_{j'} \in M$, we have

$$\deg^+ y_j = u_2k,$$ \hfill (11)

$$|e^+(y_j, x_j) - e^+(y_j, x_{j'})| \leq 1,$$ \hfill (12)

$$|\deg^- x_j - \deg^- x_{j'}| \leq 1.$$ \hfill (13)

As (11) is the same as (9), we only need to check (7), (8), and (10).
Since $\deg^+ y_j = \sum_{i=0}^{m-1} e^+(y_j, x_i)$, it follows from (11), (12) that for $0 \leq i \leq m - 1$
\[
\left\lfloor \frac{u_2 k}{m} \right\rfloor \leq e^+(y_j, x_i) \leq \left\lceil \frac{u_2 k}{m} \right\rceil.
\]
(14)
Thus $e^+(y_j, x_i) \leq u_2$ since $k \leq m$. This proves (10).

Since $\deg^+ x_i + \deg^- x_i = \lambda n$ for $x_i \in M$, it follows from (13) that $|\deg^+ x_i - \deg^+ x_i'| \leq 1$ for $x_i, x_i' \in M$. Furthermore
\[
\sum_{i=0}^{m-1} \deg^+ x_i = |E(\lambda K_{m,n})| - \sum_{j=0}^{n-1} \deg^+ y_j
= \lambda mn - nu_2 k
= mu_1 k \quad \text{(by (5))}.
\]
Thus $\deg^+ x_i = u_1 k$ for $x_i \in M$. This proves (7).

Lastly we prove (8). We have
\[
e^+(x_i, y_j) = \lambda - e^+(y_j, x_i)
\leq \lambda - \left\lfloor \frac{u_2 k}{m} \right\rfloor \quad \text{(by the left inequality of (14))}
\leq \lambda - \frac{u_2 k}{m}
\leq \frac{u_1 k}{n} \quad \text{(by (5))}
\leq u_1 \quad \text{(by (6))}.
\]
This completes the proof. \qed

We now consider balanced S_k-decomposition of $\lambda K_{m,n}$. Recall that if \mathcal{D} is an S_k-decomposition of a multigraph G, then for each vertex x of G, $u_{\mathcal{D}}(x)$ denotes the number of S_k’s in \mathcal{D} of which x is the center, and $t_{\mathcal{D}}(x)$ denotes the number of S_k’s in \mathcal{D} of which x is a vertex.

Lemma 3.2. Let \mathcal{D} be an S_k-decomposition of $\lambda K_{m,n}$. Then \mathcal{D} is balanced if and only if
\[
u_{\mathcal{D}}(x) =\begin{cases} \frac{\lambda n (nk - m)}{k(k-1)(m+n)} & \text{if } x \in M, \\ \frac{\lambda m (mk - n)}{k(k-1)(m+n)} & \text{if } x \in N. \end{cases}
\]

Proof. Necessity: Since \mathcal{D} is an S_k-decomposition of $\lambda K_{m,n}$, we have
$|E(\lambda K_{m,n})| = |\mathcal{D}| k$. Hence $|\mathcal{D}| = \lambda mn / k$. Now \mathcal{D} is balanced. Suppose that each vertex of $\lambda K_{m,n}$ belongs to t S_k’s in \mathcal{D}. Let
\[
F = \{(x, S) : x \in M \cup N, S \in \mathcal{D}, x \text{ is a vertex of } S\}.
\]
Count the members in F. Since $|M \cup N| = m + n$ and each vertex in $M \cup N$ belongs to t S_k's in D, we have $|F| = (m + n)t$. On the other hand, since there are $|D|$ S_k's in D, and each S_k contains $k + 1$ vertices, we have $|F| = |D|(k + 1)$. Thus $(m + n)t = |D|(k + 1)$, which implies $t = \frac{|D|(k + 1)}{m + n}$.

Hence, by (3), we have

$$t = \frac{|D|(k + 1)}{m + n} = \frac{\lambda mn(k + 1)}{k(m + n)}.$$

for each $x \in M$,

$$u(x) = \frac{\deg x - t(x)}{k - 1} = \frac{\lambda n - t}{k - 1} = \frac{\lambda n(nk - m)}{k(k - 1)(m + n)}.$$

Similarly, we have

$$u(x) = \frac{\deg x - t(x)}{k - 1} = \frac{\lambda m - t}{k - 1} = \frac{\lambda m(mk - n)}{k(k - 1)(m + n)}.$$

Sufficiency: Since D is an S_k-decomposition of $\lambda K_{m,n}$, we have, by (4), for each $x \in M$

$$t(x) = \deg x - (k - 1)u(x) = \lambda n - \frac{\lambda n(nk - m)}{k(m + n)} = \frac{\lambda mn(1 + k)}{k(m + n)}.$$

Similarly, for each $x \in N$

$$t(x) = \deg x - (k - 1)u(x) = \lambda m - \frac{\lambda m(mk - n)}{k(m + n)} = \frac{\lambda mn(1 + k)}{k(m + n)}.$$

Thus $t(x)$ is a constant for all $x \in M \cup N$, which implies that D is balanced. \hfill \Box

\begin{theorem}
Let $m \geq n \geq 1$ be integers. Then $\lambda K_{m,n}$ has a balanced S_k-decomposition if and only if the following conditions hold:

