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Abstract 

A self-complementary graph having a complementing permutation d = [ 1,2,3, ,4k], consisting of 

one cycle, and having the edges (1,2) and (1,3) is strongly Hamiltonian iff it has an edge between two 

even-labelled vertices. Some of these strongly Hamiltonian self-complementary graphs are also 

shown to be Hamiltonian connected. 

1. Introduction 

Definition 1.1. A graph G = ( V(G), E(G)) IS said to be self-complementary (SC) if there 

is a permutation u on V(G) such that (x,y)rr=(xa,ya)&E(G) iff (x,y)~E(Gr This 

permutation o is called a complementing permutation (CP). The graph G in which 

V(G)= V(G) and (x, y)~E(c) iff (x,y)$E(G) is called the complement of G. 

Definition 1.2. A graph is said to be Hamiltonian if it has a Hamiltonian cycle. If, in 

addition, every edge is contained in a Hamiltonian cycle, then it is said to be strongly 

Hamiltonian. Furthermore, if every pair of vertices are endpoints of a Hamiltonian 
path, then it is said to be Hamiltonian connected. 

The self-complementary graphs G investigated in this paper are those with the 

following properties: 

(Pl) G has a CP g = [l, 2,3, . . . ,4k], consisting of one cycle. 

(P2) G has edges (1,2) and (1,3). 

G obviously must have an even edge, i.e. an edge between two even-labelled vertices, 

to be strongly Hamiltonian; otherwise, it is almost constricted in the sense of 

Nash-Williams [4] and as such no odd edge can be contained in a Hamiltonian cycle. 

The details for the sufficiency of an even edge to make it strongly Hamiltonian are 

given in [l], 
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Partition the vertex set V(G) into L1uL2uL3uL4, where Li={XEV(G): 
x 2 i (mod 4)) for i = 1,2,3,4. Following the observations of Clapham [2] and Gibbs 

[3], self-complementary graphs having properties (Pl) and (P2) can be classified by 

means of the set N,,(l), the set of elements in L2 adjacent to vertex 1. The two 

subclasses discussed here, are those in which NLI (1) = Lz and NL2( 1) = { 2). 

Note that N,,(l), by property (P2), contains vertex 2, so it can be chosen in 2k-’ 

ways, specifically, any subset of L,\(2), and then augmented by vertex 2. 

Let the enumeration @ of the possible neighbors of vertex 1 in Lz be such that 

@(l)=L2 and Q(2)=(2). Th en associate with the enumeration @J the following classes 

of self-complementary graphs with properties (Pl) and (P2): G1(4k), the class where 

N,,(1)=L2; G2(4k), the class where N,,(l)= (2). Then the class G,(4k), n# 1,2, refers 

to a class where N,,(l) is neither L2 nor (2). 

2. Hamiltonian-connected self-complementary graphs, I 

Rao [S] introduced an SC graph G = G*(4k) which is defined as follows: 

(a) V(G)=(1,2,3, . . . . 4k); 

(W (x,Y)WG) iff 
(1) x,yr1,3(mod4), 

(2) x g 1 (mod 4) and y g 2 (mod 4) or 

(3) x g 3 (mod 4) and y g 0 (mod 4). 

This graph is in G1(4k). In view of [4], it has no Hamiltonian cycle. 

Now let OE(G) be the set of odd edges of G=G*(4k). Let (x,y)~oE(G)\c, where 

C={(l,3)0 . ) ‘l. IE N } where N is the set of natural numbers. Remove the set 

{(x,y)a 21: 1&J} 

and replace it by the set 

{(x,y)a 2!+l: /EN). 

The resulting graph is still in G1(4k), and in view of [l] it is already a strongly 

Hamiltonian self-complementary graph. 

Illustration 

2 6 4 0 

Note that the second graph is not Hamiltonian connected because vertices 1 and 

5 cannot be endpoints of a Hamiltonian path. 
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The replacement of a set of odd edges by even edges can be obtained in three typical 

ways by the following constructions. 

Construction2.1. Let~#Ac{l,2,...,1k/21 

replacing the set of edges 

{(1,4a+l)a2’: EA, 1EN) 

by the set of edges 

{(2,4a+2)a2’: UEA, IEN}. 

}. Obtain the class G; (4k ) from G * (4k) by 

A graph in this class contains edges between vertices in L2 but no edge between 

L2 and Lq. 

Construction 2.2. Let 8 #BE { 1,2, . . . , (k/21}. Obtain the class Gy(4k) from G*(4k) by 

replacing the set of edges 

{(1,4b+3)& bEB, 1EN) 

by the set of edges 

{(2,4b+4) CJ~‘: bEB, HEN}. 

A graph in this class contains edges between L2 and L4 but not edges between vertices 

in Lz. 

