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1. Introduction and statement of main results

Given modular forms f and g of weights k and ¢, respectively, their Rankin-Cohen bracket [ f, g],(,k’e) corresponding to a
nonnegative integer n is a modular form of weight k + £ + 2n, and it is given as a linear combination of the products of the
form f™ g™ for 0 <r <n (see e.g. [3]). Although such products are not modular forms, they are quasimodular forms.

Quasimodular forms generalize classical modular forms and first introduced by Kaneko and Zagier in [6]. It appears nat-
urally in various places (see [4,5,7], for instance). One of the useful features of quasimodular forms is that their derivatives
are also quasimodular forms (see [1,9]). In particular, derivatives of modular forms are quasimodular forms. Since products
of quasimodular forms are quasimodular forms, it follows that the products f® g™ considered above are quasimodular
forms. As in the case of modular forms, we can consider the Dirichlet series associated to quasimodular forms by using their
Fourier coefficients. From the formula for Rankin-Cohen brackets it follows that the Dirichlet series of the modular forms
Lf, g],ﬂk’l) can be written as the Dirichlet series of the quasimodular forms f® g™, The goal of this paper is to express
the Dirichlet series of a product of derivatives of modular forms in terms of the Dirichlet series of Rankin—Cohen brackets.
More precisely, we prove the following theorem:

Theorem 1.1. Given a discrete subgroup I', containing translations, of SL(2, R), let ¢ and ¥ be modular forms for I with width h and
weights w and v, respectively. Then the Dirichlet series of the quasimodular form ¢ ™™ can be written in the form

m-+n
L™y ™, 5)= 3" antOL(ip, Wl s —0), (11)
£=0

where
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rinl(w+m—1D!w+n—1)!(+v+2¢—1)!
(LW+L—DW(+v+2m+2n—£—1)ht

an () =

(12)

¢ . .
=Pl —e+ Pl +L—j—1!

foro<e<m+n.

The proof of this theorem is carried out by using a correspondence between quasimodular forms and sequences of
modular forms discussed in [8]. For example, each quasimodular form can be written as a linear combination derivatives of
a finite number of modular forms.

2. Quasimodular and modular polynomials

In this section we describe SL(2, R)-equivariant automorphisms of spaces of polynomials introduced in [8] which deter-
mine correspondences between quasimodular polynomials and modular polynomials.

Let H be the Poincaré upper half plane, and let F be the ring of holomorphic functions f:H — C satisfying the
following growth condition

Imz \~"
|f(Z)| < (m) (2.1)

for some v > 0 (see e.g. [9, Section 17.1] for a more precise description of this condition). We fix a nonnegative integer m
and denote by J,,[X] the complex vector space of polynomials in X over F of degree at most m. Thus F;,,[X] consists of
polynomials of the form

Dz, X) =) ¢r(@X" (22)

r=0
with ¢ € F for 0 <r <m. If &(z, X) € Fn[X] is as in (2.2) and if A is an integer with A > 2m, we set

m m
(Al®)(z. X) =) ¢r DX,  (8]D)@X) =) ¢ @)X (23)
r=0 r=0
where
_l m-—r
©
— , 24
T —2r—¢ —1)!¢m*f*‘f (24)
=0
(-1 )Z )
e (A+2r—2m—1)2 m—r+01Q2r+1r—2m—¢—2)g,) ., (2.5)
for each r €{0,1,...,m}. Then it can be shown that the resulting maps
AR BT Ful X1 = FulX]
are complex linear isomorphisms with
(&7 = Ay
(see [8]).
The group SL(2, R) acts on the Poincaré upper half plane H as usual by linear fractional transformations, so that
S az+b
Vi= o rd

forall ze H and y = (g 3) € SL(2, R). For the same z and y, by setting

C
3 = d 8 = 2.6
Jy,z)=cz+d, .2 p——l (2.6)

we obtain the maps J, R:SL(2, R) x H — C which satisfy

Iy ) =3r.v2DI.2).  &(r.v'2)=3(V".2) (R(ry'.2) - &(v'.2))
for all ze H and y, y’ € SL(2, R).
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Given @ (z, X) € Fn[X] as in (2.2) and elements f € F, y € SL(2,R) and X € Z, we set

Fhy)@=3y.27"f(y2), (2.7)

