Hamiltonian-connected self-complementary graphs

Luis D. Carrillo

MSU-IIT, Tibanga, Iligan City, 9200, Philippines

Received 27 November 1990
Revised 17 January 1992

Abstract

A self-complementary graph having a complementing permutation \(\sigma = [1, 2, 3, \ldots, 4k] \), consisting of one cycle, and having the edges \((1, 2)\) and \((1, 3)\) is strongly Hamiltonian iff it has an edge between two even-labelled vertices. Some of these strongly Hamiltonian self-complementary graphs are also shown to be Hamiltonian connected.

1. Introduction

Definition 1.1. A graph \(G = \langle V(G), E(G) \rangle \) is said to be self-complementary (SC) if there is a permutation \(\sigma \) on \(V(G) \) such that \((x, y) \in E(G)\) iff \((x, y) \not\in E(G)\). This permutation \(\sigma \) is called a complementing permutation (CP). The graph \(\tilde{G} \) in which \(V(\tilde{G}) = V(G) \) and \((x, y) \in E(\tilde{G})\) iff \((x, y) \not\in E(G)\) is called the complement of \(G \).

Definition 1.2. A graph is said to be Hamiltonian if it has a Hamiltonian cycle. If, in addition, every edge is contained in a Hamiltonian cycle, then it is said to be strongly Hamiltonian. Furthermore, if every pair of vertices are endpoints of a Hamiltonian path, then it is said to be Hamiltonian connected.

The self-complementary graphs \(G \) investigated in this paper are those with the following properties:

(P1) \(G \) has a CP \(\sigma = [1, 2, 3, \ldots, 4k] \), consisting of one cycle.

(P2) \(G \) has edges \((1, 2)\) and \((1, 3)\).

\(G \) obviously must have an even edge, i.e. an edge between two even-labelled vertices, to be strongly Hamiltonian; otherwise, it is almost constricted in the sense of Nash-Williams [4] and as such no odd edge can be contained in a Hamiltonian cycle. The details for the sufficiency of an even edge to make it strongly Hamiltonian are given in [1].

Correspondence to: Luis D. Carrillo, MSU-IIT, Tibanga, Iligan City, 9200, Philippines
Partition the vertex set $V(G)$ into $L_1 \cup L_2 \cup L_3 \cup L_4$, where $L_i = \{ x \in V(G) : x \equiv i (\text{mod} \ 4) \}$ for $i = 1, 2, 3, 4$. Following the observations of Clapham [2] and Gibbs [3], self-complementary graphs having properties (P1) and (P2) can be classified by means of the set $N_{L_i}(1)$, the set of elements in L_2 adjacent to vertex 1. The two subclasses discussed here are those in which $N_{L_1}(1) = L_2$ and $N_{L_2}(1) = \{2\}.$

Note that $N_{L_1}(1)$, by property (P2), contains vertex 2, so it can be chosen in 2^{k-1} ways, specifically, any subset of $L_2 \setminus \{2\}$, and then augmented by vertex 2.

Let the enumeration Φ of the possible neighbors of vertex 1 in L_2 be such that $\Phi(1) = L_2$ and $\Phi(2) = \{2\}$. Then associate with the enumeration Φ the following classes of self-complementary graphs with properties (P1) and (P2): $G_1(4k)$, the class where $N_{L_1}(1) = L_2$; $G_2(4k)$, the class where $N_{L_2}(1) = \{2\}$. Then the class $G_n(4k), n \neq 1, 2$, refers to a class where $N_{L_2}(1)$ is neither L_2 nor $\{2\}$.

2. Hamiltonian-connected self-complementary graphs, I

Rao [5] introduced an SC graph $G = G^*(4k)$ which is defined as follows:

(a) $V(G) = \{1, 2, 3, \ldots, 4k\}$;

(b) $(x, y) \in E(G)$ iff

1. $x, y \equiv 1, 3 (\text{mod} \ 4),$
2. $x \equiv 1 (\text{mod} \ 4)$ and $y \equiv 2 (\text{mod} \ 4)$ or
3. $x \equiv 3 (\text{mod} \ 4)$ and $y \equiv 0 (\text{mod} \ 4)$.

This graph is in $G_1(4k)$. In view of [4], it has no Hamiltonian cycle.

Now let $OE(G)$ be the set of odd edges of $G = G^*(4k)$. Let $(x, y) \in OE(G) \setminus C$, where $C = \{(1, 3)^{\sigma l} : l \in \mathbb{N}\}$, where \mathbb{N} is the set of natural numbers. Remove the set

$\{(x, y)^{\sigma 2l} : l \in \mathbb{N}\}$

and replace it by the set

$\{(x, y)^{\sigma 2l+1} : l \in \mathbb{N}\}$.

The resulting graph is still in $G_1(4k)$, and in view of [1] it is already a strongly Hamiltonian self-complementary graph.

Illustration

Note that the second graph is not Hamiltonian connected because vertices 1 and 5 cannot be endpoints of a Hamiltonian path.
The replacement of a set of odd edges by even edges can be obtained in three typical ways by the following constructions.

Construction 2.1. Let \(\emptyset \neq A \subseteq \{1, 2, \ldots, |k/2|\} \). Obtain the class \(G_i'(4k) \) from \(G*(4k) \) by replacing the set of edges

\[
\{(1, 4a + 1)_{2^{t}}: a \in A, t \in \mathbb{N}\}
\]

by the set of edges

\[
\{(2, 4a + 2)_{2^{t}}: a \in A, t \in \mathbb{N}\}.
\]

A graph in this class contains edges between vertices in \(L_2 \) but no edge between \(L_2 \) and \(L_4 \).

