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1. Introduction

The purpose of this note is to study the class of ADS rings and modules. Fuchs [F] calls a right
module M right ADS if for every decomposition M =S @ T of M and every complement T" of S
we have M =S & T’. Clearly any ring in which idempotents are central (in particular commuta-
tive rings or reduced rings) has the property that Rg is ADS. Moreover, if R is commutative then
every cyclic R-module is ADS. We note that every right quasi-continuous module (also known as
7 -injective module) is right ADS, but not conversely. However, a right ADS module which is also CS is
quasi-continuous. We provide equivalent conditions for a module to be ADS. A module need not have
an ADS hull in the usual sense but we show that, under some hypotheses, every nonsingular right
module possesses a right ADS hull which is unique up to isomorphism. We call a right module M
completely ADS if each of its subfactors is ADS. We characterize completely ADS semiperfect right
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modules as direct sums of semisimple and local modules. In particular we give an alternative proof
of the characterizations of semiperfect 7 c-rings (rings whose cyclics are quasi-continuous).

2. Definitions and notations

Throughout every module will be a right module unless otherwise stated. All rings have identity
and all modules are unital. A module M is called continuous if it satisfies (C1): each complement
in M is a direct summand, and (C2): if a submodule N of M is isomorphic to a direct summand
of M then N itself is a direct summand of M. A module M is called quasi-continuous (7 -injective)
if it satisfies (C1) and (C3): the sum of two direct summands of M with zero intersection is again
a direct summand of M. Equivalently a module M is quasi-continuous if and only if every projection
i : Ny @ Ny — Nj, where N; (i=1,2) are submodules of M, can be extended to M.

For two modules A and B, we say that A is B-injective if any homomorphism from a submodule C
of B to A can be extended to a homomorphism from B to A. We note that if A is B-injective and
A is contained in B then A is a direct summand of B. A module M is called semiperfect if each of
its homomorphic images has a projective cover. A submodule N of a module M is small in M if for
any proper submodule P of M, P + N # M. We will write N < M. Let A and P be submodules of
a module M. Then P is called a supplement of A if it is minimal with the property A+ P = M.

A module M is discrete if it satisfies (D1): for every submodule A of M there exists a decomposition
M = M7 & M> such that M1 C A and M, N A is small in M, and (D,): if A is a submodule of M such
that M/A is isomorphic to a direct summand of M, then A is a direct summand of M. A module M is
called quasi-discrete if it satisfies (D7) and (D3): if M7 and M, are summands of M and M = M1 + M
then M1 N M; is a summand of M.

For any module M, E(M) denotes the injective hull of M. We recall a useful result of Azumaya that
for any two modules M and N, if M is N-injective then for any R-homomorphism o : E(N) — E(M),
o(N)C M.

3. Properties of ADS modules

We begin with a lemma which is useful in checking the ADS property of a module. This was
proved by Burgess and Raphael [BR], however, for the sake of completeness, we provide the proof.

Lemma 3.1. An R-module M is ADS if and only if for each decomposition M = A & B, A and B are mutually
injective.

Proof. Suppose M is ADS. We prove A is B-injective. Let C be a submodule of B and let f :C — A be
an R-homomorphism. Set X ={c+ f(c)|c € C}. Then XN A=0. So X is contained in a complement,
say K, of A. Then by hypothesis, M = A @ K. The trick is to define an R-homomorphism g:B — A
which is a composition of the projection mg : M — K along A followed by the projection w4 : M — A
along B and restricting to B. By writing an element c € C as ¢ = (c + f(c)) — f(c), we see that
mamg = f on C and hence w4k is an extension of f.

Conversely, suppose for each decomposition M = A @ B, A and B are mutually injective. Let C be
a complement of A. Set U = BN (A& C) which is nonzero because A & C is essential in M. Let w4 be
the projection of A@® C on to A and f : U — A be the restriction of r4 to U. This can be extended
to g: B — A, by assumption. Let b € B and let D = (b — g(b))R+ C. We claim DNA=0. Letac A
and let a = br — g(b)r + ¢ for some c € C. This gives br =a + g(b)r —c € U and so f(br)=a+ g(b)r
because f is the identity on A and 0 on C. This yields a = 0, proving our claim. Thus D = C and
hence b — g(b) € C for all b € B. Therefore, b = (b — g(b)) + g(b) s CH® A and so M=ADBCCH A,
proving that M=C® A. O

Our next proposition gives equivalent statements as to when a module is ADS analogous to char-
acterization of quasi-continuous modules (cf. [G]]).
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Proposition 3.2. For an R-module M the following are equivalent:

(i) M is ADS.

(ii) For any direct summand S and a submodule S, having zero intersection with S1, the projection map
i :S1® Sy — Si (i=1,2) can be extended to an endomorphism (indeed a projection) of M.

(iii) If M = M1 @ M, then My and M, are mutually injective.

(iv) For any decomposition M = A & B, the projection g : M — B is an isomorphism when it is restricted to
any complement C of A in M.

(v) For any decomposition M = A @ B and any b € B, A is bR-injective.

(vi) For any direct summand A C® M and any ¢ € M such that A N cR = 0, A is cR-injective.

Proof. (i) = (ii) Let S, be a complement of S; containing S;. Then by definition of ADS module,
M=S51& §2. Hence the canonical projections 71 : S1 ® §2 — Syand 72 :$1® §2 — §2 are clearly
extensions of 71 and 3.