Construction 2.3. Let 8 # A, BE { 1,2, . . . , (k/2 I}. Obtain the class G;“(4k) from G*(4k) 
by replacing the edges 

{(1,4a+l)02’: UEA, IEN} and {(1,4b+3)a2’: bEB, /EN} 

by the set of edges 

{(2,4a+2)a2’: SEA, IEN} and {(2,4b+4)a2’: bEB, HEN). 

A graph in this class contains edges between vertices in L2 and edges between L2 
and Lb. 

Remark 2.4. For k=3, G;(4k), Gy(4k) and Gy’(4k) have one element each and all 

three graphs can be verified to be Hamiltonian connected. These graphs are illustrated 

in Fig. 1. 

Lemma 2.5. For k>4, any element in G;(4k),G;‘(4k) or G;“(4k) is Hamiltonian 

connected. 

Proof. In view of [ 11, it only remains to show that every pair of nonadjacent vertices 

are endpoints of a Hamiltonian path. 
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For G in G;(4k), every vertex in L1 is adjacent to every vertex in LJ. Hence, any 

nonadjacent pair of vertices is an automorphic image of one of the pairs 1 and 4a + 1, 

1 and 4b + 4,2 and 4a + 2 or 2 and 4b + 4, where 1 da, b < k - 1. Together with the fact 

that every vertex of L1 is adjacent to every vertex of Lz, a Hamiltonian path whose 

end points are any of the nonadjacent pairs above can easily be constructed. 

For G in Gy(4k), the subgraph induced by L1 (r L,) is a complete graph of order k. 
Therefore, a HP whose endpoints are nonadjacent pairs of vertices of the form 1 and 

4b + 3, 1 and 4b + 4 (whether 2 and 4b + 4 are adjacent or not), 2 and 4a + 2 or 2 and 

4b + 4 can easily be constructed. 

For G in G;“(4k), nonadjacent pairs are of the form 1 and 4a + 1,l and 4c + 3,1 and 

4b + 4 with (2,4x + ~)EE(G) for some x, 2 and 4d + 2 with (2,4y + 2@E(G) for some y, 

or 2 and 4e+4. For these nonadjacent pairs, corresponding Hamiltonian paths are 

constructed below: 

Case 1: (1,4a+ l)$E(G). Span L,uL2\{4a+ l} by a path with end vertices 1 and 

UEL~. Also span L3vLq by a path with end vertices u+2 and 4a+ 3. Then connect 

these paths by the edge (u, u + 2) and add the edge (4~ + 1,4a + 3) to obtain a HP with 

end vertices 1 and 4a + 1. 

Case 2: (1,4c+ 3)4E(G). Span LluLz by a path with end vertices 1 and 2. Also 

span L3uLq by a path with end vertices 4c+ 3 and 4c+4. Then connect these paths 

by the edge (2,4c + 4). 

Case 3: (1,4b+4)$E(G) and (2,4x+2)~E(G). Span L,uL2, using the edge 

(2,4x + 2) by a path with end vertices 1 and MEL, and span L3uLq by a path with end 

vertices u+2 and 4b+4. Then connect these paths by the edge (u, u+2). 

Case 4: (2,4d+2)$E(G) and (2,4y+2)~E(G). Span L,uL2\{4d+1,4d+2) by 

a path with end vertices 2 and 4x+ 1. Also span L3uLq, using the edge 

(2,4y+2)a4”+*, by a path with end vertices 4x+ 3 and 4d + 3. Then connect these 

paths by the edge (4x + 1,4x + 3) and add the path (4d + 3,4d + 1,4d + 2). 
Case 5: (2,4e +4)@(G). Span L1 uL, by a path with end vertices 2 and 4x + 1 and 

span L3uL4 by a path with end vertices 4x + 3 and 4e + 4. Then connect these paths 

by the edge (4x+1,4x+3). 0 

Theorem 2.6. Let G be a self-complementary graph with properties (Pl) and (P2). If G is 
such that N,,(l)= Lz, then G is Hamiltonian connected @it is strongly Hamiltonian and 
ka3. 

3. Hamiltonian-connected graphs, II 

The classes G;(4k),G’;(4k) and G;“(4k) obtained from G*(4k) have the property 

that N,,(l)=L,. Now obtain the graphs G;(4k), G;(4k) and G;l’(4k) from G;(4k), 
G;‘(4k) and G’,‘(4k), respectively, by removing the edges (1,4b + 2), b = 1,2,3, . . . , k - 1, 

and their automorphic images under the automorphism a”, HEN, and then replacing 

them by the edges (1,4k -4b), 1 d b < k - 1, with their automorphic images. Graphs in 



80 L.D. Carrillo 

these classes are strongly Hamiltonian self-complementary graphs with properties 

(Pl) and (P2). However, they have the property that N,,(1)=(2). 

