Hamiltonian-connected self-complementary graphs

Luis D. Carrillo
MSU-IIT, Tibanga, Iligan City, 9200, Philippines

Received 27 November 1990
Revised 17 January 1992

Abstract

A self-complementary graph having a complementing permutation $\sigma=[1,2,3, \ldots, 4 k]$, consisting of one cycle, and having the edges $(1,2)$ and $(1,3)$ is strongly Hamiltonian iff it has an edge between two even-labelled vertices. Some of these strongly Hamiltonian self-complementary graphs are also shown to be Hamiltonian connected.

1. Introduction

Definition 1.1. A graph $G=\langle V(G), E(G)\rangle$ is said to be self-complementary (SC) if there is a permutation σ on $V(G)$ such that $(x, y) \sigma=(x \sigma, y \sigma) \notin E(G) \mathrm{iff}(x, y) \in E(G)$. This permutation σ is called a complementing permutation (CP). The graph \bar{G} in which $V(G)=V(G)$ and $(x, y) \in E(\bar{G})$ iff $(x, y) \notin E(G)$ is called the complement of G.

Definition 1.2. A graph is said to be Hamiltonian if it has a Hamiltonian cycle. If, in addition, every edge is contained in a Hamiltonian cycle, then it is said to be strongly Hamiltonian. Furthermore, if every pair of vertices are endpoints of a Hamiltonian path, then it is said to be Hamiltonian connected.

The self-complementary graphs G investigated in this paper are those with the following properties:
(P1) G has a CP $\sigma=[1,2,3, \ldots, 4 k]$, consisting of one cycle.
(P2) G has edges $(1,2)$ and $(1,3)$.
G obviously must have an even edge, i.e. an edge between two even-labelled vertices, to be strongly Hamiltonian; otherwise, it is almost constricted in the sense of Nash-Williams [4] and as such no odd edge can be contained in a Hamiltonian cycle. The details for the sufficiency of an even edge to make it strongly Hamiltonian are given in [1].

Partition the vertex set $V(G)$ into $L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$, where $L_{i}=\{x \in V(G)$: $x \cong i(\bmod 4)\}$ for $i=1,2,3,4$. Following the observations of Clapham [2] and Gibbs [3], self-complementary graphs having properties (P 1) and (P 2) can be classified by means of the set $N_{L_{2}}(1)$, the set of elements in L_{2} adjacent to vertex 1. The two subclasses discussed here are those in which $N_{L_{2}}(1)=L_{2}$ and $N_{L_{2}}(1)=\{2\}$.

Note that $N_{L_{2}}(1)$, by property (P2), contains vertex 2 , so it can be chosen in 2^{k-1} ways, specifically, any subset of $L_{2} \backslash\{2\}$, and then augmented by vertex 2 .

Let the enumeration Φ of the possible neighbors of vertex 1 in L_{2} be such that $\Phi(1)=L_{2}$ and $\Phi(2)=\{2\}$. Then associate with the enumeration Φ the following classes of self-complementary graphs with properties (P 1$)$ and (P 2): $G_{1}(4 k)$, the class where $N_{L_{2},}(1)=L_{2} ; G_{2}(4 k)$, the class where $N_{L_{2}}(1)=\{2\}$. Then the class $G_{n}(4 k), n \neq 1,2$, refers to a class where $N_{L_{2}}(1)$ is neither L_{2} nor $\{2\}$.

2. Hamiltonian-connected self-complementary graphs, I

Rao [5] introduced an SC graph $G=G^{*}(4 k)$ which is defined as follows:
(a) $V(G)=\{1,2,3, \ldots, 4 k\}$;
(b) $(x, y) \in E(G)$ iff
(1) $x, y \cong 1,3(\bmod 4)$,
(2) $x \cong 1(\bmod 4)$ and $y \cong 2(\bmod 4)$ or
(3) $x \cong 3(\bmod 4)$ and $y \cong 0(\bmod 4)$.

This graph is in $G_{1}(4 k)$. In view of [4], it has no Hamiltonian cycle.
Now let $\operatorname{OE}(G)$ be the set of odd edges of $G=G^{*}(4 k)$. Let $(x, y) \in \operatorname{OE}(G) \backslash C$, where $C=\left\{(1,3) \sigma^{2 l}: l \in \mathbb{N}\right\}$, where \mathbb{N} is the set of natural numbers. Remove the set

$$
\left\{(x, y) \sigma^{2 l}: l \in \mathbb{N}\right\}
$$

and replace it by the set

$$
\left\{(x, y) \sigma^{2 l+1}: l \in \mathbb{N}\right\} .
$$

The resulting graph is still in $G_{1}(4 k)$, and in view of [1] it is already a strongly Hamiltonian self-complementary graph.

Illustration

Note that the second graph is not Hamiltonian connected because vertices 1 and 5 cannot be endpoints of a Hamiltonian path.

The replacement of a set of odd edges by even edges can be obtained in three typical ways by the following constructions.

Construction 2.1. Let $\emptyset \neq A \subseteq\{1,2, \ldots,|k / 2|\}$. Obtain the class $G_{1}^{\prime}(4 k)$ from $G^{*}(4 k)$ by replacing the set of edges

$$
\left\{(1,4 a+1) \sigma^{2 l}: a \in A, l \in \mathbb{N}\right\}
$$

by the set of edges

$$
\left\{(2,4 a+2) \sigma^{2 l}: a \in A, l \in \mathbb{N}\right\} .
$$

A graph in this class contains edges between vertices in L_{2} but no edge between L_{2} and L_{4}.

Construction 2.2. Let $\emptyset \neq B \subseteq\{1,2, \ldots,|k / 2|\}$. Obtain the class $G_{1}^{\prime \prime}(4 k)$ from $G^{*}(4 k)$ by replacing the set of edges

$$
\left\{(1,4 b+3) \sigma^{2 l}: b \in B, l \in \mathbb{N}\right\}
$$

by the set of edges

$$
\left\{(2,4 b+4) \sigma^{2 l}: b \in B, l \in \mathbb{N}\right\} .
$$

A graph in this class contains edges between L_{2} and L_{4} but not edges between vertices in L_{2}.