(@15 y)@X) =)@ i V)@X', (2.8)
r=0

(@ )@ X) =3y, 07 ®(yz.3(r.2*(X — &y, 2)) (2.9)

for all z € H. Then |, determines an action of SL(2,R) on M as usual, and the other two operations |§f and ||, determine
actions of the same group on F,[X]. If AT and E]" are the linear automorphisms of F,,[X] given by (2.3), then it is known
that
(A7) 1 y) (@ X) = AP(P ¥ 5 ¥) (@ X), (2.10)
(BP0 X o ¥) @ X) = E(@ |15 )2, X) (211)

for all y € SL(2,R) (cf. [8]).
We now consider a discrete subgroup I" of SL(2,R). Then an element f € F is a modular form for I" of weight A if it
satisfies

fhhv=Ff

for all y € I', where the operation |, is given by (2.7).

Definition 2.1. Let |f and ||, with A € Z be the operations in (2.8) and (2.9).
(i) An element F(z, X) € Fn[X] is a modular polynomial for I' of weight A and degree at most m if it satisfies

FIXy=F
forall y er.
(ii) An element @ (z, X) € Fin[X] is a quasimodular polynomial for I' of weight A and degree at most m if it satisfies
Py =2
forall yer.

We denote by MP;*(I") and QP]"(I") the spaces of modular and quasimodular, respectively, polynomials for I" of weight 1
and degree at most m. If a polynomial F(z, X) € Fu[X] of the form

m
F@X)=) f@X
r=0
belongs to MP*(I"), from (2.8) and Definition 2.1(i) we see that

fr € Myq2r(I) (212)

for 0 <r <m. From (2.10), (2.11) and Definition 2.1 it follows that the automorphisms A}' and ZJ" of Fp[X] induce the
isomorphisms

AT MP o (F) — QPIN(I), & :QPI(I") — MPJ! 5, () (2.13)

for each A > 2m.

Example 2.2. Given an integer A > 2m, we consider two modular forms
& € M —om(I), ne My _ami2(l)

and the associated modular polynomial

F(z,X)=)_ fr@)X" € MP; _om(I)
r=0

& ifr=0;
fr={n ifr=1,

0 if2<r<m.

with
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If AT'F(z,X)=>11, ka (2)X" € QPJ"(I') is the corresponding quasimodular polynomial, from (2.4) we obtain

—k —k—1
fém ) fl(m )

A _
U kim -k —k—m—1)! + k!m —k —1)!(A —k —m)!

(A —k— m)g M=k 4 (m — kynm—k-1
- ki(m — k)I(h — k —m)!

Thus we have
m

ATF(z.X) =)

k=0

G —k=mE™ V@) + m— k™ V)
k'm — k), — k —m)! '

(214)

3. Quasimodular forms

In this section we discuss the correspondence between quasimodular polynomials and quasimodular forms. We also
express the Dirichlet series of a quasimodular form in terms of Dirichlet series of the modular forms associated to the
corresponding quasimodular polynomial.

Let F be the ring of holomorphic functions on H satisfying (2.1) as in Section 2, and let I" be a discrete subgroup of
SL(2,R) containing translations.

Definition 3.1. Given integers m and A with m > 0, an element f € F is a quasimodular form for I of weight A and depth at
most m if there are functions fo,..., f;m, € F such that

fhn@=) @Ry, 2 (31)

r=0
for all ze H and y € I', where R(y, 2) is as in (2.6) and [, is the operation in (2.7). We denote by QM}'(I") the space of
quasimodular forms for I of weight A and depth at most m.
Quasimodular forms correspond to quasimodular polynomials as described below. If 0 < ¢ < m, we consider the complex
linear map
Gy FnlX]—> F
defined by

S ( > ¢r(z)xf) =¢(2)
r=0

for all z € ‘H. Then it can be shown (cf. [2]) that

Se(QPN(IM) € QMY 5, (I');
hence we obtain the map

S¢: QPN — QMY 5,(I) (32)
for each £. For £ =0 it is known that the map

Go: QP(I") — QM3 (I")
is an isomorphism whose inverse is the map

QlQMY(IM) — QP;(IM) (3.3)
defined by

QI )z X) =) frX

r=0

for a quasimodular form f e QMY (I") and functions fo, ..., f € F as in (3.1).
Let ¢ € QMY (I") be a quasimodular form whose Fourier expansion is of the form

V(@) =) aerm (34)

k=0
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with h € R, so that the corresponding Dirichlet series is given by

[o.¢]
Qn
L(y,s) = Z s (3.5)
where it converges when Res > 0. For 0 <r < m, using (2.12) and the isomorphisms in (2.13) and (3.3), we see that the
function (&; 0 & 0 Q)4 is a modular form belonglng to My _om+2r(I"). We now set
= (Gr 0 &0 QMY € My—am2r(I), (3.6)
and assume that its Fourier expansion is given by
0 .
frw (2) = Zcr,kezmkz/h- (3.7)
k=0

Thus the corresponding Dirichlet series can be written as

v OO Cron
L(fr ’5) = Ol (3.8)
n=1

where it converges for Res > 0.