Construction 2.2. Let \(\emptyset \neq B \subseteq \{1, 2, \ldots, |k/2|\} \). Obtain the class \(G_i''(4k) \) from \(G*(4k) \) by replacing the set of edges

\[
\{(1, 4b + 3)_{2^{t}}: b \in B, t \in \mathbb{N}\}
\]

by the set of edges

\[
\{(2, 4b + 4)_{2^{t}}: b \in B, t \in \mathbb{N}\}.
\]

A graph in this class contains edges between \(L_2 \) and \(L_4 \) but not edges between vertices in \(L_2 \).

Construction 2.3. Let \(\emptyset \neq A, B \subseteq \{1, 2, \ldots, |k/2|\} \). Obtain the class \(G_i'''(4k) \) from \(G*(4k) \) by replacing the edges

\[
\{(1, 4a + 1)_{2^{t}}: a \in A, t \in \mathbb{N}\} \quad \text{and} \quad \{(1, 4b + 3)_{2^{t}}: b \in B, t \in \mathbb{N}\}
\]

by the set of edges

\[
\{(2, 4a + 2)_{2^{t}}: a \in A, t \in \mathbb{N}\} \quad \text{and} \quad \{(2, 4b + 4)_{2^{t}}: b \in B, t \in \mathbb{N}\}.
\]

A graph in this class contains edges between vertices in \(L_2 \) and edges between \(L_2 \) and \(L_4 \).

Remark 2.4. For \(k=3 \), \(G_i'(4k), G_i''(4k) \) and \(G_i'''(4k) \) have one element each and all three graphs can be verified to be Hamiltonian connected. These graphs are illustrated in Fig. 1.

Lemma 2.5. For \(k \geq 4 \), any element in \(G_i'(4k), G_i''(4k) \) or \(G_i'''(4k) \) is Hamiltonian connected.

Proof. In view of [1], it only remains to show that every pair of nonadjacent vertices are endpoints of a Hamiltonian path.
Fig. 1.
For G in $G'_1(4k)$, every vertex in L_1 is adjacent to every vertex in L_3. Hence, any nonadjacent pair of vertices is an automorphic image of one of the pairs 1 and $4a + 1$, 1 and $4b + 4$, 2 and $4a + 2$ or 2 and $4b + 4$, where $1 \leq a, b \leq k - 1$. Together with the fact that every vertex of L_1 is adjacent to every vertex of L_2, a Hamiltonian path whose end points are any of the nonadjacent pairs above can easily be constructed.

For G in $G''_1(4k)$, the subgraph induced by $L_1 (\cong L_3)$ is a complete graph of order k. Therefore, a HP whose endpoints are nonadjacent pairs of vertices of the form 1 and $4b + 3$, 1 and $4c + 3$, 1 and $4c + 4$ with $(2, 4x + 2) \in E(G)$ for some x, 2 and $4d + 2$ with $(2, 4y + 2) \in E(G)$ for some y, or 2 and $4e + 4$. For these nonadjacent pairs, corresponding Hamiltonian paths are constructed below:

Case 1: $(1, 4a + 1) \notin E(G)$. Span $L_1 \cup L_2 \setminus \{4a + 1\}$ by a path with end vertices 1 and $u \in L_1$. Also span $L_3 \cup L_4$ by a path with end vertices $u + 2$ and $4a + 3$. Then connect these paths by the edge $(u, u + 2)$ and add the edge $(4a + 1, 4a + 3)$ to obtain a HP with end vertices 1 and $4a + 1$.

Case 2: $(1, 4c + 3) \notin E(G)$. Span $L_1 \cup L_2$ by a path with end vertices 1 and 2. Also span $L_3 \cup L_4$ by a path with end vertices $4c + 3$ and $4c + 4$. Then connect these paths by the edge $(2, 4c + 4)$.

Case 3: $(1, 4b + 4) \notin E(G)$ and $(2, 4x + 2) \in E(G)$. Span $L_1 \cup L_2$, using the edge $(2, 4x + 2)$, by a path with end vertices 1 and $u \in L_1$ and span $L_3 \cup L_4$ by a path with end vertices $u + 2$ and $4b + 4$. Then connect these paths by the edge $(u, u + 2)$.

Case 4: $(2, 4y + 2) \in E(G)$ and $(2, 4y + 2) \in E(G)$. Span $L_1 \cup L_2 \setminus \{4d + 1, 4d + 2\}$ by a path with end vertices 2 and $4x + 1$. Also span $L_3 \cup L_4$, using the edge $(2, 4y + 2)$, by a path with end vertices $4x + 3$ and $4d + 3$. Then connect these paths by the edge $(4x + 1, 4x + 3)$ and add the path $(4d + 3, 4d + 1, 4d + 2)$.

Case 5: $(2, 4e + 4) \notin E(G)$. Span $L_1 \cup L_2$ by a path with end vertices 2 and $4x + 1$ and span $L_3 \cup L_4$ by a path with end vertices $4x + 3$ and $4e + 4$. Then connect these paths by the edge $(4x + 1, 4x + 3)$.

Theorem 2.6. Let G be a self-complementary graph with properties (P1) and (P2). If G is such that $N_{L_2}(1) = L_2$, then G is Hamiltonian connected if it is strongly Hamiltonian and $k \geq 3$.