Now if (2,4b+2)~E(G), where G~Gi(4k), then L2 and L4 can be partitioned into 

disjoint cycles as follows. 

Step 1: Define C,Z = {(2,4b+2) a4nb: OQndk’-1}, where b=db’ k=dk’ and 

d = gcd(k, b). 
Step 2: Define C,~=C~O~~, where O<p<d-1. 

Step 3: Define C,4=C~~4p+2, where O<pdd-1. 

Clearly, L, is a disjoint union of the cycles C,2 and L4 is the disjoint union of the 

cycles Cz. Let x~C,2, y~C,2 and xgy(mod4k). Then x=4nb+4p+2 and 

y = 4mb + 4q + 2 for some n, m. Hence, x-y 2 0 (mod 4k) implies that d divides p-q 

and k’ divides n-m as observed in the equations 

4(n-m)db’+4(p-q)=41dk’, 

db’=b and dk’=k. 

These cycles are said to be generated by the edge (2,4b f 2) via the CP 0. These cycles 

are degenerate if k=2b. 
If (2,4b+4)~E(G), where GEG;‘(4k), then L2uL4 can be partitioned into disjoint 

cycles as follows. 

Stepl: Define C,,=((2,4b+4)rJ(4b+2)n: O<n<k*-1), where 2b+l=d’b*, 

2k=drk*,d’=gcd(2k,2b+1). 
Step 2: Define C,= C,,~S~~, where 0 <p 6 d’ - 1. The cycles C, can easily be shown 

to be disjoint and span L2uL4. These cycles are degenerate if k=2b+ 1. 

Lemma 3.1. For k>4, any element GEGi(4k) is Hamiltonian connected. 

Proof. Note here that (4a + 1,4b + ~)EE(G) for all a, b =0, 1,2, . . ., k- 1. With these 

edges, the required Hamiltonian path for every nonadjacent pair of vertices can be 

obtained as automorphic images of the Hamiltonian paths constructed below: 

(1) (1,4b+ l)#E(G). Construct a required Hamiltonian path by the following steps: 

(la) Partition L2 and L4 into cycles generated by the edge (2,4b+2). Correspon- 

dingly partition L1 and L3 in such a way that if x is in a partition of L2 or L4, then 

x- 1 is in the corresponding partition of L1 or LJ. 

(lb) Let XEL, be such that (~,x)EE(G). Starting from vertex 1, span by a path this 

partition of L1, except 4b + 1, and a partition of L3 not containing x, if any, together 

with its cycle partition of L4 and ending at a vertex in L3. This is illustrated in Fig. 2. 

If there is only one partition each, traverse the edge from 1 to vertex y ( #x)EL~, 
then go to y + 1 E L4, span the rest of L4, then go to a vertex in L3 and go alternatively 

between L1 and L3, leaving out 4b + 1, and end at x. Then from x traverse the edge to 

2, span Lz up to 4b+2 and finally end at 4b+ 1. 

(lc) From the last vertex in L3, span one partition each of L1, L2, L3 and L4 at 

a time, each time ending at a vertex in L3, and finally end at x. 
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Fig. 2. 
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(Id) Complete the Hamiltonian path by connecting x to 2, spanning the last cycle 

of Lz, ending at 4b+2, then go finally to 4b+ 1. 

(2) (1,4a+2)$E(G) for 1 <a<k-1. Let (2,4b+2)~E(G) and do the partition as in 

(1). Let y ( # 1)~ L 1 be such that (y + 1,4a + 2) is an edge in a partition of Lz. Construct 

a required Hamiltonian path under the following cases. 
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Case 1: Vertices 1 and y are in the same partition. 

Case 1.1: Vertex y#4a+ 1. 

(2a. 1.1) Subsumed in this subcase is the fact that each partition has more than two 

vertices. From vertex 1 span the partition containing it, except y, and a partition in 

L3 together with its corresponding partition of L4, ending at a vertex in L3. This is 

illustrated in Fig. 3. 

(2b.l.l) From the last vertex in L 3, span a partition each from L,, Lx, L, and L, at 

a time, and each time ending at a vertex in L3, until all of L3 is spanned. 

(2c.l.l) Complete the Hamiltonian path by joining the last vertex in L3 to y, then to 

y+ 1, spanning the last cycle-partition of Lz, then ending at 4a+2. 

’ . . . . . ‘... .: i.. 
.I. 
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P 

Fig. 3. 
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Case 1.2: y = 4a + 1. This degenerate case happens only when a = b = k/2, i.e. a parti- 

tion of Lz is an edge, and (2,4b+2)=(2,2k+2). In this case, span I’(G) by the paths 

(1,2,2k+2,2k+1)02’ for Odl<k-1, 

remove the edge (2,2k + 2) and add the edges (2,2k + 3), (2k- 1,2k + l), (3, 5)04” and 

(2k+5,2k+7)a4” for m = 0, 1,2, . . . , (k - 4)/2 to obtain a Hamiltonian path with end 

vertices 1 and 2k+2. This is illustrated in Fig. 4. 