Proposition 3.2. The Dirichlet series in (3.5) and (3.8) satisfy the relation

m

Qi)
L(W,S)=gmufnf—vs_5)’ (3.9)

where it converges for Res > 0.

Proof. From (3.6) we see that

(o QM) (2. X) = Z L @Xx eMP™,, (I).

r=0
Applying the isomorphism AZ' in (2.13) to this relation and using (2.3) and (2.4), we have

QM) (2, X) = (AT 0 ' 0 Q)¥) (2. X) = ) yn(@)X" € QPJ"(I"),

r=0

where

_r_zz'(x 2r—z—1)v(fm—f—’f)

{=0
for 0 <r < m. From this and the fact that (Qm)*l = S we obtain

v =8o(Qv) =vo=3_ s (0"

! !
:OZ(A £—=1)!

Using (3.7), we have
¢

(l) 2r 2ikz/h.
( g (2) = Zcm Zk<—h ) e ;

hence we obtain

@mik)‘em— ek 2mikz/h
¥(2) = ZZ 2 — z—l)'hle .
=0 ¢=0

Comparing this with (3.4), we have

Qrik) cm—rk

Be= — {1(. — €~ 1)lht
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for k > 0. Thus from (3.5) and (3.8) we see that
o m .
Qmin)’cn_en
L S - @ =
(1/f ) ZZO '()\ E_-l)yhlns

_ii Qi) cm_t.n
- (L — £ —1)héns—

£=0n=1

m

Qi v )
2 i —e— e Un-es =0

=0

hence the proposition follows. O
4. Proof of Theorem 1.1

We first recall that the Rankin-Cohen brackets are the bilinear maps
k.t
[ 1w s M (D) x Mo(I') = Mg 2w (1)
defined by

[f. g1 Z(_l)r<k —:vvi; 1) (E +w— ]>f<r)g(""—” (a1)
r=0

r

for k,¢€Z, w>0, feMyI') and g€ M,(I") (see e.g. [10,3]). It is known that the Rankin-Cohen brackets are unique up
to constant. More precisely, if

Bw : Mi(I") x Me(I'") = Mite12w(I7)
is a bilinear differential operator, there is a constant c € C such that

Bw(f.g) =clf, glw
for all (f,g) e Mp(I") x My(I').

(k 0

Proof of Theorem 1.1. Given nonnegative integers w and v, we consider modular forms ¢ € M, (I") and ¥ € M, (I"). Then
their derivatives ¢™ and ™ with m,n > 0 are quasimodular forms with

¢™ e QM om- y™ e QM) 450

hence we see that ™™ is a quasimodular form belonging to QM7 5\, (I"). By setting A = it +2m, § =¢ and =0
n (2.14), we obtain

m S ¢(m7k) k m
Apram® (2. X) = ; km =it rm—k—1n~ < LuronD: (4.2)
¢(m)
((Soo Al 4om)®)(2) = Gt m =11 QM 4o ().

Similarly, if ¢ € M, (I"), we have

RS v 0@
Ay (2. X) = /;0 A= 0 rn—t—n" f€ QD)
0 Wy
((So0A5450) )@ = o7 € Dlipon (D)

Thus, if we set

F(z,X)= (A';1 o @ (2. X)) - (A} ¥ (2, X)),

m+n

it is a quasimodular polynomial belonging to QPM U4 2m2n

(I'), and we obtain
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M=k (7, 1=0) (7
F(z, X) = ZZ ¢ @y (2) Xk_,'_g
i kKem—-k)!n—-—0O(u+m—-k—DIv+n—£—-1)!
m+n 1
=22 K, Mm@ T @X € QPR o an (D),
r=0 k=0
where
KMy 1
k.r Tka—k)m—-k)n—-r+k(u+m—k—DIv+n—r+k—1)!
for 0 <k <r<m+n; here we assume that ¢@ =0 and ¥® =0 for a, b < 0. Using (2.3) and (2.5), we have
m-n )
A i F@ X)) =) 67 @X) e MP(D),
where
F=(u+v+20-1) )l Fn— L+ DI+ p+v—j—2)1Y
o = (1 Z o mn D@+ p+v == 0
Jj=0 '
with

