Discrete Mathematics 127 (1994) 75–93 North-Holland 75

Hamiltonian-connected self-complementary graphs

Luis D. Carrillo

MSU-IIT, Tibanga, Iligan City, 9200, Philippines

Received 27 November 1990 Revised 17 January 1992

Abstract

A self-complementary graph having a complementing permutation $\sigma = [1, 2, 3, ..., 4k]$, consisting of one cycle, and having the edges (1, 2) and (1, 3) is strongly Hamiltonian iff it has an edge between two even-labelled vertices. Some of these strongly Hamiltonian self-complementary graphs are also shown to be Hamiltonian connected.

1. Introduction

Definition 1.1. A graph $G = \langle V(G), E(G) \rangle$ is said to be *self-complementary* (SC) if there is a permutation σ on V(G) such that $(x, y)\sigma = (x\sigma, y\sigma)\notin E(G)$ iff $(x, y)\in E(G)$. This permutation σ is called a *complementing permutation* (CP). The graph \overline{G} in which V(G) = V(G) and $(x, y)\in E(\overline{G})$ iff $(x, y)\notin E(G)$ is called the *complement of* G.

Definition 1.2. A graph is said to be *Hamiltonian* if it has a *Hamiltonian cycle*. If, in addition, every edge is contained in a Hamiltonian cycle, then it is said to be *strongly Hamiltonian*. Furthermore, if every pair of vertices are endpoints of a *Hamiltonian* path, then it is said to be *Hamiltonian connected*.

The self-complementary graphs G investigated in this paper are those with the following properties:

- (P1) G has a CP $\sigma = [1, 2, 3, ..., 4k]$, consisting of one cycle.
- (P2) G has edges (1, 2) and (1, 3).

G obviously must have an even edge, i.e. an edge between two even-labelled vertices, to be strongly Hamiltonian; otherwise, it is almost constricted in the sense of Nash-Williams [4] and as such no odd edge can be contained in a Hamiltonian cycle. The details for the sufficiency of an even edge to make it strongly Hamiltonian are given in [1].

Correspondence to: Luis D. Carrillo, MSU-IIT, Tibanga, Iligan City, 9200, Philippines

0012-365X/94/\$07.00 © 1994—Elsevier Science B.V. All rights reserved SSDI 0012-365X(92)00469-C Partition the vertex set V(G) into $L_1 \cup L_2 \cup L_3 \cup L_4$, where $L_i = \{x \in V(G): x \cong i \pmod{4}\}$ for i = 1, 2, 3, 4. Following the observations of Clapham [2] and Gibbs [3], self-complementary graphs having properties (P1) and (P2) can be classified by means of the set $N_{L_2}(1)$, the set of elements in L_2 adjacent to vertex 1. The two subclasses discussed here are those in which $N_{L_2}(1) = L_2$ and $N_{L_2}(1) = \{2\}$.

Note that $N_{L_2}(1)$, by property (P2), contains vertex 2, so it can be chosen in 2^{k-1} ways, specifically, any subset of $L_2 \setminus \{2\}$, and then augmented by vertex 2.

Let the enumeration Φ of the possible neighbors of vertex 1 in L_2 be such that $\Phi(1) = L_2$ and $\Phi(2) = \{2\}$. Then associate with the enumeration Φ the following classes of self-complementary graphs with properties (P1) and (P2): $G_1(4k)$, the class where $N_{L_2}(1) = L_2$; $G_2(4k)$, the class where $N_{L_2}(1) = \{2\}$. Then the class $G_n(4k)$, $n \neq 1, 2$, refers to a class where $N_{L_2}(1)$ is neither L_2 nor $\{2\}$.

2. Hamiltonian-connected self-complementary graphs, I

Rao [5] introduced an SC graph $G = G^*(4k)$ which is defined as follows:

- (a) $V(G) = \{1, 2, 3, \dots, 4k\};$
- (b) $(x, y) \in E(G)$ iff
 - (1) $x, y \cong 1, 3 \pmod{4}$,
 - (2) $x \cong 1 \pmod{4}$ and $y \cong 2 \pmod{4}$ or
 - (3) $x \cong 3 \pmod{4}$ and $y \cong 0 \pmod{4}$.

This graph is in $G_1(4k)$. In view of [4], it has no Hamiltonian cycle.

Now let OE(G) be the set of odd edges of $G = G^{*}(4k)$. Let $(x, y) \in OE(G) \setminus C$, where $C = \{(1, 3)\sigma^{2l}: l \in \mathbb{N}\}$, where \mathbb{N} is the set of natural numbers. Remove the set

 $\{(x, y)\sigma^{2l}: l\in\mathbb{N}\}$

and replace it by the set

 $\{(x, y)\sigma^{2l+1} \colon l \in \mathbb{N}\}.$

The resulting graph is still in $G_1(4k)$, and in view of [1] it is already a strongly Hamiltonian self-complementary graph.

Illustration

Note that the second graph is not Hamiltonian connected because vertices 1 and 5 cannot be endpoints of a Hamiltonian path.

The replacement of a set of odd edges by even edges can be obtained in three typical ways by the following constructions.