3. Hamiltonian-connected graphs, II

The classes $G'_1(4k), G''_1(4k)$ and $G'''_1(4k)$ obtained from $G^*(4k)$ have the property that $N_{L_2}(1) = L_2$. Now obtain the graphs $G'_2(4k), G''_2(4k)$ and $G'''_2(4k)$ from $G'_1(4k), G''_1(4k)$ and $G'''_1(4k)$, respectively, by removing the edges $(1, 4b + 2), b = 1, 2, 3, \ldots, k - 1$, and their automorphic images under the automorphism σ^2, $l \in \mathbb{N}$, and then replacing them by the edges $(1, 4k - 4b), 1 \leq b \leq k - 1$, with their automorphic images. Graphs in
these classes are strongly Hamiltonian self-complementary graphs with properties (P1) and (P2). However, they have the property that \(N_{\sigma}(1) = \{2\} \).

Now if \((2, 4b + 2) \in E(G)\), where \(G \in G'_2(4k) \), then \(L_2 \) and \(L_4 \) can be partitioned into disjoint cycles as follows.

Step 1: Define \(C_2^g = \{(2, 4b + 2)^{4nb} : 0 \leq n \leq k' - 1\} \), where \(b = db' \), \(k = dk' \) and \(d = \gcd(k, b) \).

Step 2: Define \(C_2^p = C_2^g \sigma^{4p} \), where \(0 \leq p \leq d' - 1 \).

Step 3: Define \(C_2^p = C_2^g \sigma^{4p + 2} \), where \(0 \leq p \leq d - 1 \).

Clearly, \(L_2 \) is a disjoint union of the cycles \(C_2^g \) and \(L_4 \) is the disjoint union of the cycles \(C_2^p \). Let \(x \in C_2^p, y \in C_2^p \) and \(x \equiv y \pmod{4k} \). Then \(x = 4nb + 4p + 2 \) and \(y = 4mb + 4q + 2 \) for some \(n, m \). Hence, \(x - y \equiv 0 \pmod{4k} \) implies that \(d \) divides \(p - q \) and \(k' \) divides \(n - m \) as observed in the equations

\[
4(n - m)db' + 4(p - q) = 4dk',
\]

\[
db' = b \quad \text{and} \quad dk' = k.
\]

These cycles are said to be *generated* by the edge \((2, 4b + 2)\) via the CP \(\sigma \). These cycles are degenerate if \(k = 2b \).

If \((2, 4b + 4) \in E(G)\), where \(G \in G'_2(4k) \), then \(L_2 \cup L_4 \) can be partitioned into disjoint cycles as follows.

Step 1: Define \(C_0 = \{(2, 4b + 4)^{4b+2} : 0 \leq n \leq k^* - 1\} \), where \(2b + 1 = db^*, 2k = dk^*, d' = \gcd(2k, 2b + 1) \).

Step 2: Define \(C_p = C_0 \sigma^{4p} \), where \(0 \leq p \leq d' - 1 \). The cycles \(C_p \) can easily be shown to be disjoint and span \(L_2 \cup L_4 \). These cycles are degenerate if \(k = 2b + 1 \).

Lemma 3.1. For \(k \geq 4 \), any element \(G \in G'_2(4k) \) is Hamiltonian connected.

Proof. Note here that \((4a + 1, 4b + 3) \in E(G)\) for all \(a, b = 0, 1, 2, \ldots, k - 1 \). With these edges, the required Hamiltonian path for every nonadjacent pair of vertices can be obtained as automorphic images of the Hamiltonian paths constructed below:

1. \((1, 4b + 1) \notin E(G)\). Construct a required Hamiltonian path by the following steps:
 1a) Partition \(L_2 \) and \(L_4 \) into cycles generated by the edge \((2, 4b + 2)\). Correspondingly partition \(L_1 \) and \(L_3 \) in such a way that if \(x \) is in a partition of \(L_2 \) or \(L_4 \), then \(x - 1 \) is in the corresponding partition of \(L_1 \) or \(L_3 \).
 1b) Let \(x \in L_3 \) be such that \((2, x) \in E(G)\). Starting from vertex 1, span by a path this partition of \(L_1 \), except \(4b + 1 \), and a partition of \(L_3 \) not containing \(x \), if any, together with its cycle partition of \(L_4 \) and ending at a vertex in \(L_3 \). This is illustrated in Fig. 2.
 1c) From the last vertex in \(L_3 \), span one partition each of \(L_1, L_2, L_3 \) and \(L_4 \) at a time, each time ending at a vertex in \(L_3 \), and finally end at \(x \).
(1d) Complete the Hamiltonian path by connecting \(x \) to 2, spanning the last cycle of \(I_2 \), ending at \(4b + 2 \), then go finally to \(4b + 1 \).

(2) \((1, 4a + 2) \not\in E(G)\) for \(1 \leq a \leq k - 1\). Let \((2, 4b + 2) \in E(G)\) and do the partition as in (1). Let \(y (\neq 1) \in L_1 \) be such that \((y + 1, 4a + 2)\) is an edge in a partition of \(L_2 \). Construct a required Hamiltonian path under the following cases.
Case 1: Vertices 1 and y are in the same partition.

Case 1.1: Vertex $y \neq 4a + 1$.

(2a.1.1) Subsumed in this subcase is the fact that each partition has more than two vertices. From vertex 1 span the partition containing it, except y, and a partition in L_3 together with its corresponding partition of L_4, ending at a vertex in L_3. This is illustrated in Fig. 3.