Case 2: Vertices 1 and y are not in the same partition. 

(2a.2) In this case choose y so that y#4a+ 1 and (y+ 1,4a+2)~E(G). Then from 

vertex 1, span the partition containing it and a partition in L3 together with their 

corresponding partitions in L, and L4, ending at a vertex in L3. This is illustrated 

in Fig. 5. 

;!:; .: ..- 
..!,. :;.. ‘” ‘/ y;,,,a I : 

2k-2 ak-2 

2k-1 

Fig. 4. 
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Fig. 5. 

(2b.2) Span a partition each of L1, Lz, L3 and L4 at a time, each time ending at 

a vertex in L,, until only the partition containing y is left unspanned in L1. 

(2~2) Complete the Hamiltonian path by joining the last vertex in L, to 

z (# y@L 1, then proceed to a vertex in L3, then to a vertex in Lq, spanning the rest of 

Lb, then go back to a vertex in L3, spanning the rest of L1 and L3, ending at y. 
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Finally, connect y to y+ 1 and span the rest of Lz, ending at 4aS2. 

(3) (1,4k)$E(G) 
(3a) Let (2,4b+2)~E(G) and partition V(G) as in (la) and let x (#4k-l)EL, be 

such that (x+ 1,4k) is an edge of a cycle-partition. 

If there is only one partition of Lz, then from vertex 1 go to vertex 2 and span Lz, 
then connect to W (#x) in L3 and go alternatively between L1 and L3, ending at 

a vertex x. Complete the Hamiltonian path by connecting x to x+ 1 and spanning 

L4 up to 4k. 
(3b) If there are 1> 1 partitions of L2, span I- 1 partitions each of L 1, L2, L3 and 

L4 from vertex 1 and ending at a vertex in L,, leaving out among others the partition 

containing x. This is illustrated in Fig. 6. 

(3~) Connect the last vertex in L3 to a vertex in L2, then span the rest of L2, then go 

to a vertex in L1. From there, go alternatively between L1 and L3, ending at a vertex x. 

(3d) Complete the Hamiltonian path by connecting x to xs 1 and span the rest of 

L, up to 4k. 
(4) (2,4u+2)$E(G) and (2,4b+2)~E(G). 

Case 1. Vertices 2 and 4u+2 are not in the same cycle generated by (2,4b +2). 

(4a.l) From vertex 2, span the partition containing it, then proceed to a vertex in 

L1; then span the partition of L1 containing it and a partition of L3 together with its 

corresponding partition in Lq, ending at a vertex in L1. 
(4b.l) From the last vertex in L1, span one partition each of L,, L2, L3 and L, at 

a time, each time ending at a vertex in L 1, until only the partition containing 4u + 2 is 

left in Lz. 
(4c.l) Connect the last vertex in L1 to a vertex in L4 and span the rest of La. Then 

proceed to a vertex in L3 and go back and forth between L1 and LJ, ending at x in L1, 
where (x + 1,4u + 2) is an edge in a cycle-partition of L,. 

(4d.l) Complete the Hamiltonian path by connecting x to x + 1, then spanning the 

rest of L2 up to 4u+2. 

Case 2: Vertices 2 and 4u+2 are in the same cycle generated by (2,4b+2). 

(4a.2) Let y be adjacent to 4u+2 in a cycle-partition such that the paths from 2 to 

y and from 4b+2 to 4u+2 span this cycle. Further, let ZEL~ be such that 

(z, 4b + ~)EE( G). Then from 2, span part of the cycle to y, connect y to y - 1 and span 

this partition of L1 and a partition of L3 not containing z, if any, together with its 

corresponding partition in L_+, ending at a vertex in L1. 
If there is only one partition of Lz, let WEL, be such that (y- 1, w)EE(G). From 

y- 1, proceed instead to w and span L,, ending at some vertex x (#z + l), then 

connect to x - 1 and alternate between L1 and Lx, ending at z. Finally, connect to 

4b+ 2 and span the rest of L2 up to 4a+2. 

(4b.2) From the last vertex in L1, span one partition each of L1, Lz, L3 and L, at 

a time, each time ending at L,, until only one partition each of L,, L2, L3 and L_, and 

the path from 4b +2 to 4u+2 are left unspanned. 

(4c.2) From the last vertex in L1, go to a vertex in La, span the rest of La, then 

connect to a vertex in L3. From there, span the rest of L3 and L1 with the 
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Fig. 6 

corresponding partition in Lz, ending at ZEL~. Finally, connect z to 4b -t 2 and span 
the rest of L, up to 4a+2. 