(A) $m \geq k \geq m/n$ and

(B) \[
\begin{cases}
m = nk \\
\lambda n(nk - m) \equiv \lambda m(mk - n) \equiv 0 \pmod{k(k - 1)(m + n)}
\end{cases}
\]

if $k > n$,

(B) \[
\begin{cases}
m = nk \\
\lambda n(nk - m) \equiv \lambda m(mk - n) \equiv 0 \pmod{k(k - 1)(m + n)}
\end{cases}
\]

if $n \geq k$.
\end{theorem}
Theorem 3.4. Let D be a balanced S_k-decomposition of $\lambda K_{m,n}$. By the necessity of Lemma 3.2,

$$u_D(x) = \begin{cases} \frac{\lambda n(nk - m)}{k(k-1)(m+n)} & \text{if } x \in M, \\ \frac{\lambda m(mk - n)}{k(k-1)(m+n)} & \text{if } x \in N. \end{cases}$$

Since $u_D(x) \geq 0$ for $x \in M$, we have $nk - m \geq 0$, which implies $k \geq m/n$. Also since S_k is a subgraph of $\lambda K_{m,n}$, we have $k \leq \max\{m,n\}$, which implies $k \leq m$ for the assumption $m \geq n$. Thus, $m \geq k \geq m/n$. This establishes (A).

Now prove (B). In the case $k > n$, no S_k in D can have its center in M. Thus $u_D(x) = 0$ for $x \in M$, which implies $nk = m$.

Now consider the case $n \geq k$. Since $u_D(x)$ is an integer for $x \in M$, we have

$$\lambda n(nk - m) \equiv 0 \pmod{k(k-1)(m+n)}.$$

Similarly, since $u_D(x)$ is an integer for $x \in N$, we have

$$\lambda m(mk - n) \equiv 0 \pmod{k(k-1)(m+n)}.$$

Thus $\lambda n(nk - m) \equiv \lambda m(mk - n) \equiv 0 \pmod{k(k-1)(m+n)}$. This completes (B).

Sufficiency: We will apply Lemma 3.1. Let

$$u_1 = \frac{\lambda n(nk - m)}{k(k-1)(m+n)}, \quad u_2 = \frac{\lambda m(mk - n)}{k(k-1)(m+n)}.$$

First show that u_1 and u_2 are nonnegative integers. In the case $k > n$, since $m = nk$, we have $u_1 = 0$, $u_2 = \lambda n$; u_1 and u_2 are nonnegative integers. Consider the case $n \geq k$. From the assumption (B), u_1 and u_2 are integers. Since $k \geq m/n$, we have $nk - m \geq 0$, which also implies $mk - n \geq 0$ since $m \geq n \geq 1$. Thus, u_1 and u_2 are nonnegative integers. A simple calculation shows that

$$mu_1k + nu_2k = \lambda mn.$$

By Lemma 3.1, there exists an S_k-decomposition D of $\lambda K_{m,n}$ such that for each $x \in M$, there are u_1 S_k’s in D with centers at x, and for each $y \in N$, there are u_2 S_k’s in D with centers at y, i.e., $u_D(x) = u_1$ for $x \in M$ and $u_D(y) = u_2$ for $y \in N$. Thus, by the sufficiency of Lemma 3.2, D is a balanced S_k-decomposition of $\lambda K_{m,n}$. This completes the proof.

Now consider center balanced S_k-decomposition of $\lambda K_{m,n}$.

Theorem 3.4. Let $m \geq n \geq 1$ be integers. Then $\lambda K_{m,n}$ has a center balanced S_k-decomposition if and only if

$$n \geq k \text{ and } \lambda mn \equiv 0 \pmod{m+n}.$$

Proof. Necessity: Let D be a center balanced S_k-decomposition of $\lambda K_{m,n}$. Since there exists an S_k in D with center in M, we have $k \leq n$. Since $|D| = |E(\lambda K_{m,n})|/|E(S_k)| = \lambda mn/k$,
and there are $|\mathcal{D}|/(m+n) S_k$’s with centers at each vertex in $M \cup N$, we see that $|\mathcal{D}|/(m+n) = \lambda mn / k(m+n)$ is an integer. Thus $\lambda mn \equiv 0 \pmod{k(m+n)}$.

Sufficiency: Let $u = \lambda mn / (m+n)$. Then u is a positive integer and $muk + nuk = \lambda mn$. By Lemma 3.1, there exists an S_k-decomposition \mathcal{D} of $\lambda K_{m,n}$ such that for each $x \in M \cup N$, there exists u S_k’s in \mathcal{D} with centers at x. Thus \mathcal{D} is center balanced. This completes the proof. □

Remark. The results on S_k-decompositions of complete bipartite graphs are listed below. Here $k \geq 1$.

Proposition 3.5 (Yamamoto et al. [11, Theorem 2.2]). Let $m \geq n \geq 1$ be integers. Then $K_{m,n}$ has an S_k-decomposition if and only if

\[
m \geq k
\]

and

\[
\begin{cases}
m \equiv 0 \pmod{k} & \text{if } k > n, \\
mn \equiv 0 \pmod{k} & \text{if } n \geq k.
\end{cases}
\]

The following is the generalization of the above result to complete bipartite multigraphs, which was mentioned in [8].

Proposition 3.6 (Truszczyński [8]). Let $m \geq n \geq 1$ be integers. Then $\lambda K_{m,n}$ has an S_k-decomposition if and only if

\[
m \geq k
\]

and

\[
\begin{cases}
\lambda m \equiv 0 \pmod{k} & \text{if } k > n, \\
\lambda mn \equiv 0 \pmod{k} & \text{if } n \geq k.
\end{cases}
\]

As to the generalization of Proposition 3.5 to complete r-partite graphs, the readers are referred to [7] for Tazawa’s result. Further investigations of S_k-decomposition, balanced S_k-decomposition, and center balanced S_k-decomposition of complete r-partite multigraphs are worth while.

Acknowledgements

The authors thank the referees for their comments which improved the readability of this paper.

References