(2b.1.1) From the last vertex in L_3, span a partition each from L_1, L_2, L_3 and L_4 at a time, and each time ending at a vertex in L_3, until all of L_3 is spanned.

(2c.1.1) Complete the Hamiltonian path by joining the last vertex in L_3 to y, then to $y+1$, spanning the last cycle-partition of L_2, then ending at $4a + 2$.

Fig. 3.
Case 1.2: $y = 4a + 1$. This degenerate case happens only when $a = b = k/2$, i.e. a partition of L_2 is an edge, and $(2, 4b + 2) = (2, 2k + 2)$. In this case, span $V(G)$ by the paths

$$(1, 2, 2k + 2, 2k + 1)\sigma^{2l} \text{ for } 0 \leq l \leq k - 1,$$

remove the edge $(2, 2k + 2)$ and add the edges $(2, 2k + 3), (2k - 1, 2k + 1), (3, 5)\sigma^{4m}$ and $(2k + 5, 2k + 7)\sigma^{4m}$ for $m = 0, 1, 2, \ldots, (k - 4)/2$ to obtain a Hamiltonian path with end vertices 1 and $2k + 2$. This is illustrated in Fig. 4.

Case 2: Vertices 1 and y are not in the same partition.

(2a.2) In this case choose y so that $y \neq 4a + 1$ and $(y + 1, 4a + 2) \in E(G)$. Then from vertex 1, span the partition containing it and a partition in L_3 together with their corresponding partitions in L_2 and L_4, ending at a vertex in L_3. This is illustrated in Fig. 5.

\[A \text{ is even} \]
(2b.2) Span a partition each of L_1, L_2, L_3 and L_4 at a time, each time ending at a vertex in L_3, until only the partition containing y is left unspanned in L_1.

(2c.2) Complete the Hamiltonian path by joining the last vertex in L_3 to $z (\neq y) \in L_1$, then proceed to a vertex in L_3, then to a vertex in L_4, spanning the rest of L_4, then go back to a vertex in L_3, spanning the rest of L_1 and L_3, ending at y.
Finally, connect y to $y + 1$ and span the rest of L_2, ending at $4a + 2$.

(3) $(1, 4k) \notin E(G)$

(3a) Let $(2,4b + 2) \in E(G)$ and partition $V(G)$ as in (1a) and let $x (\neq 4k - 1) \in L_3$ be such that $(x + 1, 4k)$ is an edge of a cycle-partition.

If there is only one partition of L_2, then from vertex 1 go to vertex 2 and span L_2, then connect to $W (\neq x)$ in L_3 and go alternatively between L_1 and L_3, ending at a vertex x. Complete the Hamiltonian path by connecting x to $x + 1$ and spanning L_4 up to $4k$.

(3b) If there are $l > 1$ partitions of L_2, span $l - 1$ partitions each of L_1, L_2, L_3 and L_4 from vertex 1 and ending at a vertex in L_3, leaving out among others the partition containing x. This is illustrated in Fig. 6.

(3c) Connect the last vertex in L_3 to a vertex in L_2, then span the rest of L_2, then go to a vertex in L_1. From there, go alternatively between L_1 and L_3, ending at a vertex x.

(3d) Complete the Hamiltonian path by connecting x to $x + 1$ and span the rest of L_4 up to $4k$.

(4) $(2,4a + 2) \notin E(G)$ and $(2,4b + 2) \in E(G)$.

Case 1. Vertices 2 and $4a + 2$ are not in the same cycle generated by $(2,4b + 2)$.

(4a.1) From vertex 2, span the partition containing it, then proceed to a vertex in L_1; then span the partition of L_1 containing it and a partition of L_3 together with its corresponding partition in L_4, ending at a vertex in L_1.

(4b.1) From the last vertex in L_1, span one partition each of L_1, L_2, L_3 and L_4 at a time, each time ending at a vertex in L_1, until only the partition containing $4a + 2$ is left in L_2.

(4c.1) Connect the last vertex in L_1 to a vertex in L_4 and span the rest of L_4. Then proceed to a vertex in L_3 and go back and forth between L_1 and L_3, ending at x in L_1, where $(x + 1,4a + 2)$ is an edge in a cycle-partition of L_2.

(4d.1) Complete the Hamiltonian path by connecting x to $x + 1$, then spanning the rest of L_2 up to $4a + 2$.

Case 2. Vertices 2 and $4a + 2$ are in the same cycle generated by $(2,4b + 2)$.

(4a.2) Let y be adjacent to $4a + 2$ in a cycle-partition such that the paths from 2 to y and from $4b + 2$ to $4a + 2$ span this cycle. Further, let $z \in L_3$ be such that $(z,4b + 2) \in E(G)$. Then from 2, span part of the cycle to y, connect y to $y - 1$ and span this partition of L_1 and a partition of L_3 not containing z, if any, together with its corresponding partition in L_4, ending at a vertex in L_1.

If there is only one partition of L_2, let $w \in L_4$ be such that $(y - 1, w) \in E(G)$. From $y - 1$, proceed instead to w and span L_4, ending at some vertex $x (\neq z + 1)$, then connect to $x - 1$ and alternate between L_1 and L_3, ending at z. Finally, connect to $4b + 2$ and span the rest of L_2 up to $4a + 2$.