(5) (2,4a+4)4WG). 
(5a) Let (2,4b+2)~E(G) and partition V(G) as in (la). Let XEL, and YEL, be such 

that (x, y)eE( G), (y, 4a + 4) is an edge in a cycle-partition and x is not in the partition 
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containing 1, if there is more than one cycle generated by (2,4b + 2). From vertex 2, 

span the partition containing it, then connect to a vertex in the corresponding 

partition of L1. Span this partition of L1, together with a partition of L3 not 

containing y- 1, and its corresponding partition in Lqr then end at a vertex in L1. 
(5b) From the last vertex in L1, span one partition each from L,, L2, L3 and L4 at 

a time, each time ending at a vertex in L 1, until only one partition each of L1, Lz, L3 

and L4 is left. 

In case there is only one partition, from 2 span the rest of L,, then go to a vertex in 

L3, then alternate between L, and L3, ending at XEL,. Finally, connect x to y and 

span the rest of L4 to 4a + 4. 

(5~) From the last vertex in L,, connect to a vertex in LJ, then to a vertex in 

Lz, spanning the rest of L2, then go to a vertex in L1 and alternate between L1 

and L3, ending at x. Finally, connect x to y and span the rest of L4 up to vertex 

4a+4. 0 

Lemma 3.2. For k 34, if GEG;‘(4k), then G is Hamiltonian connected. 

Proof. Here, the subgraph induced by L1 (rz L3) is a complete graph. A Hamiltonian 

path whose endpoints are nonadjacent vertices can be obtained as an automorphic 

image of one of the HP’s constructed below: 

(1) (1946 + WE(G). 
(la) Partition L2uL4 into cycles generated by the edge (2,4b+4). 

Case 1: There is an odd number of cycles. 

Case 1.1: There is only one cycle. 

(1b.l.l) From vertex 1, span L1, then join the last vertex to a vertex in Lb, then 

span L2uL4, ending at a vertex in L2. Then connect to a vertex in L3 (#4b+3) and 

span L3, ending at 46 + 3. 

Case 1.2: There are at least three cycles. 

(lb.1.2) Connect vertex 1 to a vertex in L4 and span the cycle containing it, ending 

at a vertex in Lz. 

(lc. 1.2) Connect the last vertex in L2 to a vertex in L3 ( # 4b + 3), then go back to 

a vertex in L2, spanning the cycle containing it and ending at a vertex in L4. Proceed 

to a vertex in L1, return to a vertex in Lq, spanning the cycle containing it and ending 

at a vertex in L2. Repeat the process until only one cycle is left, the last vertex spanned 

being in Lq. 
(ld.1.2) From the last vertex in Lb, go to a vertex in L1, span the rest of L1, then 

proceed to a vertex in La, spanning the last cycle, ending at a vertex in L2. 

(le.1.2) Complete the Hamiltonian path by proceeding to a vertex in L3 and 

spanning the rest of L3 up to the vertex 4b+3. 
Case 2. There is an even number of cycles. 

(lb.2) From vertex 1, go instead to vertex 2, then span the cycle containing it, 

ending at a vertex in Lb. Then proceed as in case 1.2 to obtain the required 

Hamiltonian path. 
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(2) (1,4a+2)$E(G). Let (2,4b+4)~E(G) and partition L,uL, into cycles generated 

by (2,4b + 4). 

Case 1: (2,4b + 4) generates only one cycle. 

(2a.l) Let xeL,,y~L, besuch that (x,4~+4b+4)and(y,4~+2)~E(G). Span L, by 

starting at 1 and ending at x. Then go to 4a + 4b + 4 and go through the vertices of the 

cycle up to 4a-4b, leaving out 4a + 2. Then proceed to a vertex in L3, then span L3, 
ending at y. Finally, connect y to 4a+ 2. If a+ b-t 1 = k, reverse the roles of 

4a+4b+4=4k and 4a-4b. 

Case 2: (2,4b + 4) generates at least two cycles. 

Case 2.1: There is an odd number of cycles and each cycle has more than two 

vertices. 

(2a.2.1) Let y be as in (2a.l). From 1 go to 4a + 4b + 4 and span the cycle up to 

4a - 4b, leaving out 4a + 2. Then go to 4a -4b - 1, then to a vertex in Lz, spanning the 

cycle containing it and ending at a vertex in La. 

(2b.2.1) From this vertex of L4 go to a vertex in L1, then return to Lb, spanning 

a cycle and ending at a vertex in L2. Repeat the process until only one cycle is left, with 

the last vertex traversed in Lb. 

(2c.2.1) Connect the last vertex in L4 to a vertex in L 1, span the rest of L1 then go to 

a vertex in Lq, spanning the last cycle, and ending at a vertex in Lz. 
(2d.2.1) Finally, continue on to a vertex in L 3, spanning the rest of L, up to vertex 

y, and then to 4a+2. 
Case 2.2: There is an odd number of cycles and each cycle is an edge (degenerate 

case). 