Construction 2.1. Let $\emptyset \neq A \subseteq \{1, 2, ..., |k/2|\}$. Obtain the class $G'_1(4k)$ from $G^*(4k)$ by replacing the set of edges

$$\{(1, 4a+1)\sigma^{2l}: a \in A, l \in \mathbb{N}\}$$

by the set of edges

 $\{(2, 4a+2)\sigma^{2l}: a \in A, l \in \mathbb{N}\}.$

A graph in this class contains edges between vertices in L_2 but no edge between L_2 and L_4 .

Construction 2.2. Let $\emptyset \neq B \subseteq \{1, 2, ..., |k/2|\}$. Obtain the class $G''_1(4k)$ from $G^*(4k)$ by replacing the set of edges

$$\{(1, 4b+3)\sigma^{2l}: b \in B, l \in \mathbb{N}\}$$

by the set of edges

$$\{(2, 4b+4)\sigma^{2l}: b\in B, l\in\mathbb{N}\}.$$

A graph in this class contains edges between L_2 and L_4 but not edges between vertices in L_2 .

Construction 2.3. Let $\emptyset \neq A, B \subseteq \{1, 2, ..., |k/2|\}$. Obtain the class $G_1^{\prime\prime\prime}(4k)$ from $G^*(4k)$ by replacing the edges

 $\{(1, 4a+1)\sigma^{2l}: a \in A, l \in \mathbb{N}\}$ and $\{(1, 4b+3)\sigma^{2l}: b \in B, l \in \mathbb{N}\}$

by the set of edges

 $\{(2, 4a+2)\sigma^{2l}: a \in A, l \in \mathbb{N}\}$ and $\{(2, 4b+4)\sigma^{2l}: b \in B, l \in \mathbb{N}\}.$

A graph in this class contains edges between vertices in L_2 and edges between L_2 and L_4 .

Remark 2.4. For k=3, $G'_1(4k)$, $G''_1(4k)$ and $G'''_1(4k)$ have one element each and all three graphs can be verified to be Hamiltonian connected. These graphs are illustrated in Fig. 1.

Lemma 2.5. For $k \ge 4$, any element in $G'_1(4k), G''_1(4k)$ or $G'''_1(4k)$ is Hamiltonian connected.

Proof. In view of [1], it only remains to show that every pair of nonadjacent vertices are endpoints of a Hamiltonian path.

Fig. 1.

78

For G in $G'_1(4k)$, every vertex in L_1 is adjacent to every vertex in L_3 . Hence, any nonadjacent pair of vertices is an automorphic image of one of the pairs 1 and 4a + 1, 1 and 4b + 4, 2 and 4a + 2 or 2 and 4b + 4, where $1 \le a, b \le k - 1$. Together with the fact that every vertex of L_1 is adjacent to every vertex of L_2 , a Hamiltonian path whose end points are any of the nonadjacent pairs above can easily be constructed.

For G in $G''_1(4k)$, the subgraph induced by $L_1 (\cong L_3)$ is a complete graph of order k. Therefore, a HP whose endpoints are nonadjacent pairs of vertices of the form 1 and 4b+3, 1 and 4b+4 (whether 2 and 4b+4 are adjacent or not), 2 and 4a+2 or 2 and 4b+4 can easily be constructed.

For G in $G_1''(4k)$, nonadjacent pairs are of the form 1 and 4a + 1, 1 and 4c + 3, 1 and 4b + 4 with $(2, 4x + 2) \in E(G)$ for some x, 2 and 4d + 2 with $(2, 4y + 2) \in E(G)$ for some y, or 2 and 4e + 4. For these nonadjacent pairs, corresponding Hamiltonian paths are constructed below:

Case 1: $(1, 4a+1)\notin E(G)$. Span $L_1 \cup L_2 \setminus \{4a+1\}$ by a path with end vertices 1 and $u \in L_1$. Also span $L_3 \cup L_4$ by a path with end vertices u+2 and 4a+3. Then connect these paths by the edge (u, u+2) and add the edge (4a+1, 4a+3) to obtain a HP with end vertices 1 and 4a+1.

Case 2: $(1, 4c+3)\notin E(G)$. Span $L_1 \cup L_2$ by a path with end vertices 1 and 2. Also span $L_3 \cup L_4$ by a path with end vertices 4c+3 and 4c+4. Then connect these paths by the edge (2, 4c+4).

Case 3: $(1,4b+4)\notin E(G)$ and $(2,4x+2)\in E(G)$. Span $L_1\cup L_2$, using the edge (2,4x+2), by a path with end vertices 1 and $u\in L_1$ and span $L_3\cup L_4$ by a path with end vertices u+2 and 4b+4. Then connect these paths by the edge (u, u+2).

Case 4: $(2, 4d+2)\notin E(G)$ and $(2, 4y+2)\in E(G)$. Span $L_1 \cup L_2 \setminus \{4d+1, 4d+2\}$ by a path with end vertices 2 and 4x+1. Also span $L_3 \cup L_4$, using the edge $(2, 4y+2)\sigma^{4x+2}$, by a path with end vertices 4x+3 and 4d+3. Then connect these paths by the edge (4x+1, 4x+3) and add the path (4d+3, 4d+1, 4d+2).