(4b.2) From the last vertex in L_1, span one partition each of L_1, L_2, L_3 and L_4 at a time, each time ending at L_1, until only one partition each of L_1, L_2, L_3 and L_4 and the path from $4b + 2$ to $4a + 2$ are left unspanned.

(4c.2) From the last vertex in L_1, go to a vertex in L_4, span the rest of L_4, then connect to a vertex in L_3. From there, span the rest of L_3 and L_1 with the
corresponding partition in L_2, ending at $z \in L_3$. Finally, connect z to $4b + 2$ and span the rest of L_2 up to $4a + 2$.

(5) $(2, 4a + 4) \notin E(G)$.

(5a) Let $(2, 4b + 2) \in E(G)$ and partition $V(G)$ as in (1a). Let $x \in L_1$ and $y \in L_4$ be such that $(x, y) \in E(G)$, $(y, 4a + 4)$ is an edge in a cycle-partition and x is not in the partition.
containing 1, if there is more than one cycle generated by \((2, 4b + 2) \). From vertex 2, span the partition containing it, then connect to a vertex in the corresponding partition of \(L_1 \). Span this partition of \(L_1 \), together with a partition of \(L_3 \) not containing \(y - 1 \), and its corresponding partition in \(L_4 \), then end at a vertex in \(L_1 \).

(5b) From the last vertex in \(L_1 \), span one partition each from \(L_1, L_2, L_3 \) and \(L_4 \) at a time, each time ending at a vertex in \(L_1 \), until only one partition each of \(L_1, L_2, L_3 \) and \(L_4 \) is left.

In case there is only one partition, from 2 span the rest of \(L_2 \), then go to a vertex in \(L_3 \), then alternate between \(L_1 \) and \(L_3 \), ending at \(x + L_1 \). Finally, connect \(x \) to \(y \) and span the rest of \(L_4 \) up to vertex \(4a + 4 \).

(5c) From the last vertex in \(L_1 \), connect to a vertex in \(L_3 \), then to a vertex in \(L_2 \), spanning the rest of \(L_2 \), then go to a vertex in \(L_1 \) and alternate between \(L_1 \) and \(L_3 \), ending at \(x + L_1 \). Finally, connect \(x \) to \(y \) and span the rest of \(L_4 \) up to vertex \(4a + 4 \) \(\square \)

Lemma 3.2. For \(k \geq 4 \), if \(G \in G_2^v(4k) \), then \(G \) is Hamiltonian connected.

Proof. Here, the subgraph induced by \(L_1 \) (\(\cong L_3 \)) is a complete graph. A Hamiltonian path whose endpoints are nonadjacent vertices can be obtained as an automorphic image of one of the HP's constructed below:

(1) \((1, 4b + 3) \notin E(G)\).

(1a) Partition \(L_2 \cup L_4 \) into cycles generated by the edge \((2, 4b + 4)\).

Case 1: There is an odd number of cycles.

Case 1.1: There is only one cycle.

(1b.1.1) From vertex 1, span \(L_1 \), then join the last vertex to a vertex in \(L_4 \), then span \(L_2 \cup L_4 \), ending at a vertex in \(L_2 \). Then connect to a vertex in \(L_3 \) (\(\neq 4b + 3 \)) and span \(L_3 \), ending at \(4b + 3 \).

Case 1.2: There are at least three cycles.

(1b.1.2) Connect vertex 1 to a vertex in \(L_4 \) and span the cycle containing it, ending at a vertex in \(L_2 \).

(1c.1.2) Connect the last vertex in \(L_2 \) to a vertex in \(L_3 \) (\(\neq 4b + 3 \)), then go back to a vertex in \(L_2 \), spanning the cycle containing it and ending at a vertex in \(L_4 \). Proceed to a vertex in \(L_1 \), return to a vertex in \(L_4 \), spanning the cycle containing it and ending at a vertex in \(L_2 \). Repeat the process until only one cycle is left, the last vertex spanned being in \(L_4 \).

(1d.1.2) From the last vertex in \(L_4 \), go to a vertex in \(L_1 \), span the rest of \(L_1 \), then proceed to a vertex in \(L_4 \), spanning the last cycle, ending at a vertex in \(L_2 \).

(1e.1.2) Complete the Hamiltonian path by proceeding to a vertex in \(L_3 \) and spanning the rest of \(L_3 \) up to the vertex \(4b + 3 \).

Case 2. There is an even number of cycles.

(1b.2) From vertex 1, go instead to vertex 2, then span the cycle containing it, ending at a vertex in \(L_4 \). Then proceed as in case 1.2 to obtain the required Hamiltonian path.
(2) $(1, 4a + 2) \notin E(G)$. Let $(2, 4b + 4) \in E(G)$ and partition $L_2 \cup L_4$ into cycles generated by $(2, 4b + 4)$.

Case 1: $(2, 4b + 4)$ generates only one cycle.

(2a.1) Let $x \in L_1, y \in L_3$ be such that $(x, 4a + 4b + 4)$ and $(y, 4a + 2) \in E(G)$. Span L_1 by starting at 1 and ending at x. Then go to $4a + 4b + 4$ and go through the vertices of the cycle up to $4a - 4b$, leaving out $4a + 2$. Then proceed to a vertex in L_3, then span L_3, ending at y. Finally, connect y to $4a + 2$. If $a + b + 1 - k$, reverse the roles of $4a + 4b + 4 = 4k$ and $4a - 4b$.

Case 2: $(2, 4b + 4)$ generates at least two cycles.

Case 2.1: There is an odd number of cycles and each cycle has more than two vertices.