r
¢r — Z Kllz’l}n:lthj(mfk)w(nfr+k)

k=0

for 0 < ¢,r <m -+ n. However, we have

m-+n—~{+j 0
(J) m,n;u,v —k) ., (€+k—m—j)\U
m+n i~ Z Kk ,m+n—{+] (¢(m v " ]))
m+n—€+] j j ) )
_ Z K;T,:_,.’; v[+1 (p)¢(m—k+]—p)w(ﬁ+k+p—m—1);
k=0 p=0
hence it follows that
¢ m+n—L+j j ( 1)J
¢f=(n+v+20—-1)> Z Z <)(m+n—€+1)'(2€+u+V—J—2)Kﬂ;’f{—veﬂ
j=0 k=0 :
« ¢(m—k+]—p)w(€+k+p—m—1) (4.3)

for 0 < £ <m+n. Since ¢f € My 4v42¢(I"), we obtain the bilinear differential operator

(@) > ¢F :Myu(I') x My(I') = My qvi2e(I)
on My (I") x M, (I") for each £. Thus, using the uniqueness of Rankin-Cohen brackets, we see that

¢F =belg. v1"" (4.4)
for some b, € C. Using p = j and k =m, the coefficient of ¢v©) in (4.3) is given by

[ .
(-1 . . NI
(L+v+20-1)) :T(m+n—€+])!(2€+u+v—] = )UK oy (4.5)
=0 7

where

gy 1
mmtn—t] T min — 04+ I — DI — DI +L—j—1

On the other hand, by (4.1) the coefficient of ¢y© in (4.4) is equal to

(,u-l—Z—l)b (Ut e—Dlb
¢ ST



Y. Choie, M.H. Lee / . Math. Anal. Appl. 373 (2011) 464-474

Comparing this with (4.5), we obtain

4 . .
p, — (v +2e—1e Z(_l)j(m+n—ﬂ+])!(2£+u+v—]—2)!

(L +¢—1)im! =€+ DI — D +L—j—1)!

j=0
for 0 < ¢ <m+n. Since we have

¢(m)1/,(n) mn
Tmnl(p+m—1D)w+n—1)! € QM ivrami2n(1):

it follows that

SoF

om+n m-+n _ om+n _ &
(Gr O & tv+2m+2n © Qu+v+2m+2n)(60F) = (Gr ° "‘u+v+2m+2n)F =¢;
for 0 <r <m+n. Thus, using Proposition 3.2, we obtain

m—+n

L™y ™ s) =mni(u+m—DIw+n—1Y
£=0

m+n Y4
2mi)by
=m!n! m—Dwv+n-1)!
(n+ N+ );:0:Z!(M+v+2m+2n—€—l)!hz

Qmi)t
L +v+2m+2n—£—1)ht

L(¢£+n—€’ S— Z)

L(Ip. 1) s — 0):

hence the theorem follows from this and (4.6). O

5. Examples

In this section we consider two modular forms
¢ eMu(I), Y e My(I'),

and provide examples of the formula (1.1) for (m,n) = (1, 1), (2, 0), (0, 2).
We first consider the case where m =n =1 by regarding the given modular forms as modular polynomials

Dz, X)=¢(2) € MPL(F), W(z,X) =1 (z) e MPL(I").

Then from (4.2) we see that

(4),122(z. X)) - (A} ,¥ (2. X)) = o' @V (@) + (v¢' @DV (2) + np @V ()X + e () (2)X?],

1
uiv! [
which is a quasimodular form belonging to QPiHH(F). Thus, if we set

F(z, X) = puv!(4], @z X)) - (A)1,¥ (2. X)),
we have

F(z.X)= fo@ + L)X + fa@X? e QP2 4(D),
where

fo=¢'W =GoF € QM2 (D), fr=vd'y+udy’,  fo=pvoy.
Using (2.5), we have

2
(Bl vpaF)@ X =) f[F @)X,
r=0

where

fe =2mv(u+v—1lgy,

fE=@+v+D+v =Dl —v)(npy' —ve'y),

[ ==(u4+v+3)(+ 0! x (1 + Doy” —2(u + D + D'y +v(v + 1o y).