Case 5: $(2, 4e+4)\notin E(G)$. Span $L_1 \cup L_2$ by a path with end vertices 2 and 4x+1 and span $L_3 \cup L_4$ by a path with end vertices 4x+3 and 4e+4. Then connect these paths by the edge (4x+1, 4x+3). \Box

Theorem 2.6. Let G be a self-complementary graph with properties (P1) and (P2). If G is such that $N_{L_2}(1) = L_2$, then G is Hamiltonian connected iff it is strongly Hamiltonian and $k \ge 3$.

3. Hamiltonian-connected graphs, II

The classes $G'_1(4k)$, $G''_1(4k)$ and $G''_1(4k)$ obtained from $G^*(4k)$ have the property that $N_{L_2}(1) = L_2$. Now obtain the graphs $G'_2(4k)$, $G''_2(4k)$ and $G''_2(4k)$ from $G'_1(4k)$, $G''_1(4k)$ and $G''_1(4k)$, respectively, by removing the edges (1, 4b + 2), b = 1, 2, 3, ..., k - 1, and their automorphic images under the automorphism σ^{2l} , $l \in \mathbb{N}$, and then replacing them by the edges (1, 4k - 4b), $1 \le b \le k - 1$, with their automorphic images. Graphs in these classes are strongly Hamiltonian self-complementary graphs with properties (P1) and (P2). However, they have the property that $N_{L_2}(1) = \{2\}$.

Now if $(2, 4b+2) \in E(G)$, where $G \in G'_2(4k)$, then L_2 and L_4 can be partitioned into disjoint cycles as follows.

Step 1: Define $C_0^2 = \{(2, 4b+2) \ \sigma^{4nb}: \ 0 \le n \le k'-1\}$, where $b = db' \ k = dk'$ and d = gcd(k, b).

Step 2: Define $C_p^2 = C_0^2 \sigma^{4p}$, where $0 \le p \le d-1$.

Step 3: Define $C_p^4 = C_0^2 \sigma^{4p+2}$, where $0 \le p \le d-1$.

Clearly, L_2 is a disjoint union of the cycles C_p^2 and L_4 is the disjoint union of the cycles C_p^4 . Let $x \in C_p^2$, $y \in C_q^2$ and $x \cong y \pmod{4k}$. Then x = 4nb + 4p + 2 and y = 4mb + 4q + 2 for some *n*, *m*. Hence, $x - y \cong 0 \pmod{4k}$ implies that *d* divides p - q and *k'* divides n - m as observed in the equations

4(n-m)db' + 4(p-q) = 4ldk',db' = b and dk' = k.

These cycles are said to be *generated* by the edge (2, 4b+2) via the CP σ . These cycles are degenerate if k = 2b.

If $(2, 4b+4) \in E(G)$, where $G \in G''_2(4k)$, then $L_2 \cup L_4$ can be partitioned into disjoint cycles as follows.

Step 1: Define $C_0 = \{(2, 4b+4)\sigma^{(4b+2)n}: 0 \le n \le k^* - 1\}$, where $2b+1 = d'b^*$, $2k = d'k^*$, $d' = \gcd(2k, 2b+1)$.

Step 2: Define $C_p = C_0 \sigma^{4p}$, where $0 \le p \le d' - 1$. The cycles C_p can easily be shown to be disjoint and span $L_2 \cup L_4$. These cycles are degenerate if k = 2b + 1.

Lemma 3.1. For $k \ge 4$, any element $G \in G'_2(4k)$ is Hamiltonian connected.

Proof. Note here that $(4a+1, 4b+3) \in E(G)$ for all a, b=0, 1, 2, ..., k-1. With these edges, the required Hamiltonian path for every nonadjacent pair of vertices can be obtained as automorphic images of the Hamiltonian paths constructed below:

(1) $(1, 4b+1)\notin E(G)$. Construct a required Hamiltonian path by the following steps:

(1a) Partition L_2 and L_4 into cycles generated by the edge (2, 4b+2). Correspondingly partition L_1 and L_3 in such a way that if x is in a partition of L_2 or L_4 , then x-1 is in the corresponding partition of L_1 or L_3 .

(1b) Let $x \in L_3$ be such that $(2, x) \in E(G)$. Starting from vertex 1, span by a path this partition of L_1 , except 4b + 1, and a partition of L_3 not containing x, if any, together with its cycle partition of L_4 and ending at a vertex in L_3 . This is illustrated in Fig. 2.

If there is only one partition each, traverse the edge from 1 to vertex $y (\neq x) \in L_3$, then go to $y + 1 \in L_4$, span the rest of L_4 , then go to a vertex in L_3 and go alternatively between L_1 and L_3 , leaving out 4b + 1, and end at x. Then from x traverse the edge to 2, span L_2 up to 4b + 2 and finally end at 4b + 1.

(1c) From the last vertex in L_3 , span one partition each of L_1, L_2, L_3 and L_4 at a time, each time ending at a vertex in L_3 , and finally end at x.

(1d) Complete the Hamiltonian path by connecting x to 2, spanning the last cycle of L_2 , ending at 4b+2, then go finally to 4b+1.

(2) $(1, 4a+2)\notin E(G)$ for $1 \le a \le k-1$. Let $(2, 4b+2)\in E(G)$ and do the partition as in (1). Let $y (\ne 1)\in L_1$ be such that (y+1, 4a+2) is an edge in a partition of L_2 . Construct a required Hamiltonian path under the following cases.