(2a.2.1) Let y be as in (2a.1). From 1 go to $4a + 4b + 4$ and span the cycle up to $4a - 4b$, leaving out $4a + 2$. Then go to $4a - 4b - 1$, then to a vertex in L_2, spanning the cycle containing it and ending at a vertex in L_4.

(2b.2.1) From this vertex of L_4 go to a vertex in L_1, then return to L_4, spanning a cycle and ending at a vertex in L_2. Repeat the process until only one cycle is left, with the last vertex traversed in L_4.

(2c.2.1) Connect the last vertex in L_4 to a vertex in L_1, span the rest of L_3, then go to a vertex in L_4, spanning the last cycle, and ending at a vertex in L_2.

(2d.2.1) Finally, continue on to a vertex in L_3, spanning the rest of L_3 up to vertex y, and then to $4a + 2$.

Case 2.2: There is an odd number of cycles and each cycle is an edge (degenerate case).

(2a.2.2) Let x be as in (2a.1). Then from vertex 1 go to a vertex in $L_4 (\neq 4a + 4b + 4)$, then span the edge. Go to a vertex in L_3, continue to a vertex in $L_2 (\neq 4a + 2)$, then span the edge and go to a vertex in L_1. Repeat the process until only two edges are left with the last vertex spanned in L_2.

(2b.2.2) Proceed to a vertex in L_3, span the rest of L_3 and go to a vertex in L_2, then span the edge and proceed to L_1, spanning the rest of L_1 and ending at vertex x. Finally, join x to $4a + 4b + 4$ and then go to $4a + 2$.

Case 2.3: There is an even number of cycles and each cycle has more than two vertices.

(2a.2.3) Proceed as in case 2.1, but instead connect the vertex $4a - 4b$ to a vertex in L_1. The effect is to end up at y. Proceed finally to $4a + 2$.

(3) $(1, 4k) \notin E(G)$. Let $(2, 4b + 4) \in E(G)$ and partition $L_2 \cup L_4$ as in (1a). Then proceed as in (2) but interchange the roles of x and y, and replace the roles of $4a + 2, 4a + 4b + 4,$ and $4a - 4b$ by $4k, 4b + 2$, and $4k - 4b - 2$, respectively, and start from vertex 1, then to 3 and let 3 take the role of 1, except in Case 1.2, where $4k - 1$ takes the role of y.

(4) $(2, 4a + 2) \notin E(G) \forall 1 \leq a \leq k - 1$.

Case 1: Vertices $4a + 2$ and 2 are in the same cycle generated by $(2, 4b + 4)$.

Case 1.1: There is only one cycle.

(4a.1.1) From vertex 2 span the cycle through $4b + 4$ up to $4a - 4b$, then connect the latter to a vertex in L_3, then span L_3 and connect the last vertex to $4a + 4b + 4$, etc.
leaving out $4a+2$. Then span the rest of the cycle up to $4k-4b$, connect this to a vertex in L_1, span L_1, then connect the last vertex to $4a+2$.

Case 1.2: There are at least two cycles.

(4a.1.2) From vertex 2, span the vertices as in (4a.1.1) up to $4k-4b$, but traverse only one vertex in L_3. Then proceed as in (2b.2.1) until only one cycle is left. If the last vertex is in L_2, connect this to a vertex in L_3, span L_3 then return to a vertex in L_2 and span the last cycle to a vertex in L_4. Then go to a vertex in L_1, span the rest of L_1, ending at $4a+1$. Finally, go to $4a+2$. On the other hand, if the last vertex is in L_4, connect this to a vertex in L_1, span the rest of L_1, except $4a+1$, then go back to a vertex in L_4 and span the last cycle, ending at a vertex in L_2. Finally, connect this to a vertex in L_3 $(\neq 4a+3)$, span the rest of L_3 up to $4a+3$ and then connect $4a+1$ to vertex $4a+2$.

Case 2: Vertices $4a+2$ and 2 are not in the same cycle.

(4a.2) Span from 2 the cycle containing it up to $4b+4$, then go to $4b+3$, then to $4a+4b+4$, spanning the cycle up to $4a-4b$, leaving out $4a+2$.

(4b.2) If there are only two cycles, go from vertex $4a-4b$ to a vertex in L_3, span the rest of L_3, then connect to a vertex in L_1, span the rest of L_1 ending at x, where $(x,4a+2)\in E(G)$, and, finally, connect the last vertex to $4a+2$. If there are more than two cycles, proceed as in (4a.1.2).

(5) $(2,4a+4)\notin E(G)$. Let $(2,4b+4)\in E(G)$. Then proceed as in (4) but let $4a+4$ take the role of $4a+2$, taking into consideration the adjacencies between L_1 and $L_2\cup L_4$. □

Lemma 3.3. For $k \geq 4$, if $G \in G_k(4k)$, then G is Hamiltonian connected.

Proof. From the Hamiltonian paths constructed below, a Hamiltonian path whose end vertices are nonadjacent can be obtained as an automorphic image of one of them.

(1) $(1,4a+1)\notin E(G)$: Partition L_2 and L_4 into cycles generated by $(2,4a+2)$. Then, using the edge $(2,4b+4)$, obtain a cycle from a cycle of L_2 and a cycle of L_4 for each pair of cycles connected by some edge of the form $(2,4b+4)a_4$. This is illustrated in Fig. 7.

Case 1: A cycle in L_2 has more than two vertices.