Construction 2.3. Let $\emptyset \neq A, B \subseteq\{1,2, \ldots,|k / 2|\}$. Obtain the class $G_{1}^{\prime \prime}(4 k)$ from $G^{*}(4 k)$ by replacing the edges

$$
\left\{(1,4 a+1) \sigma^{2 l}: a \in A, l \in \mathbb{N}\right\} \quad \text { and } \quad\left\{(1,4 b+3) \sigma^{2 l}: b \in B, l \in \mathbb{N}\right\}
$$

by the set of edges

$$
\left\{(2,4 a+2) \sigma^{2 l}: a \in A, l \in \mathbb{N}\right\} \quad \text { and } \quad\left\{(2,4 b+4) \sigma^{2 l}: b \in B, l \in \mathbb{N}\right\} .
$$

A graph in this class contains edges between vertices in L_{2} and edges between L_{2} and L_{4}.

Remark 2.4. For $k=3, G_{1}^{\prime}(4 k), G_{1}^{\prime \prime}(4 k)$ and $G_{1}^{\prime \prime \prime}(4 k)$ have one element each and all three graphs can be verified to be Hamiltonian connected. These graphs are illustrated in Fig. 1.

Lemma 2.5. For $k \geqslant 4$, any element in $G_{1}^{\prime}(4 k), G_{1}^{\prime \prime}(4 k)$ or $G_{1}^{\prime \prime \prime}(4 k)$ is Hamiltonian connected.

Proof. In view of [1], it only remains to show that every pair of nonadjacent vertices are endpoints of a Hamiltonian path.

जकणिए :

1

Fig. 1.

For G in $G_{1}^{\prime}(4 k)$, every vertex in L_{1} is adjacent to every vertex in L_{3}. Hence, any nonadjacent pair of vertices is an automorphic image of one of the pairs 1 and $4 a+1$, 1 and $4 b+4,2$ and $4 a+2$ or 2 and $4 b+4$, where $1 \leqslant a, b \leqslant k-1$. Together with the fact that every vertex of L_{1} is adjacent to every vertex of L_{2}, a Hamiltonian path whose end points are any of the nonadjacent pairs above can easily be constructed.

For G in $G_{1}^{\prime \prime}(4 k)$, the subgraph induced by $L_{1}\left(\cong L_{3}\right)$ is a complete graph of order k. Therefore, a HP whose endpoints are nonadjacent pairs of vertices of the form 1 and $4 b+3,1$ and $4 b+4$ (whether 2 and $4 b+4$ are adjacent or not), 2 and $4 a+2$ or 2 and $4 b+4$ can easily be constructed.

For G in $G_{1}^{\prime \prime \prime}(4 k)$, nonadjacent pairs are of the form 1 and $4 a+1,1$ and $4 c+3,1$ and $4 b+4$ with $(2,4 x+2) \in E(G)$ for some $x, 2$ and $4 d+2$ with $(2,4 y+2) \in E(G)$ for some y, or 2 and $4 e+4$. For these nonadjacent pairs, corresponding Hamiltonian paths are constructed below:

Case 1: $(1,4 a+1) \notin E(G)$. Span $L_{1} \cup L_{2} \backslash\{4 a+1\}$ by a path with end vertices 1 and $u \in L_{1}$. Also span $L_{3} \cup L_{4}$ by a path with end vertices $u+2$ and $4 a+3$. Then connect these paths by the edge $(u, u+2)$ and add the edge $(4 a+1,4 a+3)$ to obtain a HP with end vertices 1 and $4 a+1$.

Case 2: $(1,4 c+3) \notin E(G)$. Span $L_{1} \cup L_{2}$ by a path with end vertices 1 and 2. Also span $L_{3} \cup L_{4}$ by a path with end vertices $4 c+3$ and $4 c+4$. Then connect these paths by the edge $(2,4 c+4)$.

Case 3: $(1,4 b+4) \notin E(G)$ and $(2,4 x+2) \in E(G)$. Span $L_{1} \cup L_{2}$, using the edge ($2,4 x+2$), by a path with end vertices 1 and $u \in L_{1}$ and span $L_{3} \cup L_{4}$ by a path with end vertices $u+2$ and $4 b+4$. Then connect these paths by the edge ($u, u+2$).

Case 4: $(2,4 d+2) \notin E(G)$ and $(2,4 y+2) \in E(G)$. Span $L_{1} \cup L_{2} \backslash\{4 d+1,4 d+2\}$ by a path with end vertices 2 and $4 x+1$. Also span $L_{3} \cup L_{4}$, using the edge $(2,4 y+2) \sigma^{4 x+2}$, by a path with end vertices $4 x+3$ and $4 d+3$. Then connect these paths by the edge $(4 x+1,4 x+3)$ and add the path $(4 d+3,4 d+1,4 d+2)$.

Case 5: $(2,4 e+4) \notin E(G)$. Span $L_{1} \cup L_{2}$ by a path with end vertices 2 and $4 x+1$ and span $L_{3} \cup L_{4}$ by a path with end vertices $4 x+3$ and $4 e+4$. Then connect these paths by the edge $(4 x+1,4 x+3)$.

Theorem 2.6. Let G be a self-complementary graph with properties $(\mathrm{P} 1)$ and $(\mathrm{P} 2)$. If G is such that $N_{L_{2}}(1)=L_{2}$, then G is Hamiltonian connected iff it is strongly Hamiltonian and $k \geqslant 3$.