Case 1: Vertices 1 and y are in the same partition.

Case 1.1: Vertex $y \neq 4a + 1$.

(2a.1.1) Subsumed in this subcase is the fact that each partition has more than two vertices. From vertex 1 span the partition containing it, except y, and a partition in L_3 together with its corresponding partition of L_4 , ending at a vertex in L_3 . This is illustrated in Fig. 3.

(2b.1.1) From the last vertex in L_3 , span a partition each from L_1, L_2, L_3 and L_4 at a time, and each time ending at a vertex in L_3 , until all of L_3 is spanned.

(2c.1.1) Complete the Hamiltonian path by joining the last vertex in L_3 to y, then to y+1, spanning the last cycle-partition of L_2 , then ending at 4a+2.

Fig. 3.

Case 1.2: y = 4a + 1. This degenerate case happens only when a = b = k/2, i.e. a partition of L_2 is an edge, and (2, 4b+2) = (2, 2k+2). In this case, span V(G) by the paths

$$(1, 2, 2k+2, 2k+1)\sigma^{2l}$$
 for $0 \le l \le k-1$,

remove the edge (2, 2k + 2) and add the edges $(2, 2k + 3), (2k - 1, 2k + 1), (3, 5)\sigma^{4m}$ and $(2k+5, 2k+7)\sigma^{4m}$ for m=0, 1, 2, ..., (k-4)/2 to obtain a Hamiltonian path with end vertices 1 and 2k+2. This is illustrated in Fig. 4.

Case 2: Vertices 1 and y are not in the same partition.

k is even

(2a.2) In this case choose y so that $y \neq 4a+1$ and $(y+1, 4a+2) \in E(G)$. Then from vertex 1, span the partition containing it and a partition in L_3 together with their corresponding partitions in L_2 and L_4 , ending at a vertex in L_3 . This is illustrated in Fig. 5.

(2b.2) Span a partition each of L_1, L_2, L_3 and L_4 at a time, each time ending at a vertex in L_3 , until only the partition containing y is left unspanned in L_1 .

(2c.2) Complete the Hamiltonian path by joining the last vertex in L_3 to $z (\neq y) \in L_1$, then proceed to a vertex in L_3 , then to a vertex in L_4 , spanning the rest of L_4 , then go back to a vertex in L_3 , spanning the rest of L_1 and L_3 , ending at y.

Finally, connect y to y+1 and span the rest of L_2 , ending at 4a+2.

(3) $(1, 4k) \notin E(G)$

(3a) Let $(2, 4b+2) \in E(G)$ and partition V(G) as in (1a) and let $x (\neq 4k-1) \in L_3$ be such that (x+1, 4k) is an edge of a cycle-partition.

If there is only one partition of L_2 , then from vertex 1 go to vertex 2 and span L_2 , then connect to $W (\neq x)$ in L_3 and go alternatively between L_1 and L_3 , ending at a vertex x. Complete the Hamiltonian path by connecting x to x+1 and spanning L_4 up to 4k.

(3b) If there are l>1 partitions of L_2 , span l-1 partitions each of L_1, L_2, L_3 and L_4 from vertex 1 and ending at a vertex in L_3 , leaving out among others the partition containing x. This is illustrated in Fig. 6.

(3c) Connect the last vertex in L_3 to a vertex in L_2 , then span the rest of L_2 , then go to a vertex in L_1 . From there, go alternatively between L_1 and L_3 , ending at a vertex x.

(3d) Complete the Hamiltonian path by connecting x to x + 1 and span the rest of L_4 up to 4k.

(4) $(2, 4a+2) \notin E(G)$ and $(2, 4b+2) \in E(G)$.

Case 1. Vertices 2 and 4a+2 are not in the same cycle generated by (2, 4b+2).

(4a.1) From vertex 2, span the partition containing it, then proceed to a vertex in L_1 ; then span the partition of L_1 containing it and a partition of L_3 together with its corresponding partition in L_4 , ending at a vertex in L_1 .

(4b.1) From the last vertex in L_1 , span one partition each of L_1, L_2, L_3 and L_4 at a time, each time ending at a vertex in L_1 , until only the partition containing 4a + 2 is left in L_2 .

(4c.1) Connect the last vertex in L_1 to a vertex in L_4 and span the rest of L_4 . Then proceed to a vertex in L_3 and go back and forth between L_1 and L_3 , ending at x in L_1 , where (x+1, 4a+2) is an edge in a cycle-partition of L_2 .

(4d.1) Complete the Hamiltonian path by connecting x to x+1, then spanning the rest of L_2 up to 4a+2.

Case 2: Vertices 2 and 4a+2 are in the same cycle generated by (2, 4b+2).

(4a.2) Let y be adjacent to 4a+2 in a cycle-partition such that the paths from 2 to y and from 4b+2 to 4a+2 span this cycle. Further, let $z \in L_3$ be such that $(z, 4b+2) \in E(G)$. Then from 2, span part of the cycle to y, connect y to y-1 and span this partition of L_1 and a partition of L_3 not containing z, if any, together with its corresponding partition in L_4 , ending at a vertex in L_1 .