(1a.1) First, choose the connected pair of cycles containing $4k-4b-2$ and $4k$.

Obtain a path from these cycles by deleting the edges $(4k-4b-2,4k-4a-4b-2)$, $(4k,4a)$ and $(4k,4k-4a)$ and adding the edges $(4k-4b-2,4k)$ and $(4k-4a-4b-2,4k-4a)$. Then extend this to a path with end vertices 1 and $4a+1$ by adding the edges $(4k,4k-1)$ and $(4a,4a-1)$ and the cycle generated by the edge $(1,3)$, where the edges $(1,4k-1)$ and $(4a-1,4a+1)$ are deleted.

(1b.1) Extend this path to a Hamiltonian path by adding the edges (y_i, y_i-1), (y_i+1, y_i-4a) or (y_i+1, y_i+4a), whichever applies, where $y_i \in L_4$ for $i = 1, 2, \ldots, p-1$ and p is the number of cycles in L_2 generated by $(2,4a+2)$, and by deleting the edges (y_i, y_i-4a) or (y_i, y_i+4a), whichever applies.

Case 2: A cycle in L_2 is an edge (degenerate case).
In this case the cycles generated by the edge $(2, 4b + 4)$ cannot be degenerate because k must be even, i.e. $k = 2a$; therefore, the cycles generated by $(2, 4b + 4)$ have at least 4 vertices.

(1a.2) Partition $L_2 \cup L_4$ into cycles generated by $(2, 4b + 4)$ and suppose that $4a + 2 = 2k + 2$ and 2 are in the same cycle. To the cycle generated by $(1, 3)$ and the cycle generated by $(2, 4b + 4)$ containing 2, add the edges $(2, 2k - 1), (2k + 2, 4k - 1)$ and
Hamiltonian-connected self-complementary graphs

$$(4b + 4, 2k + 4b + 4)$$ and remove the edges $(2, 4b + 4), (2k + 2, 2k + 4b + 4), (1, 4k - 1)$ and $(2k - 1, 2k + 1)$ to obtain a path with end vertices 1 and $2k + 1 = 4a + 1$.

Note that $(2, 2k - 1) \in E(G)$ because $2k - 2 \neq 2$, hence, $(1, 2k - 2) \notin E(G)$, k being even, and $(1, 2k - 2) \sigma = (2, 2k - 1)$.

(1b.2) Extend this path to a Hamiltonian path as in the procedure in (1b.1).

In the case where 2 and $4a + 2$ are in different cycles, the same edges are removed and added, except that two cycles are involved initially, a cycle containing 2 and a cycle containing $4a + 2 = 2k + 2$.

(2) If $(1, 4b + 3) \notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by $(2, 4b + 4)$.

Case 1: A cycle has more than two vertices.

(2a.1) Connect vertex 1 to $4b + 4$ (or $4k - 4b$) and then span the cycle containing it, ending at 2. Then connect 2 to the path $(4k - 1, 4k - 3, 4k - 5, \ldots, 4b + 3)$.

(2b) Remove (x_1, y_1) from the cycle containing 2 such that $(x_1, 4b + 1)$ and $(y_1, 3)$ are edges of G. Then add the path $(x_1, 4b + 1, 4b - 1, 4b - 3, \ldots, 3, y_1)$ to obtain a path spanning $OV(G)$ and the cycle containing 2 with end vertices 1 and $4b + 3$. Then proceed as in (1b.1) to complete the Hamiltonian path.

Case 2: Each cycle is an edge (degenerate case).

(2a.2) In this case, $(2, 4a + 2)$ generates cycles of L_2 and L_4 containing more than two vertices. Then proceed as in (1b.1), but replace the role of $4a$ by either $4k - 4a$ or $4a$, whichever is adjacent to $4b + 1$, and the role of $4a + 1$ by $4b + 3$.

(3) If $(1, 4a + 2) \notin E(G)$, let $(2, 4b + 4) \in E(G)$ and partition $L_2 \cup L_4$ into cycles generated by this edge.

Case 1: A cycle has more than two vertices.

(3a.1) Remove the path $(4a - 4b, 4a + 2, 4a + 4b + 4)$ in the cycle containing $4a + 2$ and the edges $(1, 3)$ and $(4a + 4b + 3, 4a + 4b + 5)$ in the cycle generated by $(1, 3)$, then add the edges $(3, 4a + 2), (4a + 4b + 3, 4a + 4b + 4)$ and $(4a - 4b, 4a + 4b + 5)$, since $k \neq 2b + 1$, to obtain a path with end vertices $4a + 2$ and 1. Then proceed as in 1b.1) to complete the Hamiltonian path.

Case 2: A cycle has two vertices.

(3a.2) Remove $(1, 3)$ and $(4t + 1, 4a + 4b + 3)$, where $4t + 1$ is adjacent to $4a + 4b + 4$, from the cycle generated by $(1, 3)$. Add the edge $(3, 4a + 2)$ and the path $4t + 1, 4a + 4b + 4, 4a + 4b + 3$ to obtain a path with end vertices 1 and $4a + 2$. Then attach the rest of the degenerate cycles (y_i, z_i) by removing the edges $(x_i, x_i + 2), x_i \in L_1, y_i \in L_4, z_i \in L_2$, and adding the edges (x_i, y_i) and $(z_i, x_i + 2)$ to obtain the required Hamiltonian path.

(4) If $(1, 4k) \notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by $(2, 4b + 4)$.

Case 1: A cycle has more than two vertices.