3. Hamiltonian-connected graphs, II

The classes $G_{1}^{\prime}(4 k), G_{1}^{\prime \prime}(4 k)$ and $G_{1}^{\prime \prime \prime}(4 k)$ obtained from $G^{*}(4 k)$ have the property that $N_{L_{2}}(1)=L_{2}$. Now obtain the graphs $G_{2}^{\prime}(4 k), G_{2}^{\prime \prime}(4 k)$ and $G_{2}^{\prime \prime \prime}(4 k)$ from $G_{1}^{\prime}(4 k)$, $G_{1}^{\prime \prime}(4 k)$ and $G_{1}^{\prime \prime \prime}(4 k)$, respectively, by removing the edges $(1,4 b+2), b=1,2,3, \ldots, k-1$, and their automorphic images under the automorphism $\sigma^{2 l}, l \in \mathbb{N}$, and then replacing them by the edges $(1,4 k-4 b), 1 \leqslant b \leqslant k-1$, with their automorphic images. Graphs in
these classes are strongly Hamiltonian self-complementary graphs with properties (P1) and (P2). However, they have the property that $N_{L_{2}}(1)=\{2\}$.

Now if $(2,4 b+2) \in E(G)$, where $G \in G_{2}^{\prime}(4 k)$, then L_{2} and L_{4} can be partitioned into disjoint cycles as follows.

Step 1: Define $C_{0}^{2}=\left\{(2,4 b+2) \sigma^{4 n b}: 0 \leqslant n \leqslant k^{\prime}-1\right\}$, where $b=d b^{\prime} \quad k=d k^{\prime}$ and $d=g c d(k, b)$.

Step 2: Define $C_{p}^{2}=C_{0}^{2} \sigma^{4 p}$, where $0 \leqslant p \leqslant d$.
Step 3: Define $C_{p}^{4}=C_{0}^{2} \sigma^{4 p+2}$, where $0 \leqslant p \leqslant d-1$.
Clearly, L_{2} is a disjoint union of the cycles C_{p}^{2} and L_{4} is the disjoint union of the cycles C_{p}^{4}. Let $x \in C_{p}^{2}, y \in C_{q}^{2}$ and $x \cong y(\bmod 4 k)$. Then $x=4 n b+4 p+2$ and $y=4 m b+4 q+2$ for some n, m. Hence, $x-y \cong 0(\bmod 4 k)$ implies that d divides $p-q$ and k^{\prime} divides $n-m$ as observed in the equations

$$
\begin{aligned}
& 4(n-m) d b^{\prime}+4(p-q)=4 l d k^{\prime}, \\
& d b^{\prime}=b \quad \text { and } \quad d k^{\prime}=k .
\end{aligned}
$$

These cycles are said to be generated by the edge $(2,4 b+2)$ via the $\mathrm{CP} \sigma$. These cycles are degenerate if $k=2 b$.
If $(2,4 b+4) \in E(G)$, where $G \in G_{2}^{\prime \prime}(4 k)$, then $L_{2} \cup L_{4}$ can be partitioned into disjoint cycles as follows.
Step 1: Define $C_{0}=\left\{(2,4 b+4) \sigma^{(4 b+2) n}: 0 \leqslant n \leqslant k^{*}-1\right\}$, where $2 b+1=d^{\prime} b^{*}$, $2 k=d^{\prime} k^{*}, d^{\prime}=\operatorname{gcd}(2 k, 2 b+1)$.

Step 2: Define $C_{p}=C_{0} \sigma^{4 p}$, where $0 \leqslant p \leqslant d^{\prime}-1$. The cycles C_{p} can easily be shown to be disjoint and span $L_{2} \cup L_{4}$. These cycles are degenerate if $k=2 b+1$.

Lemma 3.1. For $k \geqslant 4$, any element $G \in G_{2}^{\prime}(4 k)$ is Hamiltonian connected.

Proof. Note here that $(4 a+1,4 b+3) \in E(G)$ for all $a, b=0,1,2, \ldots, k-1$. With these edges, the required Hamiltonian path for every nonadjacent pair of vertices can be obtained as automorphic images of the Hamiltonian paths constructed below:
(1) $(1,4 b+1) \notin E(G)$. Construct a required Hamiltonian path by the following steps:
(1a) Partition L_{2} and L_{4} into cycles generated by the edge ($2,4 b+2$). Correspondingly partition L_{1} and L_{3} in such a way that if x is in a partition of L_{2} or L_{4}, then $x-1$ is in the corresponding partition of L_{1} or L_{3}.
(1b) Let $x \in L_{3}$ be such that $(2, x) \in E(G)$. Starting from vertex 1 , span by a path this partition of L_{1}, except $4 b+1$, and a partition of L_{3} not containing x, if any, together with its cycle partition of L_{4} and ending at a vertex in L_{3}. This is illustrated in Fig. 2.
If there is only one partition each, traverse the edge from 1 to vertex $y(\neq x) \in L_{3}$, then go to $y+1 \in L_{4}$, span the rest of L_{4}, then go to a vertex in L_{3} and go alternatively between L_{1} and L_{3}, leaving out $4 b+1$, and end at x. Then from x traverse the edge to 2, span L_{2} up to $4 b+2$ and finally end at $4 b+1$.
(1c) From the last vertex in L_{3}, span one partition each of L_{1}, L_{2}, L_{3} and L_{4} at a time, each time ending at a vertex in L_{3}, and finally end at x.

Fig. 2.
(1d) Complete the Hamiltonian path by connecting x to 2, spanning the last cycle of L_{2}, ending at $4 b+2$, then go finally to $4 b+1$.
(2) $(1,4 a+2) \notin E(G)$ for $1 \leqslant a \leqslant k-1$. Let $(2,4 b+2) \in E(G)$ and do the partition as in (1). Let $y(\neq 1) \in L_{1}$ be such that $(y+1,4 a+2)$ is an edge in a partition of L_{2}. Construct a required Hamiltonian path under the following cases.