If there is only one partition of L_2 , let $w \in L_4$ be such that $(y-1, w) \in E(G)$. From y-1, proceed instead to w and span L_4 , ending at some vertex $x \ (\neq z+1)$, then connect to x-1 and alternate between L_1 and L_3 , ending at z. Finally, connect to 4b+2 and span the rest of L_2 up to 4a+2.

(4b.2) From the last vertex in L_1 , span one partition each of L_1, L_2, L_3 and L_4 at a time, each time ending at L_1 , until only one partition each of L_1, L_2, L_3 and L_4 and the path from 4b+2 to 4a+2 are left unspanned.

(4c.2) From the last vertex in L_1 , go to a vertex in L_4 , span the rest of L_4 , then connect to a vertex in L_3 . From there, span the rest of L_3 and L_1 with the

Fig. 6.

corresponding partition in L_2 , ending at $z \in L_3$. Finally, connect z to 4b+2 and span the rest of L_2 up to 4a+2.

(5) $(2, 4a+4) \notin E(G)$.

(5a) Let $(2, 4b+2) \in E(G)$ and partition V(G) as in (1a). Let $x \in L_1$ and $y \in L_4$ be such that $(x, y) \in E(G)$, (y, 4a+4) is an edge in a cycle-partition and x is not in the partition

containing 1, if there is more than one cycle generated by (2, 4b+2). From vertex 2, span the partition containing it, then connect to a vertex in the corresponding partition of L_1 . Span this partition of L_1 , together with a partition of L_3 not containing y-1, and its corresponding partition in L_4 , then end at a vertex in L_1 .

(5b) From the last vertex in L_1 , span one partition each from L_1, L_2, L_3 and L_4 at a time, each time ending at a vertex in L_1 , until only one partition each of L_1, L_2, L_3 and L_4 is left.

In case there is only one partition, from 2 span the rest of L_2 , then go to a vertex in L_3 , then alternate between L_1 and L_3 , ending at $x \in L_1$. Finally, connect x to y and span the rest of L_4 to 4a+4.

(5c) From the last vertex in L_1 , connect to a vertex in L_3 , then to a vertex in L_2 , spanning the rest of L_2 , then go to a vertex in L_1 and alternate between L_1 and L_3 , ending at x. Finally, connect x to y and span the rest of L_4 up to vertex 4a+4. \Box

Lemma 3.2. For $k \ge 4$, if $G \in G''_2(4k)$, then G is Hamiltonian connected.

Proof. Here, the subgraph induced by $L_1 (\cong L_3)$ is a complete graph. A Hamiltonian path whose endpoints are nonadjacent vertices can be obtained as an automorphic image of one of the HP's constructed below:

(1) $(1, 4b+3) \notin E(G)$.

(1a) Partition $L_2 \cup L_4$ into cycles generated by the edge (2, 4b+4).

Case 1: There is an odd number of cycles.

Case 1.1: There is only one cycle.

(1b.1.1) From vertex 1, span L_1 , then join the last vertex to a vertex in L_4 , then span $L_2 \cup L_4$, ending at a vertex in L_2 . Then connect to a vertex in L_3 ($\neq 4b+3$) and span L_3 , ending at 4b+3.

Case 1.2: There are at least three cycles.

(1b.1.2) Connect vertex 1 to a vertex in L_4 and span the cycle containing it, ending at a vertex in L_2 .

(1c.1.2) Connect the last vertex in L_2 to a vertex in L_3 ($\neq 4b+3$), then go back to a vertex in L_2 , spanning the cycle containing it and ending at a vertex in L_4 . Proceed to a vertex in L_1 , return to a vertex in L_4 , spanning the cycle containing it and ending at a vertex in L_2 . Repeat the process until only one cycle is left, the last vertex spanned being in L_4 .

(1d.1.2) From the last vertex in L_4 , go to a vertex in L_1 , span the rest of L_1 , then proceed to a vertex in L_4 , spanning the last cycle, ending at a vertex in L_2 .

(1e.1.2) Complete the Hamiltonian path by proceeding to a vertex in L_3 and spanning the rest of L_3 up to the vertex 4b + 3.

Case 2. There is an even number of cycles.

(1b.2) From vertex 1, go instead to vertex 2, then span the cycle containing it, ending at a vertex in L_4 . Then proceed as in case 1.2 to obtain the required Hamiltonian path.

(2) $(1, 4a+2)\notin E(G)$. Let $(2, 4b+4)\in E(G)$ and partition $L_2 \cup L_4$ into cycles generated by (2, 4b+4).

Case 1: (2, 4b+4) generates only one cycle.

(2a.1) Let $x \in L_1$, $y \in L_3$ be such that (x, 4a + 4b + 4) and $(y, 4a + 2) \in E(G)$. Span L_1 by starting at 1 and ending at x. Then go to 4a + 4b + 4 and go through the vertices of the cycle up to 4a - 4b, leaving out 4a + 2. Then proceed to a vertex in L_3 , then span L_3 , ending at y. Finally, connect y to 4a + 2. If a + b + 1 = k, reverse the roles of 4a + 4b + 4 = 4k and 4a - 4b.

Case 2: (2, 4b+4) generates at least two cycles.

Case 2.1: There is an odd number of cycles and each cycle has more than two vertices.