(2a.2.2.) Let x be as in (2a. 1). Then from vertex 1 go to a vertex in L4 ( #4a + 4b + 4), 

then span the edge. Go to a vertex in L3, continue to a vertex in L2 (f4a + 2), then 

span the edge and go to a vertex in L1. Repeat the process until only two edges are left 

with the last vertex spanned in Lz. 
(2b.2.2) Proceed to a vertex in L,, span the rest of L3 and go to a vertex in Lz, then 

span the edge and proceed to L1, spanning the rest of L1 and ending at vertex x. 

Finally, join x to 4a + 4b + 4 and then go to 4a + 2. 

Case 2.3: There is an even number of cycles and each cycle has more than two 

vertices. 

(2a.2.3) Proceed as in case 2.1, but instead connect the vertex 4a-4b to a vertex in 

L,. The effect is to end up at y. Proceed finally to 4a+2. 

(3) (1,4k)$E(G). Let (2,4b+4)~E(G) and partition L2uL_, as in (la). Then proceed 

as in (2) but interchange the roles of x and y, and replace the roles of 4a + 2,4a + 4b + 4, 

and 4a - 4b by 4k, 4b + 2, and 4k - 4b - 2, respectively, and start from vertex 1, then to 

3 and let 3 take the role of 1, except in Case 1.2, where 4k- 1 takes the role of y. 

(4) (2,4a+2)$E(G) Vl<a<k-1. 

Case 1: Vertices 4a + 2 and 2 are in the same cycle generated by (2,4b + 4). 

Case 1.1: There is only one cycle. 

(4a.l.l) From vertex 2 span the cycle through 4b + 4 up to 4a-4b, then connect the 

latter to a vertex in L3, then span L3 and connect the last vertex to 4a +4b +4, 
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leaving out 4a+2. Then span the rest of the cycle up to 4k-4b, connect this to 

a vertex in L 1, span L 1, then connect the last vertex to 4a + 2. 

Case 1.2: There are at least two cycles. 

(4a.1.2) From vertex 2, span the vertices as in (4a.l.l) up to 4k -4b, but traverse 

only one vertex in L3. Then proceed as in (2b.2.1) until only one cycle is left. If the last 

vertex is in L2, connect this to a vertex in L3, span L3 then return to a vertex in L2 and 

span the last cycle to a vertex in Lq. Then go to a vertex in L1, span the rest of L1, 

ending at 4a+ 1. Finally, go to 4a+2. On the other hand, if the last vertex is in Lq, 

connect this to a vertex in L,, span the rest of L1, except 4a+ 1, then go back to 

a vertex in L4 and span the last cycle, ending at a vertex in Lz. Finally, connect this to 

a vertex in L3 ( # 40 + 3), span the rest of L3 up to 4a + 3 and then connect 4a + 1 to 

vertex 4a + 2. 

Case 2: Vertices 4a + 2 and 2 are not in the same cycle. 

(4a.2) Span from 2 the cycle containing it up to 4b + 4, then go to 4b + 3, then to 

4a + 4b + 4, spanning the cycle up to 4a - 4b, leaving out 4a + 2. 

(4b.2) If there are only two cycles, go from vertex 4a - 4b to a vertex in Lj, span the 

rest of L3, then connect to a vertex in L 1, span the rest of L, ending at x, where 

(x, 4a + 2)&(G), and, finally, connect the last vertex to 4u + 2. If there are more than 

two cycles, proceed as in (4a.1.2). 

(5) (2,4a+4)$E(G). Let (2,4b+4)~E(G). Then proceed as in (4) but let 4a+4 take 

the role of 4u +2, taking into consideration the adjacencies between L1 and 

L,uL‘p cl 

Lemma 3.3. For k>4, if GEG;“(4k), then G is Hamiltonian connected. 

Proof. From the Hamiltonian paths constructed below, a Hamiltonian path whose 

end vertices are nonadjacent can be obtained as an automorphic image of one of them. 

(1) (1,4a + l)$E(G):- Partition L2 and L4 into cycles generated by (2,4u + 2). Then, 

using the edge (2,4b + 4), obtain a cycle from a cycle of L2 and a cycle of L4 for each pair 

of cycles connected by some edge of the form (2,4b +4)a4’. This is illustrated in Fig. 7. 

Case 1: A cycle in L2 has more than two vertices. 

(la. 1) First, choose the connected pair of cycles containing 4k-46 - 2 and 4k. 