(4a.1) Obtain a path with end vertices 1 and $4k$ from the cycle generated by $(1, 3)$ and the cycle containing $4k$ by removing $(1, 4k - 1), (4k - 4b - 3, x)$ and $(4k - 4b - 2, 4k, 4b + 2)$, where $(x, 4b + 2) \in E(G)$ and $x \in L_3$, and then adding the edges $(4k - 1, 4k), (x, 4b + 2)$ and $(4k - 4b - 3, 4k - 4b - 2)$.

(4b) Complete the Hamiltonian path by following the procedure in (1b.1).

Case 2: A Cycle has only two vertices.
(4a.2) Partition instead L_2 and L_4 into cycles generated by the edge $(2, 4c + 2)$. Then obtain a path with end vertices 1 and $4k$ from the cycle generated by $(1, 3)$ and the cycles containing $4k$ and $4k - 4b - 2$ by removing $(4k - 4b - 2, 4c - 4b - 2), (4k, 4c)$ and $(1, 3)$ and then adding the edges $(4c - 4b - 2, 4c) = (2, 4b + 4) a^{4c - 4b - 4}$ and $(3, 2k)$. The last edge exists because $2k \neq 2$.

(4b.2) Complete the Hamiltonian path by following the procedure in (1b.1).

(5) If $(2, 4a + 2) \notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by $(2, 4b + 4)$.

Case 1: A cycle has more than two vertices.

Case 1.1: Vertices 2 and $4a + 2$ are in the same cycle.

(5a.1.1) Obtain a path with end vertices 2 and $4a + 2$ by removing the edges $(2, 4b + 4)$ and $(4a + 2, 4a + 4b + 4)$ from the cycle containing 2 and the edge $(4a + 4b + 1, 4a + 4b + 3)$ from the cycle generated by $(1, 3)$ and then adding the edges $(4b + 4, 4a + 4b + 1)$ and $(4a + 4b + 3, 4a + 4b + 4)$. If $(4b + 4, 4a + 4b + 1) \notin E(G)$, replace $4a + 4b + 1$ by $4a + 4b + 5$. Complete the Hamiltonian path by following (1b.1).

Case 1.2: Vertices 2 and $4a + 2$ are in different cycles.

(5a.1.2) Obtain a path with end vertices 2 and $4a + 2$ by removing $(2, 4b + 4)$ and $(4a + 2, 4a + 4b + 4)$ from the two cycles containing 2 and $4a + 2$ and the edge $(4a + 4b + 1, 4a + 4b + 3)$ from the cycle generated by $(1, 3)$ and then adding the edges $(4b + 4, 4a + 4b + 1)$ and $(4a + 4b + 3, 4a + 4b + 4)$. If $(4b + 4, 4a + 4b + 1) \notin E(G)$, then replace $4a + 4b + 1$ by $4a + 4b + 5$. Finally, complete the Hamiltonian path following the procedure in (1b.1).

Case 2: A cycle has only two vertices.

Treat this case as in (5a.1.1), except that no edge is removed since each partition is already a path.

(6) If $(2, 4a + 4) \notin E(G)$, partition $L_2 \cup L_4$ into cycles generated by $(2, 4b + 4)$.

Case 1: A cycle has more than two vertices.

Case 1.1: Vertices 2 and $4a + 4$ are in the same cycle.

(6a.1.1) Remove the edges $(4a - 4b + 2, 4a + 4)$ and $(2, 4k - 4b)$ from the cycle containing 2 and the edge $(1, 3)$ from the cycle generated by $(1, 3)$ and then add the edges $(1, 4k - 4b)$ and $(4a - 4b + 2) + (3, 4a - 4b + 2)$ to obtain a path with end vertices 2 and $4a + 4$. The last edge exists since $a \neq b$ and $b < k$. Complete the Hamiltonian path as in (1b.1).

Case 1.2: Vertices 2 and $4a + 4$ are in different cycles.

(6a.1.2) Remove $(2, 4b + 4)$ and $(4a + 4, 4a - 4b + 2)$ from the cycles containing 2 and $4a + 4$ and the edge $(1, 3)$ from the cycle generated by $(1, 3)$ and then add $(1, 4b + 4)$ and $(3, 4a - 4b + 2)$ to obtain a path with end vertices 2 and $4a + 4$. Complete the Hamiltonian path as in the procedure in (1b.1).

Case 2: There are two vertices in each cycle.

In this case obtain a Hamiltonian path with end vertices 2 and $4a + 4$ as in (5a.2). This completes the proof. □

Theorem 3.4. Let G be an SC graph having a CP $\sigma = [1, 2, \ldots , 4k]$, $k \geq 2$, and having the edges $(1, 2)$ and $(1, 3)$. If it is an SHSC graph such that $N_{L_2}(1) = \{2\}$, then it is Hamiltonian connected.
4. Summary and recommendations

Strongly Hamiltonian self-complementary graphs (when \(k \geq 3 \)) having properties (P1) and (P2) where \(N_{L_2}(1) = L_2 \) or \(N_{L_2}(1) = \{2\} \) are also Hamiltonian connected. If the Hamiltonian connectedness of the classes \(G_{n}(4k), G_{n}^{\prime}(4k) \) and \(G_{n}^{\prime \prime}(4k) \), where \(n \) is neither 1 or 2, is decided, then the question as to which strongly Hamiltonian self-complementary graphs with properties (P1) and (P2) are also Hamiltonian connected will have been settled.

References