(2a.2.1) Let y be as in (2a.1). From 1 go to 4a+4b+4 and span the cycle up to 4a-4b, leaving out 4a+2. Then go to 4a-4b-1, then to a vertex in L_2 , spanning the cycle containing it and ending at a vertex in L_4 .

(2b.2.1) From this vertex of L_4 go to a vertex in L_1 , then return to L_4 , spanning a cycle and ending at a vertex in L_2 . Repeat the process until only one cycle is left, with the last vertex traversed in L_4 .

(2c.2.1) Connect the last vertex in L_4 to a vertex in L_1 , span the rest of L_1 then go to a vertex in L_4 , spanning the last cycle, and ending at a vertex in L_2 .

(2d.2.1) Finally, continue on to a vertex in L_3 , spanning the rest of L_3 up to vertex y, and then to 4a+2.

Case 2.2: There is an odd number of cycles and each cycle is an edge (degenerate case).

(2a.2.2.) Let x be as in (2a.1). Then from vertex 1 go to a vertex in L_4 ($\neq 4a + 4b + 4$), then span the edge. Go to a vertex in L_3 , continue to a vertex in L_2 ($\neq 4a + 2$), then span the edge and go to a vertex in L_1 . Repeat the process until only two edges are left with the last vertex spanned in L_2 .

(2b.2.2) Proceed to a vertex in L_3 , span the rest of L_3 and go to a vertex in L_2 , then span the edge and proceed to L_1 , spanning the rest of L_1 and ending at vertex x. Finally, join x to 4a+4b+4 and then go to 4a+2.

Case 2.3: There is an even number of cycles and each cycle has more than two vertices.

(2a.2.3) Proceed as in case 2.1, but instead connect the vertex 4a-4b to a vertex in L_1 . The effect is to end up at y. Proceed finally to 4a+2.

(3) $(1, 4k) \notin E(G)$. Let $(2, 4b+4) \in E(G)$ and partition $L_2 \cup L_4$ as in (1a). Then proceed as in (2) but interchange the roles of x and y, and replace the roles of 4a+2, 4a+4b+4, and 4a-4b by 4k, 4b+2, and 4k-4b-2, respectively, and start from vertex 1, then to 3 and let 3 take the role of 1, except in Case 1.2, where 4k-1 takes the role of y.

(4) $(2, 4a+2) \notin E(G) \forall 1 \leq a \leq k-1.$

Case 1: Vertices 4a+2 and 2 are in the same cycle generated by (2, 4b+4). Case 1.1: There is only one cycle.

(4a.1.1) From vertex 2 span the cycle through 4b + 4 up to 4a - 4b, then connect the latter to a vertex in L_3 , then span L_3 and connect the last vertex to 4a + 4b + 4,

leaving out 4a+2. Then span the rest of the cycle up to 4k-4b, connect this to a vertex in L_1 , span L_1 , then connect the last vertex to 4a+2.

Case 1.2: There are at least two cycles.

(4a.1.2) From vertex 2, span the vertices as in (4a.1.1) up to 4k-4b, but traverse only one vertex in L_3 . Then proceed as in (2b.2.1) until only one cycle is left. If the last vertex is in L_2 , connect this to a vertex in L_3 , span L_3 then return to a vertex in L_2 and span the last cycle to a vertex in L_4 . Then go to a vertex in L_1 , span the rest of L_1 , ending at 4a+1. Finally, go to 4a+2. On the other hand, if the last vertex is in L_4 , connect this to a vertex in L_1 , span the rest of L_1 , except 4a+1, then go back to a vertex in L_4 and span the last cycle, ending at a vertex in L_2 . Finally, connect this to a vertex in L_3 ($\neq 4a+3$), span the rest of L_3 up to 4a+3 and then connect 4a+1 to vertex 4a+2.

Case 2: Vertices 4a + 2 and 2 are not in the same cycle.

(4a.2) Span from 2 the cycle containing it up to 4b+4, then go to 4b+3, then to 4a+4b+4, spanning the cycle up to 4a-4b, leaving out 4a+2.

(4b.2) If there are only two cycles, go from vertex 4a-4b to a vertex in L_3 , span the rest of L_3 , then connect to a vertex in L_1 , span the rest of L_1 ending at x, where $(x, 4a+2) \in E(G)$, and, finally, connect the last vertex to 4a+2. If there are more than two cycles, proceed as in (4a.1.2).

(5) $(2, 4a+4)\notin E(G)$. Let $(2, 4b+4)\in E(G)$. Then proceed as in (4) but let 4a+4 take the role of 4a+2, taking into consideration the adjacencies between L_1 and $L_2 \cup L_4$. \Box

Lemma 3.3. For $k \ge 4$, if $G \in G_2^{\prime\prime\prime}(4k)$, then G is Hamiltonian connected.

Proof. From the Hamiltonian paths constructed below, a Hamiltonian path whose end vertices are nonadjacent can be obtained as an automorphic image of one of them.

(1) $(1, 4a+1)\notin E(G)$:- Partition L_2 and L_4 into cycles generated by (2, 4a+2). Then, using the edge (2, 4b+4), obtain a cycle from a cycle of L_2 and a cycle of L_4 for each pair of cycles connected by some edge of the form $(2, 4b+4)\sigma^{4l}$. This is illustrated in Fig. 7.