Case 1: Vertices 1 and y are in the same partition.
Case 1.1: Vertex $y \neq 4 a+1$.
(2a.1.1) Subsumed in this subcase is the fact that each partition has more than two vertices. From vertex 1 span the partition containing it, except y, and a partition in L_{3} together with its corresponding partition of L_{4}, ending at a vertex in L_{3}. This is illustrated in Fig. 3.
(2b.1.1) From the last vertex in L_{3}, span a partition each from L_{1}, L_{2}, L_{3} and L_{4} at a time, and each time ending at a vertex in L_{3}, until all of L_{3} is spanned.
(2c.1.1) Complete the Hamiltonian path by joining the last vertex in L_{3} to y, then to $y+1$, spanning the last cycle-partition of L_{2}, then ending at $4 a+2$.

Fig. 3.

Case 1.2: $y=4 a+1$. This degenerate case happens only when $a=b=k / 2$, i.e. a partition of L_{2} is an edge, and $(2,4 b+2)=(2,2 k+2)$. In this case, span $V(G)$ by the paths

$$
(1,2,2 k+2,2 k+1) \sigma^{2 l} \quad \text { for } 0 \leqslant l \leqslant k-1,
$$

remove the edge $(2,2 k+2)$ and add the edges $(2,2 k+3),(2 k-1,2 k+1),(3,5) \sigma^{4 m}$ and $(2 k+5,2 k+7) \sigma^{4 m}$ for $m=0,1,2, \ldots,(k-4) / 2$ to obtain a Hamiltonian path with end vertices 1 and $2 k+2$. This is illustrated in Fig. 4.

Case 2: Vertices 1 and y are not in the same partition.
(2a.2) In this case choose y so that $y \neq 4 a+1$ and $(y+1,4 a+2) \in E(G)$. Then from vertex 1 , span the partition containing it and a partition in L_{3} together with their corresponding partitions in L_{2} and L_{4}, ending at a vertex in L_{3}. This is illustrated in Fig. 5.

Fig. 4.

Fig. 5.
(2b.2) Span a partition each of L_{1}, L_{2}, L_{3} and L_{4} at a time, each time ending at a vertex in L_{3}, until only the partition containing y is left unspanned in L_{1}.
(2c.2) Complete the Hamiltonian path by joining the last vertex in L_{3} to $z(\neq y) \in L_{1}$, then proceed to a vertex in L_{3}, then to a vertcx in L_{4}, spanning the rest of L_{4}, then go back to a vertex in L_{3}, spanning the rest of L_{1} and L_{3}, ending at y.

Finally, connect y to $y+1$ and span the rest of L_{2}, ending at $4 a+2$.
(3) $(1,4 k) \notin E(G)$
(3a) Let $(2,4 b+2) \in E(G)$ and partition $V(G)$ as in (1a) and let $x(\neq 4 k-1) \in L_{3}$ be such that $(x+1,4 k)$ is an edge of a cycle-partition.

If there is only one partition of L_{2}, then from vertex 1 go to vertex 2 and span L_{2}, then connect to $W(\neq x)$ in L_{3} and go alternatively between L_{1} and L_{3}, ending at a vertex x. Complete the Hamiltonian path by connecting x to $x+1$ and spanning L_{4} up to $4 k$.
(3b) If there are $l>1$ partitions of L_{2}, span $l-1$ partitions each of L_{1}, L_{2}, L_{3} and L_{4} from vertex 1 and ending at a vertex in L_{3}, leaving out among others the partition containing x. This is illustrated in Fig. 6.
(3c) Connect the last vertex in L_{3} to a vertex in L_{2}, then span the rest of L_{2}, then go to a vertex in L_{1}. From there, go alternatively between L_{1} and L_{3}, ending at a vertex x.
(3d) Complete the Hamiltonian path by connecting x to $x+1$ and span the rest of L_{4} up to $4 k$.
(4) $(2,4 a+2) \notin E(G)$ and $(2,4 b+2) \in E(G)$.

Case 1. Vertices 2 and $4 a+2$ are not in the same cycle generated by $(2,4 b+2)$.
(4a.1) From vertex 2, span the partition containing it, then proceed to a vertex in L_{1}; then span the partition of L_{1} containing it and a partition of L_{3} together with its corresponding partition in L_{4}, ending at a vertex in L_{1}.
(4b.1) From the last vertex in L_{1}, span one partition each of L_{1}, L_{2}, L_{3} and L_{4} at a time, each time ending at a vertex in L_{1}, until only the partition containing $4 a+2$ is left in L_{2}.
(4c.1) Connect the last vertex in L_{1} to a vertex in L_{4} and span the rest of L_{4}. Then proceed to a vertex in L_{3} and go back and forth between L_{1} and L_{3}, ending at x in L_{1}, where $(x+1,4 a+2)$ is an edge in a cycle-partition of L_{2}.
(4d.1) Complete the Hamiltonian path by connecting x to $x+1$, then spanning the rest of L_{2} up to $4 a+2$.

Case 2: Vertices 2 and $4 a+2$ are in the same cycle generated by $(2,4 b+2)$.
(4a.2) Let y be adjacent to $4 a+2$ in a cycle-partition such that the paths from 2 to y and from $4 b+2$ to $4 a+2$ span this cycle. Further, let $z \in L_{3}$ be such that $(z, 4 b+2) \in E(G)$. Then from 2, span part of the cycle to y, connect y to $y-1$ and span this partition of L_{1} and a partition of L_{3} not containing z, if any, together with its corresponding partition in L_{4}, ending at a vertex in L_{1}.