Obtain a path from these cycles by deleting the edges (4k - 4b - 2, 4k - 4a -4b - 2), 

(4k, 4~) and (4k, 4k -4a) and adding the edges (4k-4b - 2,4k) and 

(4k -4a - 4b - 2,4k - 4a). Then extend this to a path with end vertices 1 and 4a + 1 by 

adding the edges (4k, 4k - 1) and (4a, 4a - 1) and the cycle generated by the edge (1,3), 

where the edges (1,4k- 1) and (4a- 1,4a + 1) are deleted. 

(lb.1) Extend this path to a Hamiltonian path by adding the edges (yi, yi- l), 

(yi+ l,y,-4~) or (yi+ ~,JJ,+~u), whichever applies, where yi~L4 for i= 1,2, . . ..p- 1 

and p is the number of cycles in L, generated by (2,4a + 2), and by deleting the edges 

(yi, yi - 4a) or (yi, yi + 4~), whichever applies. 

Case 2: A cycle in L2 is an edge (degenerate case). 
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Fig. I. 

In this case the cycles generated by the edge (2,4b + 4) cannot be degenerate because k 
must be even, i.e. k = 2a; therefore, the cycles generated by (2,4b + 4) have at least 4 vertices. 

(la.2) Partition L2uL4 into cycles generated by (2,4b +4) and suppose that 

4a + 2 = 2k + 2 and 2 are in the same cycle. To the cycle generated by (1,3) and the 

cycle generated by (2,4b + 4) containing 2, add the edges (2,2k - I), (2k + 2,4k - 1) and 
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(4b + 4,2k + 4b + 4) and remove the edges (2,4b + 4) (2k + 2,2k + 4b + 4), (1,4k - 1) and 

(2k- 1,2k + 1) to obtain a path with end vertices 1 and 2k+ 1=4a+ 1. 

Note that (2,2k-~)EE(G) because 2k-252; hence, (1,2k-2)$E(G), k being even, 

and (1,2k_2)a=(2,2k- 1). 

(lb.2) Extend this path to a Hamiltonian path as in the procedure in (lb.1). 

In the case where 2 and 4a+2 are in different cycles, the same edges are removed 

and added, except that two cycles are involved initially, a cycle containing 2 and 

a cycle containing 4a + 2 = 2k + 2. 

(2) If (1,4b+3)$E(G), partition L,uL, into cycles generated by (2,4b+4). 

Case 1: A cycle has more than two vertices. 

(2a. 1) Connect vertex 1 to 4b + 4 (or 4k - 4b) and then span the cycle containing it, 

ending at 2. Then connect 2 to the path (4k- 1,4k-3,4k-5, . . . . 4b+ 3). 

(2b. 1) Remove (x 1, y ,) from the cycle containing 2 such that (xi, 4b + 1) and (y 1, 3) 

are edges of G. Then add the path (x 1, 4b + 1,4b - 1,4b - 3, . . . ,3, yi) to obtain a path 

spanning OV(G) and the cycle containing 2 with end vertices 1 and 4b+ 3. Then 

proceed as in (lb.1) to complete the Hamiltonian path. 

Case 2: Each cycle is an edge (degenerate case). 

(2a.2) In this case, (2,4a + 2) generates cycles of Lz and L4 containing more than 

two vertices. Then proceed as in (1 b. l), but replace the role of 4a by either 4k - 4a or 

4a, whichever is adjacent to 4b+ 1, and the role of 4a+ 1 by 4b+3. 

(3) If (1,4a+2)$E(G), let (2,4b+4)EE(G) and partition L2uL, into cycles gener- 

ated by this edge. 

Case 1: A cycle has more than two vertices. 

(3a. 1) Remove the path (4a - 4b, 4a + 2,4a + 4b + 4) in the cycle containing 4a + 2 

and the edges (1,3) and (4a + 4b + 3,4a + 4b + 5) in the cycle generated by (1,3), then 

add the edges (3,4a + 2) (4a + 4b + 3,4a + 4b + 4) and (4a - 4b, 4a + 4b + 5), since 

k # 2b + 1, to obtain a path with end vertices 4a + 2 and 1. Then proceed as in lb. 1) to 

complete the Hamiltonian path. 

Case 2: A cycle has two vertices. 

(3a.2) Remove (1,3) and (4t + 1,4a + 4b + 3), where 4t + 1 is adjacent to 4a + 4b + 4, 

from the cycle generated by (1,3). Add the edge (3,4a+2) and the path 

4t + 1,4a + 4b + 4,4a + 4b + 3) to obtain a path with end vertices 1 and 4a + 2. Then 

attach the rest of the degenerate cycles (yi, Zi) by removing the edges (Xi, xi + 2), XiE L1, 

YieL4, ziELZ, and adding the edges (Xi, yi) and (zi,xi + 2) to obtain the required 

Hamiltonain path. 

(4) If (1,4k)$E(G), partition L2uLq into cycles generated by (2,4b+4). 
Case 1: A cycle has more than two vertices. 