Case 1: A cycle in L_2 has more than two vertices.

(1a.1) First, choose the connected pair of cycles containing 4k-4b-2 and 4k. Obtain a path from these cycles by deleting the edges (4k-4b-2, 4k-4a-4b-2), (4k, 4a) and (4k, 4k-4a) and adding the edges (4k-4b-2, 4k) and (4k-4a-4b-2, 4k-4a). Then extend this to a path with end vertices 1 and 4a + 1 by adding the edges (4k, 4k-1) and (4a, 4a-1) and the cycle generated by the edge (1, 3), where the edges (1, 4k-1) and (4a-1, 4a+1) are deleted.

(1b.1) Extend this path to a Hamiltonian path by adding the edges (y_i, y_i-1) , (y_i+1, y_i-4a) or (y_i+1, y_i+4a) , whichever applies, where $y_i \in L_4$ for i=1, 2, ..., p-1 and p is the number of cycles in L_2 generated by (2, 4a+2), and by deleting the edges (y_i, y_i-4a) or (y_i, y_i+4a) , whichever applies.

Case 2: A cycle in L_2 is an edge (degenerate case).

In this case the cycles generated by the edge (2, 4b + 4) cannot be degenerate because k must be even, i.e. k = 2a; therefore, the cycles generated by (2, 4b + 4) have at least 4 vertices. (1a.2) Partition $L_2 \cup L_4$ into cycles generated by (2, 4b + 4) and suppose that 4a + 2 = 2k + 2 and 2 are in the same cycle. To the cycle generated by (1, 3) and the cycle generated by (2, 4b + 4) containing 2, add the edges (2, 2k - 1), (2k + 2, 4k - 1) and (4b+4, 2k+4b+4) and remove the edges (2, 4b+4), (2k+2, 2k+4b+4), (1, 4k-1) and (2k-1, 2k+1) to obtain a path with end vertices 1 and 2k+1=4a+1.

Note that $(2, 2k-1) \in E(G)$ because $2k-2 \neq 2$; hence, $(1, 2k-2) \notin E(G)$, k being even, and $(1, 2k-2)\sigma = (2, 2k-1)$.

(1b.2) Extend this path to a Hamiltonian path as in the procedure in (1b.1).

In the case where 2 and 4a+2 are in different cycles, the same edges are removed and added, except that two cycles are involved initially, a cycle containing 2 and a cycle containing 4a+2=2k+2.

(2) If $(1, 4b+3)\notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by (2, 4b+4).

Case 1: A cycle has more than two vertices.

(2a.1) Connect vertex 1 to 4b+4 (or 4k-4b) and then span the cycle containing it, ending at 2. Then connect 2 to the path (4k-1, 4k-3, 4k-5, ..., 4b+3).

(2b.1) Remove (x_1, y_1) from the cycle containing 2 such that $(x_1, 4b+1)$ and $(y_1, 3)$ are edges of G. Then add the path $(x_1, 4b+1, 4b-1, 4b-3, ..., 3, y_1)$ to obtain a path spanning OV(G) and the cycle containing 2 with end vertices 1 and 4b+3. Then proceed as in (1b.1) to complete the Hamiltonian path.

Case 2: Each cycle is an edge (degenerate case).

(2a.2) In this case, (2, 4a+2) generates cycles of L_2 and L_4 containing more than two vertices. Then proceed as in (1b.1), but replace the role of 4a by either 4k-4a or 4a, whichever is adjacent to 4b+1, and the role of 4a+1 by 4b+3.

(3) If $(1, 4a+2)\notin E(G)$, let $(2, 4b+4)\in E(G)$ and partition $L_2 \cup L_4$ into cycles generated by this edge.

Case 1: A cycle has more than two vertices.

(3a.1) Remove the path (4a-4b, 4a+2, 4a+4b+4) in the cycle containing 4a+2 and the edges (1, 3) and (4a+4b+3, 4a+4b+5) in the cycle generated by (1, 3), then add the edges (3, 4a+2), (4a+4b+3, 4a+4b+4) and (4a-4b, 4a+4b+5), since $k \neq 2b+1$, to obtain a path with end vertices 4a+2 and 1. Then proceed as in 1b.1) to complete the Hamiltonian path.

Case 2: A cycle has two vertices.

(3a.2) Remove (1, 3) and (4t + 1, 4a + 4b + 3), where 4t + 1 is adjacent to 4a + 4b + 4, from the cycle generated by (1, 3). Add the edge (3, 4a + 2) and the path 4t + 1, 4a + 4b + 4, 4a + 4b + 3) to obtain a path with end vertices 1 and 4a + 2. Then attach the rest of the degenerate cycles (y_i, z_i) by removing the edges $(x_i, x_i + 2), x_i \in L_1$, $y_i \in L_4, z_i \in L_2$, and adding the edges (x_i, y_i) and $(z_i, x_i + 2)$ to obtain the required Hamiltonain path.

(4) If $(1, 4k) \notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by (2, 4b+4).

Case 1: A cycle has more than two vertices.

(4a.1) Obtain a path with end vertices 1 and 4k from the cycle generated by (1, 3) and the cycle containing 4k by removing (1, 4k-1), (4k-4b-3, x) and (4k-4b-2, 4k, 4b+2), where $(x, 4b+2) \in E(G)$ and $x \in L_3$, and then adding the edges (4k-1, 4k), (x, 4b+2) and (4k-4b-3, 4k-4b-2).