If there is only one partition of L_{2}, let $w \in L_{4}$ be such that $(y-1, w) \in E(G)$. From $y-1$, proceed instead to w and span L_{4}, ending at some vertex $x(\neq z+1)$, then connect to $x-1$ and alternate between L_{1} and L_{3}, ending at z. Finally, connect to $4 b+2$ and span the rest of L_{2} up to $4 a+2$.
(4b.2) From the last vertex in L_{1}, span one partition each of L_{1}, L_{2}, L_{3} and L_{4} at a time, each time ending at L_{1}, until only one partition each of L_{1}, L_{2}, L_{3} and L_{4} and the path from $4 b+2$ to $4 a+2$ are left unspanned.
(4c.2) From the last vertex in L_{1}, go to a vertex in L_{4}, span the rest of L_{4}, then connect to a vertex in L_{3}. From there, span the rest of L_{3} and L_{1} with the

Fig. 6.
corresponding partition in L_{2}, ending at $z \in L_{3}$. Finally, connect z to $4 b+2$ and span the rest of L_{2} up to $4 a+2$.
(5) $(2,4 a+4) \notin E(G)$.
(5a) Let $(2,4 b+2) \in E(G)$ and partition $V(G)$ as in (1a). Let $x \in L_{1}$ and $y \in L_{4}$ be such that $(x, y) \in E(G),(y, 4 a+4)$ is an edge in a cycle-partition and x is not in the partition
containing 1, if there is more than one cycle generated by ($2,4 b+2$). From vertex 2 , span the partition containing it, then connect to a vertex in the corresponding partition of L_{1}. Span this partition of L_{1}, together with a partition of L_{3} not containing $y-1$, and its corresponding partition in L_{4}, then end at a vertex in L_{1}.
(5b) From the last vertex in L_{1}, span one partition each from L_{1}, L_{2}, L_{3} and L_{4} at a time, each time ending at a vertex in L_{1}, until only one partition each of L_{1}, L_{2}, L_{3} and L_{4} is left.

In case there is only one partition, from 2 span the rest of L_{2}, then go to a vertex in L_{3}, then alternate between L_{1} and L_{3}, ending at $x \in L_{1}$. Finally, connect x to y and span the rest of L_{4} to $4 a+4$.
(5c) From the last vertex in L_{1}, connect to a vertex in L_{3}, then to a vertex in L_{2}, spanning the rest of L_{2}, then go to a vertex in L_{1} and alternate between L_{1} and L_{3}, ending at x. Finally, connect x to y and span the rest of L_{4} up to vertex $4 a+4$.

Lemma 3.2. For $k \geqslant 4$, if $G \in G_{2}^{\prime \prime}(4 k)$, then G is Hamiltonian connected.

Proof. Here, the subgraph induced by $L_{1}\left(\cong L_{3}\right)$ is a complete graph. A Hamiltonian path whose endpoints are nonadjacent vertices can be obtained as an automorphic image of one of the HP's constructed below:
(1) $(1,4 b+3) \notin E(G)$.
(1a) Partition $L_{2} \cup L_{4}$ into cycles generated by the edge ($2,4 b+4$).
Case 1: There is an odd number of cycles.
Case 1.1: There is only one cycle.
(1b.1.1) From vertex 1 , span L_{1}, then join the last vertex to a vertex in L_{4}, then span $L_{2} \cup L_{4}$, ending at a vertex in L_{2}. Then connect to a vertex in $L_{3}(\neq 4 b+3)$ and span L_{3}, ending at $4 b+3$.

Case 1.2: There are at least three cycles.
(1b.1.2) Connect vertex 1 to a vertex in L_{4} and span the cycle containing it, ending at a vertex in L_{2}.
(1c.1.2) Connect the last vertex in L_{2} to a vertex in $L_{3}(\neq 4 b+3)$, then go back to a vertex in L_{2}, spanning the cycle containing it and ending at a vertex in L_{4}. Proceed to a vertex in L_{1}, return to a vertex in L_{4}, spanning the cycle containing it and ending at a vertex in L_{2}. Repeat the process until only one cycle is left, the last vertex spanned being in L_{4}.
(1d.1.2) From the last vertex in L_{4}, go to a vertex in L_{1}, span the rest of L_{1}, then proceed to a vertex in L_{4}, spanning the last cycle, ending at a vertex in L_{2}.
(1e.1.2) Complete the Hamiltonian path by proceeding to a vertex in L_{3} and spanning the rest of L_{3} up to the vertex $4 b+3$.

Case 2. There is an even number of cycles.
(1b.2) From vertex 1, go instead to vertex 2, then span the cycle containing it, ending at a vertex in L_{4}. Then proceed as in case 1.2 to obtain the required Hamiltonian path.
(2) $(1,4 a+2) \notin E(G)$. Let $(2,4 b+4) \in E(G)$ and partition $L_{2} \cup L_{4}$ into cycles generated by $(2,4 b+4)$.

Case 1: $(2,4 b+4)$ generates only one cycle.
(2a.1) Let $x \in L_{1}, y \in L_{3}$ be such that $(x, 4 a+4 b+4)$ and $(y, 4 a+2) \in E(G)$. Span L_{1} by starting at 1 and ending at x. Then go to $4 a+4 b+4$ and go through the vertices of the cycle up to $4 a-4 b$, leaving out $4 a+2$. Then proceed to a vertex in L_{3}, then span L_{3}, cnding at y. Finally, conncet y to $4 a+2$. If $a+b+1-k$, reverse the roles of $4 a+4 b+4=4 k$ and $4 a-4 b$.

Case 2: $(2,4 b+4)$ generates at least two cycles.
Case 2.1: There is an odd number of cycles and each cycle has more than two vertices.
(2a.2.1) Let y be as in (2a.1). From 1 go to $4 a+4 b+4$ and span the cycle up to $4 a-4 \mathrm{~b}$, leaving out $4 a+2$. Then go to $4 a-4 b-1$, then to a vertex in L_{2}, spanning the cycle containing it and ending at a vertex in L_{4}.
(2b.2.1) From this vertex of L_{4} go to a vertex in L_{1}, then return to L_{4}, spanning a cycle and ending at a vertex in L_{2}. Repeat the process until only one cycle is left, with the last vertex traversed in L_{4}.
(2c.2.1) Connect the last vertex in L_{4} to a vertex in L_{1}, span the rest of L_{1} then go to a vertex in L_{4}, spanning the last cycle, and ending at a vertex in L_{2}.
(2d.2.1) Finally, continue on to a vertex in L_{3}, spanning the rest of L_{3} up to vertex y, and then to $4 a+2$.