(4a.l) Obtain a path with end vertices 1 and 4k from the cycle generated by (1,3) 

and the cycle containing 4k by removing (1,4k - l), (4k - 4b - 3, x) and (4k - 4b - 2, 

4k,4b+2), where (x, 4b+2)EE(G) and XGL,, and then adding the edges 

(4k-1,4k),(x,4b+2 and (4k-4b-3,4k-4b-2). 

(4b.l) Complete the Hamiltonian path by following the procedure in (lb.1). 

Case 2: A Cycle has only two vertices. 
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(4a.2) Partition instead Lz and L4 into cycles generated by the edge (2,4c + 2). Then 

obtain a path with end vertices 1 and 4k from the cycle generated by (1,3) and the 

cycles containing 4k and 4k - 4b - 2 by removing (4k - 4b - 2,4c - 4b - 2), (4k, 4c) and 

(1,3) and then adding the edges (4c-4b-2,4c)=(2,4b+4)a4c-4b-4 and (3,2k). The 

last edge exists because 2kf2. 
(4b.2) Complete the Hamiltonian path by following the procedure in (1b.l). 

(5) If (2,4a+2)$E(G), partition L2uL4 into cycles generated by (2,4b+4). 

Case 1: A cycle has more than two vertices. 

Case 1.1: Vertices 2 and 4a + 2 are in the same cycle. 

(5a.l.l) Obtain a path with end vertices 2 and 4a + 2 by removing the edges 

(2,4b+4) and (4a+2,4u+4b t4) from the cycle containing 2 and the edge 

(4~ + 4b + 1,4u + 4b + 3) from the cycle generated by (1,3) and then adding the edges 

(4b + 4,4u + 4b + 1) and (4~ + 4b + 3,4a + 4b + 4). If (4b + 4,4a + 4b + l)$E(G), replace 

4a + 4b + 1 by 4u + 4b + 5. Complete the Hamiltonian path by following (1b.l). 

Case 1.2: Vertices 2 and 4a + 2 are in different cycles. 

(5a. 1.2) Obtain a path with end vertices 2 and 4a + 2 by removing (2,4b + 4) and 

(4a + 2,4u+4b+4) from the two cycles containing 2 and 4a+2 and the edge 

(4a+4b+ 1,4a+4b+ 3) from the cycle generated by (1,3) and then adding the edges 

(4b+4,4u+4b+l) and (4a+4b+3,4u+4b+4). If (4b+4,4a+4b+l)$E(G), then 

replace 4u + 4b + 1 by 4a + 4b + 5. Finally, complete the Hamiltonian path following 

the procedure in (1b.l). 

Case 2: A cycle has only two vertices. 

Treat this case as in (5a.l.l), except that no edge is removed since each partition is 

already a path. 

(6) If (2,4u+4)$E(G), partition L2 uL4 into cycles generated by (2,4b+4). 
Case 1: A cycle has more than two vertices. 

Case 1.1: Vertices 2 and 4a +4 are in the same cycle. 

(6a. 1.1) Remove the edges (4a - 4b + 2,4a + 4) and (2,4k- 4b) from the cycle con- 

taining 2 and the edge (1,3) from the cycle generated by (1,3) and then add the edges 

(1,4k - 4b) and (3,4u - 4b + 2) to obtain a path with end vertices 2 and 4u + 4. The last 

edge exists since a # b and b <k. Complete the Hamiltonian path as in (lb.1). 

Case 1.2: Vertices 2 and 4a + 4 are in different cycles. 

(6a. 1.2) Remove (2,4b + 4) and (4a + 4,4u - 4b + 2) from the cycles containing 2 and 

4a + 4 and the edge (1,3) from the cycle generated by (1,3) and then add (1,4b + 4) and 

(3,4a-4b + 2) to obtain a path with end vertices 2 and 4u +4. Complete the 

Hamiltonian path as in the procedure in (lb.1). 

Case 2: There are two vertices in each cycle. 

In this case obtain a Hamiltonian path with end vertices 2 and 4u+4 as in (5a.2). 

This completes the proof. 0 

Theorem 3.4. Let G be an SC graph having a CP o = [ 1,2, . . . ,4k], k 2 2, and having 
the edges (1,2) and (1,3). If it is an SHSC graph such that N,,(1)=(2), then it is 
Hamiltonian connected. 
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4. Summary and recommendations 

Strongly Hamiltonian self-complementary graphs (when k 3 3) having properties 

(Pl)and(P2)whereN,,(1)=L,orNL,(1)={2} are also Hamiltonian connected. If the 

Hamiltonian connectedness of the classes GA(4k), Gi(4k) and G:‘(tk)), where it is 

neither 1 or 2, is decided, then the question as to which strongly Hamiltonian 

self-complementary graphs with properties (Pl) and (P2) are also Hamiltonian con- 

nected will have been settled. 
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