(4b.1) Complete the Hamiltonian path by following the procedure in (1b.1). *Case 2*: A Cycle has only two vertices.

(4a.2) Partition instead L_2 and L_4 into cycles generated by the edge (2, 4c + 2). Then obtain a path with end vertices 1 and 4k from the cycle generated by (1, 3) and the cycles containing 4k and 4k-4b-2 by removing (4k-4b-2, 4c-4b-2), (4k, 4c) and (1, 3) and then adding the edges $(4c-4b-2, 4c) = (2, 4b+4)\sigma^{4c-4b-4}$ and (3, 2k). The last edge exists because $2k \neq 2$.

(4b.2) Complete the Hamiltonian path by following the procedure in (1b.1).

(5) If $(2, 4a+2)\notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by (2, 4b+4).

Case 1: A cycle has more than two vertices.

Case 1.1: Vertices 2 and 4a + 2 are in the same cycle.

(5a.1.1) Obtain a path with end vertices 2 and 4a+2 by removing the edges (2,4b+4) and (4a+2,4a+4b+4) from the cycle containing 2 and the edge (4a+4b+1,4a+4b+3) from the cycle generated by (1,3) and then adding the edges (4b+4,4a+4b+1) and (4a+4b+3,4a+4b+4). If (4b+4,4a+4b+1) $\notin E(G)$, replace 4a+4b+1 by 4a+4b+5. Complete the Hamiltonian path by following (1b.1).

Case 1.2: Vertices 2 and 4a+2 are in different cycles.

(5a.1.2) Obtain a path with end vertices 2 and 4a+2 by removing (2, 4b+4) and (4a+2, 4a+4b+4) from the two cycles containing 2 and 4a+2 and the edge (4a+4b+1, 4a+4b+3) from the cycle generated by (1, 3) and then adding the edges (4b+4, 4a+4b+1) and (4a+4b+3, 4a+4b+4). If $(4b+4, 4a+4b+1) \notin E(G)$, then replace 4a+4b+1 by 4a+4b+5. Finally, complete the Hamiltonian path following the procedure in (1b.1).

Case 2: A cycle has only two vertices.

Treat this case as in (5a.1.1), except that no edge is removed since each partition is already a path.

(6) If $(2, 4a+4) \notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by (2, 4b+4).

Case 1: A cycle has more than two vertices.

Case 1.1: Vertices 2 and 4a+4 are in the same cycle.

(6a.1.1) Remove the edges (4a-4b+2, 4a+4) and (2, 4k-4b) from the cycle containing 2 and the edge (1, 3) from the cycle generated by (1, 3) and then add the edges (1, 4k-4b) and (3, 4a-4b+2) to obtain a path with end vertices 2 and 4a+4. The last edge exists since $a \neq b$ and b < k. Complete the Hamiltonian path as in (1b.1).

Case 1.2: Vertices 2 and 4a+4 are in different cycles.

(6a.1.2) Remove (2, 4b + 4) and (4a + 4, 4a - 4b + 2) from the cycles containing 2 and 4a + 4 and the edge (1, 3) from the cycle generated by (1, 3) and then add (1, 4b + 4) and (3, 4a - 4b + 2) to obtain a path with end vertices 2 and 4a + 4. Complete the Hamiltonian path as in the procedure in (1b.1).

Case 2: There are two vertices in each cycle.

In this case obtain a Hamiltonian path with end vertices 2 and 4a + 4 as in (5a.2). This completes the proof. \Box

Theorem 3.4. Let G be an SC graph having a CP $\sigma = [1, 2, ..., 4k]$, $k \ge 2$, and having the edges (1, 2) and (1, 3). If it is an SHSC graph such that $N_{L_2}(1) = \{2\}$, then it is Hamiltonian connected.

4. Summary and recommendations

Strongly Hamiltonian self-complementary graphs (when $k \ge 3$) having properties (P1) and (P2) where $N_{L_2}(1) = L_2$ or $N_{L_2}(1) = \{2\}$ are also Hamiltonian connected. If the Hamiltonian connectedness of the classes $G'_n(4k)$, $G''_n(4k)$ and $G'''_n(4k)$, where *n* is neither 1 or 2, is decided, then the question as to which strongly Hamiltonian self-complementary graphs with properties (P1) and (P2) are also Hamiltonian connected will have been settled.

References

- L.D. Carrillo, On strongly Hamiltonian self-complementary graphs, Ph.D. Thesis, Ateneo de Manila Univ., Philippines, 1989.
- [2] C.R.J. Clapham, Hamiltonian arcs in self-complementary graphs, Discrete Math. 8 (1974) 251-255.
- [3] R.A. Gibbs, Self-complementary graphs, J. Combin. Theory Ser. B 16 (1974) 106-123.
- [4] C.St.J.A. Nash-Williams, Valency sequence which force graphs to have Hamiltonian circuits, Interim Report, Univ. of Waterloo, Ontario, Canada.
- [5] S.B. Rao, Solution of the Hamiltonian problem for self-complementary graphs, J. Combin. Theory Ser. B 27 (1979) 13-41.