Case 2.2: There is an odd number of cycles and each cycle is an edge (degenerate case).
(2a.2.2.) Let x be as in (2a.1). Then from vertex 1 go to a vertex in $L_{4}(\neq 4 a+4 b+4)$, then span the edge. Go to a vertex in L_{3}, continue to a vertex in $L_{2}(\neq 4 a+2)$, then span the edge and go to a vertex in L_{1}. Repeat the process until only two edges are left with the last vertex spanned in L_{2}.
(2b.2.2) Proceed to a vertex in L_{3}, span the rest of L_{3} and go to a vertex in L_{2}, then span the edge and proceed to L_{1}, spanning the rest of L_{1} and ending at vertex x. Finally, join x to $4 a+4 b+4$ and then go to $4 a+2$.

Case 2.3: There is an even number of cycles and each cycle has more than two vertices.
(2a.2.3) Proceed as in case 2.1, but instead connect the vertex $4 a-4 b$ to a vertex in L_{1}. The effect is to end up at y. Proceed finally to $4 a+2$.
(3) $(1,4 k) \notin E(G)$. Let $(2,4 b+4) \in E(G)$ and partition $L_{2} \cup L_{4}$ as in (1a). Then proceed as in (2) but interchange the roles of x and y, and replace the roles of $4 a+2,4 a+4 b+4$, and $4 a-4 b$ by $4 k, 4 b+2$, and $4 k-4 b-2$, respectively, and start from vertex 1 , then to 3 and let 3 take the role of 1 , except in Case 1.2 , where $4 k-1$ takes the role of y.
(4) $(2,4 a+2) \notin E(G) \forall 1 \leqslant a \leqslant k-1$.

Case 1: Vertices $4 a+2$ and 2 are in the same cycle generated by $(2,4 b+4)$.
Case 1.1: There is only one cycle.
(4a.1.1) From vertex 2 span the cycle through $4 b+4$ up to $4 a-4 b$, then connect the latter to a vertex in L_{3}, then span L_{3} and connect the last vertex to $4 a+4 b+4$,
leaving out $4 a+2$. Then span the rest of the cycle up to $4 k-4 b$, connect this to a vertex in L_{1}, span L_{1}, then connect the last vertex to $4 a+2$.

Case 1.2: There are at least two cycles.
(4a.1.2) From vertex 2, span the vertices as in (4a.1.1) up to $4 k-4 b$, but traverse only one vertex in L_{3}. Then proceed as in (2b.2.1) until only one cycle is left. If the last vertex is in L_{2}, connect this to a vertex in L_{3}, span L_{3} then return to a vertex in L_{2} and span the last cycle to a vertex in L_{4}. Then go to a vertex in L_{1}, span the rest of L_{1}, ending at $4 a+1$. Finally, go to $4 a+2$. On the other hand, if the last vertex is in L_{4}, connect this to a vertex in L_{1}, span the rest of L_{1}, execpt $4 a+1$, then go back to a vertex in L_{4} and span the last cycle, ending at a vertex in L_{2}. Finally, connect this to a vertex in $L_{3}(\neq 4 a+3)$, span the rest of L_{3} up to $4 a+3$ and then connect $4 a+1$ to vertex $4 a+2$.

Case 2: Vertices $4 a+2$ and 2 are not in the same cycle.
(4a.2) Span from 2 the cycle containing it up to $4 b+4$, then go to $4 b+3$, then to $4 a+4 b+4$, spanning the cycle up to $4 a-4 b$, leaving out $4 a+2$.
(4b.2) If there are only two cycles, go from vertex $4 a-4 b$ to a vertex in L_{3}, span the rest of L_{3}, then connect to a vertex in L_{1}, span the rest of L_{1} ending at x, where $(x, 4 a+2) \in E(G)$, and, finally, connect the last vertex to $4 a+2$. If there are more than two cycles, proceed as in (4a.1.2).
(5) $(2,4 a+4) \notin E(G)$. Let $(2,4 b+4) \in E(G)$. Then proceed as in (4) but let $4 a+4$ take the role of $4 a+2$, taking into consideration the adjacencies between L_{1} and $L_{2} \cup L_{4}$.

Lemma 3.3. For $k \geqslant 4$, if $G \in G_{2}^{\prime \prime \prime}(4 k)$, then G is Hamiltonian connected.

Proof. From the Hamiltonian paths constructed below, a Hamiltonian path whose end vertices are nonadjacent can be obtained as an automorphic image of one of them.
(1) $(1,4 a+1) \notin E(G)$:- Partition L_{2} and L_{4} into cycles generated by $(2,4 a+2)$. Then, using the edge ($2,4 b+4$), obtain a cycle from a cycle of L_{2} and a cycle of L_{4} for each pair of cycles connected by some edge of the form $(2,4 b+4) \sigma^{4 l}$. This is illustrated in Fig. 7.