However, using (4.1), we have

o

471

(4.6)



472 Y. Choie, M.H. Lee / J. Math. Anal. Appl. 373 (2011) 464-474

(6, v = oy,
(6, 1Y = ugy’ —vo'y,
Vv 1 Vi /N Vi
[p, y13Y) = S (1 + DY =20+ DO+ DY + (v + 1D"Y). (5.1)

Thus we see that

fE =2pv(p+v —Dlg, v1¥-",
FE=u—v)(u+v+D+v-1lg, w1,

f£ = =200+ v +3) @+ v)ig. w1
From this and (3.9) with A = 4+ v + 4 we obtain
2

- )
How's) = ]:ZO jlu +(1)2T; — j),hjL(fz“-p s—J)
T (v +2)2(M+v el (G yIye.s)
(n +217)T-1.F(12L)(_Mvi v)hL([qﬁ, Y s 1)
(1 + ‘fzf;))z(l/j‘jr V)h2 L(Ig. w1 s - 2). o)

We now consider the case where m =2 and n = 0 by regarding the given modular forms as the modular polynomials
®(z.X)=¢(2) eMP(I),  W(z.X)=1(2) e MPY(I),

so that from (4.2) we obtain

2 (40 1 " @Y (2) ¢ @Y () @Y (@ .,
(Ara® (@ X)) - (A0 (2. X)) = W=D\ 2(n+ 1! + w! X+ 2(1 — 1)!X ’
which is a quasimodular polynomial belonging to QPIZHV%(F). Thus, if we set

Gz, X) =2 —D!(u+ 1)!(Ai+4q§(z, X)),
then we have
G(z, X) = 20(2) + 81X + £2)X* € QP 4(1),
where
20=9¢"Y=60GeQM>,, 4(I, g1=2+1¢'V, g =npnu+1ey.

Using this, (2.5) and (5.1), we see that
2

(87 10446) @ 0 =87 @X',
r=0

where

g5 =2(u+v —Dlgy =2u(n + D +v - Dg, w1,

g =(u+v+D((+v)ig — 2 +v—1)lgh)
=2+ v+ D +v =Dy — npy’)
=—2(u+v+ D +v - Do, w1,

g5 =(u+v+3)((L+v+2)lgo— (L+v+ gl + (u+v)lgh)
=U+V+3)+A((R+V+2)(U+v+ D"y =2+ D+ v+ 1D)(¢"Y +¢'y)

+ (e +10)(¢" Y + 20"y +¢y"))

=(U+v+3) R+ + D" +2(n+ 1D+ D'V + (e + Depy”)
=2(u+ v+ +)le, y19-Y.
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From this and (3.9), we have

2 i
p Qmi)l g .
L"v.9) :;) T rvrs— e )
j=

= 2 (M v)
2@ (ke +1) o
v or @V =1)
Qi) +1) o
Girv+ Do @Vl s =2).

473

(5.3)

The case where m =0 and n =2 can be obtained from (5.3) and the fact that Rankin-Cohen brackets [¢, w]f,f,"v) are

(=1)"-symmetric. Thus we see that

2
m+v+2)(n+v+1)
22w +1)
B (L+v+2)(u+vh
Qrivw+1)
(n+ v+ 1 (u + v)h?
2
OIS
227V +1)
(L +v+2)(+v)h
Qrilvw+1)
(u+v+1)(u+v)h?

L([y, ¢15", 5)

L(gv".s) =

L(ly, p1%", s — 1)

L([y, 1", s —2)

L(ip, v15" . s)

L(ip, y11", s —1)

L(lp, w18 s —2).

6. Concluding remarks

Given two modular forms ¢ € M, (I") and ¥ € M, (I"), from (4.1) we see that

k, = T k —T\(¢ -1 r. . (w—r
L(1g. w](l 0 g )=Z(—1) (ctvvir >< +w )L(qb()w( >,s)
r=0

r
for each nonnegative integer w. Using this and (1.1), we have

v v -1 -1 awr
L(Ig. 14", s) ZZ( <M+Wr ><v+vrv )M OL(I¢, ¥,

=0 r=l

where the constants a;l"‘{, "(£) € C are as in (1.2). Hence we obtain the identities

Z(—1>r<”+w_1)<”+w_l) a0 =1,

e w—r r

Z(_l)r(,u—l—w—1)(v+w—l>aw¥;r(£)zo
w-—-r r ’

r=0

for 1 << w.
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