Case 1: A cycle in L_{2} has more than two vertices.
(1a.1) First, choose the connected pair of cycles containing $4 k-4 b-2$ and $4 k$. Obtain a path from these cycles by deleting the edges $(4 k-4 b-2,4 k-4 a-4 b-2)$, $(4 k, 4 a)$ and $(4 k, 4 k-4 a)$ and adding the edges $(4 k-4 b-2,4 k)$ and $(4 k-4 a-4 b-2,4 k-4 a)$. Then extend this to a path with end vertices 1 and $4 a+1$ by adding the edges $(4 k, 4 k-1)$ and $(4 a, 4 a-1)$ and the cycle generated by the edge $(1,3)$, where the edges $(1,4 k-1)$ and $(4 a-1,4 a+1)$ are deleted.
(1b.1) Extend this path to a Hamiltonian path by adding the edges $\left(y_{i}, y_{i}-1\right)$, $\left(y_{i}+1, y_{i}-4 a\right)$ or $\left(y_{i}+1, y_{i}+4 a\right)$, whichever applies, where $y_{i} \in L_{4}$ for $i=1,2, \ldots, p-1$ and p is the number of cycles in L_{2} generated by ($2,4 a+2$), and by deleting the edges $\left(y_{i}, y_{i}-4 a\right)$ or $\left(y_{i}, y_{i}+4 a\right)$, whichever applies.

Case 2: A cycle in L_{2} is an edge (degenerate case).

Fig. 7.
In this case the cycles generated by the edge $(2,4 b+4)$ cannot be degenerate because k must be even, i.e. $k=2 a$; therefore, the cycles generated by $(2,4 b+4)$ have at least 4 vertices.
(1a.2) Partition $L_{2} \cup L_{4}$ into cycles generated by ($2,4 b+4$) and suppose that $4 a+2=2 k+2$ and 2 are in the same cycle. To the cycle generated by $(1,3)$ and the cycle generated by $(2,4 b+4)$ containing 2 , add the edges $(2,2 k-1),(2 k+2,4 k-1)$ and
$(4 b+4,2 k+4 b+4)$ and remove the edges $(2,4 b+4),(2 k+2,2 k+4 b+4),(1,4 k-1)$ and $(2 k-1,2 k+1)$ to obtain a path with end vertices 1 and $2 k+1=4 a+1$.

Note that $(2,2 k-1) \in E(G)$ because $2 k-2 \neq 2$; hence, $(1,2 k-2) \notin E(G), k$ being even, and $(1,2 k-2) \sigma=(2,2 k-1)$.
(1b.2) Extend this path to a Hamiltonian path as in the procedure in (1b.1).
In the case where 2 and $4 a+2$ are in different cycles, the same edges are removed and added, except that two cycles are involved initially, a cycle containing 2 and a cycle containing $4 a+2=2 k+2$.
(2) If $(1,4 b+3) \notin E(G)$, partition $L_{2} \cup L_{4}$ into cycles generated by $(2,4 b+4)$.

Case 1: A cycle has more than two vertices.
(2a.1) Conncet vertex 1 to $4 b+4$ (or $4 k-4 b$) and then span the cycle containing it, ending at 2 . Then connect 2 to the path ($4 k-1,4 k-3,4 k-5, \ldots, 4 b+3$).
(2b.1) Remove (x_{1}, y_{1}) from the cycle containing 2 such that ($x_{1}, 4 b+1$) and ($y_{1}, 3$) are edges of G. Then add the path $\left(x_{1}, 4 b+1,4 b-1,4 b-3, \ldots, 3, y_{1}\right)$ to obtain a path spanning $\operatorname{OV}(G)$ and the cycle containing 2 with end vertices 1 and $4 b+3$. Then proceed as in (1b.1) to complete the Hamiltonian path.

Case 2: Each cycle is an edge (degenerate case).
(2a.2) In this case, ($2,4 a+2$) generates cycles of L_{2} and L_{4} containing more than two vertices. Then proceed as in (1b.1), but replace the role of $4 a$ by either $4 k-4 a$ or $4 a$, whichever is adjacent to $4 b+1$, and the role of $4 a+1$ by $4 b+3$.
(3) If $(1,4 a+2) \notin E(G)$, let $(2,4 b+4) \in E(G)$ and partition $L_{2} \cup L_{4}$ into cycles generated by this edge.

Case 1: A cycle has more than two vertices.
(3a.1) Remove the path $(4 a-4 b, 4 a+2,4 a+4 b+4)$ in the cycle containing $4 a+2$ and the edges $(1,3)$ and $(4 a+4 b+3,4 a+4 b+5)$ in the cycle generated by $(1,3)$, then add the edges $(3,4 a+2),(4 a+4 b+3,4 a+4 b+4)$ and $(4 a-4 b, 4 a+4 b+5)$, since $k \neq 2 b+1$, to obtain a path with end vertices $4 a+2$ and 1 . Then proceed as in 1 b .1) to complete the Hamiltonian path.

Case 2: A cycle has two vertices.
(3a.2) Remove $(1,3)$ and $(4 t+1,4 a+4 b+3)$, where $4 t+1$ is adjacent to $4 a+4 b+4$, from the cycle generated by $(1,3)$. Add the edge $(3,4 a+2)$ and the path $4 t+1,4 a+4 b+4,4 a+4 b+3)$ to obtain a path with end vertices 1 and $4 a+2$. Then attach the rest of the degenerate cycles $\left(y_{i}, z_{i}\right)$ by removing the edges $\left(x_{i}, x_{i}+2\right), x_{i} \in L_{1}$, $y_{i} \in L_{4}, z_{i} \in L_{2}$, and adding the edges (x_{i}, y_{i}) and ($z_{i}, x_{i}+2$) to obtain the required Hamiltonain path.
(4) If $(1,4 k) \notin E(G)$, partition $L_{2} \cup L_{4}$ into cycles generated by $(2,4 b+4)$.

Case 1: A cycle has more than two vertices.
(4a.1) Obtain a path with end vertices 1 and $4 k$ from the cycle generated by $(1,3)$ and the cycle containing $4 k$ by removing $(1,4 k-1),(4 k-4 b-3, x)$ and $(4 k-4 b-2$, $4 k, 4 b+2)$, where $(x, 4 b+2) \in E(G)$ and $x \in L_{3}$, and then adding the edges $(4 k-1,4 k),(x, 4 b+2$ and $(4 k-4 b-3,4 k-4 b-2)$.
(4b.1) Complete the Hamiltonian path by following the procedure in (1b.1).
Case 2: A Cycle has only two vertices.
(4a.2) Partition instead L_{2} and L_{4} into cycles generated by the edge ($2,4 c+2$). Then obtain a path with end vertices 1 and $4 k$ from the cycle generated by $(1,3)$ and the cycles containing $4 k$ and $4 k-4 b-2$ by removing ($4 k-4 b-2,4 c-4 b-2$), $(4 k, 4 c$) and $(1,3)$ and then adding the edges $(4 c-4 b-2,4 c)=(2,4 b+4) \sigma^{4 c-4 b-4}$ and $(3,2 k)$. The last edge exists because $2 k \neq 2$.
(4b.2) Complete the Hamiltonian path by following the procedure in (1b.1).
(5) If $(2,4 a \mid 2) \notin E(G)$, partition $L_{2} \cup L_{4}$ into cycles generated by $(2,4 b+4)$.

Case 1: A cycle has more than two vertices.
Case 1.1: Vertices 2 and $4 a+2$ are in the same cycle.
(5a.1.1) Obtain a path with end vertices 2 and $4 a+2$ by removing the edges $(2,4 b+4)$ and $(4 a+2,4 a+4 b+4)$ from the cycle containing 2 and the edge $(4 a+4 b+1,4 a+4 b+3)$ from the cycle generated by $(1,3)$ and then adding the edges $(4 b+4,4 a+4 b+1)$ and $(4 a+4 b+3,4 a+4 b+4)$. If $(4 b+4,4 a+4 b+1) \notin E(G)$, replace $4 a+4 b+1$ by $4 a+4 b+5$. Complete the Hamiltonian path by following (1b.1).

Case 1.2: Vertices 2 and $4 a+2$ are in different cycles.
(5a.1.2) Obtain a path with end vertices 2 and $4 a+2$ by removing $(2,4 b+4)$ and $(4 a+2,4 a+4 b+4)$ from the two cycles containing 2 and $4 a+2$ and the edge $(4 a+4 b+1,4 a+4 b+3)$ from the cycle generated by $(1,3)$ and then adding the edges $(4 b+4,4 a+4 b+1)$ and $(4 a+4 b+3,4 a+4 b+4)$. If $(4 b+4,4 a+4 b+1) \notin E(G)$, then replace $4 a+4 b+1$ by $4 a+4 b+5$. Finally, complete the Hamiltonian path following the procedure in (1b.1).

Case 2: A cycle has only two vertices.
Treat this case as in (5a.1.1), except that no edge is removed since each partition is already a path.
(6) If $(2,4 a+4) \notin E(G)$, partition $L_{2} \cup L_{4}$ into cycles generated by $(2,4 b+4)$.

Case 1: A cycle has more than two vertices.
Case 1.1: Vertices 2 and $4 a+4$ are in the same cycle.
(6a.1.1) Remove the edges $(4 a-4 b+2,4 a+4)$ and $(2,4 k-4 b)$ from the cycle containing 2 and the edge $(1,3)$ from the cycle generated by $(1,3)$ and then add the edges $(1,4 k-4 b)$ and $(3,4 a-4 b+2)$ to obtain a path with end vertices 2 and $4 a+4$. The last edge exists since $\mathrm{a} \neq b$ and $b<k$. Complete the Hamiltonian path as in (1b.1).

Case 1.2: Vertices 2 and $4 a+4$ are in different cycles.
(6a.1.2) Remove $(2,4 b+4)$ and $(4 a+4,4 a-4 b+2)$ from the cycles containing 2 and $4 a+4$ and the edge $(1,3)$ from the cycle generated by $(1,3)$ and then add $(1,4 b+4)$ and $(3,4 a-4 b+2)$ to obtain a path with end vertices 2 and $4 a+4$. Complete the Hamiltonian path as in the procedure in (1b.l).

Case 2: There are two vertices in each cycle.
In this case obtain a Hamiltonian path with end vertices 2 and $4 a+4$ as in (5a.2). This completes the proof.

Theorem 3.4. Let G be an $S C$ graph having a $C P \sigma=[1,2, \ldots, 4 k], k \geqslant 2$, and having the edges $(1,2)$ and $(1,3)$. If it is an SHSC graph such that $N_{L_{2}}(1)=\{2\}$, then it is Hamiltonian connected.

4. Summary and recommendations

Strongly Hamiltonian self-complementary graphs (when $k \geqslant 3$) having properties (P1) and (P2) where $N_{L_{2}}(1)=L_{2}$ or $N_{L_{2}}(1)=\{2\}$ are also Hamiltonian connected. If the Hamiltonian connectedness of the classes $G_{n}^{\prime}(4 k), G_{n}^{\prime \prime}(4 k)$ and $G_{n}^{\prime \prime \prime}(4 k)$, where n is neither 1 or 2 , is decided, then the question as to which strongly Hamiltonian self-complementary graphs with properties (P1) and (P2) are also Hamiltonian connected will have been settled.

References

[1] L.D. Carrillo, On strongly Hamiltonian self-complementary graphs, Ph.D. Thesis, Ateneo de Manila Univ., Philippines, 1989.
[2] C.R.J. Clapham, Hamiltonian arcs in self-complementary graphs, Discrete Math. 8 (1974) 251-255.
[3] R.A. Gibbs, Self-complementary graphs, J. Combin. Theory Ser. B 16 (1974) 106-123.
[4] C.St.J.A. Nash-Williams, Valency sequence which force graphs to have Hamiltonian circuits, Interim Report, Univ. of Waterloo, Ontario, Canada.
[5] S.B. Rao, Solution of the Hamiltonian problem for self-complementary graphs, J. Combin. Theory Ser. B 27 (1979) 13-41.