(ii)= (i) Let M = A ® B and let C be a complement of A in M. We must show that M =A @ C.
By hypothesis, the projection 7 : A@® C — C can be extended to an endomorphism f: M — M. We
claim f(M) c C. Since A @ C is essential in M, for any 0 # m € M, there exists an essential right
ideal E of R such that 0 £ mE C A& C. This gives f(m)E = mw(mE) C C. Since C is closed in M, this
yields f(m) € C, proving our claim. We also remark that f2 = f, M = Ker(f) @ im(f) and Ker(f) =
{m— f(m) | m € M}. We now show that Ker(f) = A. For any a € A, clearly a =a— f(a) € Ker(f), hence
A C Ker(f). Now let 0 £ m — f(m) € Ker(f). There exists r € R such that 0 # (m — f(m))re A& C.
This implies f[(m — f(m))r]= f(mr)— f(f(mr)) = f(mr) — f(mr) = 0. Since f extends s, this means
that 0 # (m — f(m))r € Ker(;r) = A. But A being closed in M, we conclude A = Ker(f), completing the
proof.

(i) < (iii) This is Lemma 3.1 above.

(i) & (iv) Let C be a complement of A. Then ker(wg|c) =0. Since AC=(ADdC)N(ADB) =
(A®C)NB)+ A, we have 15(C) =(ADC) =mp((AD C)NB) = (Ad C) N B. This gives mg(C) =B
when M is ADS. On the other hand if 75(C) =B then M = A @ C, hence M is ADS.

(i) < (v) This is classical (cf. Proposition 1.4 in [MM]).

(i) = (vi) Consider C a complement of A containing cR. Since M is ADS we have M = A & C.
Using (v), this leads to A being cR-injective.

(vi) = (i) This is clear since if M = A @ B, (vi) implies that A is bR-injective for all b € B and
Proposition 1.4 in [MM] yields that A is B-injective. O

Let us mention the following necessary condition for a module to be ADS.

Corollary 3.3. Let Mg be an ADS module. For any direct summand A €® M and any (a,c,r) € A x M x R
such that cR N A = 0 and ann(cr) C r.ann(a) there exists @’ € A such that a = a’r. If R is a right PID the
converse is true.

Proof. By Proposition 3.2(vi), we know that A is cR-injective. Consider ¢ € Homg(crR, A) defined by
@(cr) = a. The condition on annihilators guarantees that ¢ is well defined. By relative injectivity, this
map can be extended to ¢ : cR — A, and hence we get a = ¢(cr) = @(c)r. We obtain the desired
result by defining a’ = @(c).

If R is a principal ideal domain then the submodules of cR are of the form crR for some r € R.
The condition mentioned in the statement of the corollary makes it possible to extend any map in
Hompg(crR, A) to a map in Homg(cR, A) for any direct summand A €® M. Invoking Proposition 3.2(vi),
we can thus conclude that M is ADS. O

It is known that the sum of two closed submodules of a quasi-continuous module is closed [G]].
We prove that the direct sum of two closed submodules of an ADS module is again closed when one
of them is a summand.
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Proposition 3.4. Let A and B be two closed submodules of an ADS module M such that A is a summand and
ANB=0.Then A ® B is a closed submodule of M.

Proof. Let C be a complement of A containing B. Since M is ADS, we have M =A@ C.let x=a+c¢
be in the closure of A@® B in M, where a€ A and c € C. Since a € A C cl(A & B), we have that
a € cl(A ® B). Hence there exists an essential right ideal E of R such that cE C (A @ B) N C = B. The
fact that B is closed implies c € B. Hence x € A @ B, as desired. O

Remark 3.5. Let A, B be closed submodules of an ADS module M such that A is a direct summand
of M. If AN B is a direct summand of M, then A + B is closed. Indeed let K be a complement of
AN B. Since M is ADS we have M = (AN B) ® K. Hence A+ B= A & (K N B). The above proposition
then yields the result.

The proposition that follows gives an interesting property of an ADS module. The original state-
ment is due to Gratzer and Schmidt (cf. Theorem 9.6 in [F]). We first prove the following lemma.

Lemma 3.6. Let M = B & C be a decomposition of M with projections 8 : M — B, y : M — C. Then M =
B & C1 if and only if there exists 6 € End(M) such that C1 = (y — B0y )(M).

Proof. Suppose that M = B @ C; with projections 81 on B and y; on Cq. We will show that g1 =
B+ B0y and y1 =y — BOy with 6 =y — y1. We have B < ker(9), so 6 =08 + 6y =0y.

If m=b+c=b1+c1, where b,by € B,ceC, ¢y € C;. Then 6(m) =c—c1 =by—b € B. Thus g6 =6.
Hence y1=y -0 =y —Boy.Also p1=1a -1 =B+y —y1=B+B0y.

Conversely, if 81, y1 are defined as above, that is 81 =8+ 86y and y; =y — B0y for any 6 €
End(M), then By + y1 = 14, B2 = B1, y2 = ¥1. Piy1 = 11 = 0. Therefore, M = 1M & y1 M. Since
B1(M) C B and B1(b) =B(b) =D for b € B, we have M =B & (y — BOy)(M), as required. O

Using the same notations as in the previous lemma we state the following corollary.

Corollary 3.7. A module M is ADS if and only if for any decomposition M = B & C the complements of B in M
are all of the form (y — BOy)(M) for some 6 € End(M).

Proposition 3.8. Let M = B @ C be a decomposition of an ADS R-module M. Let B and y be projections
on B and C respectively. Then the intersection D of all the complements of B is the maximal fully invariant
submodule of M which has zero intersection with B.

Proof. Let 6 € End(M). Then C; = (y — BOy)(M) is again a complement of B. For c € D we have
(y — BOy)(c) =c and yc =c, because c € C; N C. Hence BOc =0 and Oc € C. This holds for all
complements C, so 6c € D, so D is fully invariant in M with D N B = 0. On the other hand, assume
X is fully invariant with XN B =0. Since M =B & C, and 73(X) € X and m¢(X) C X, this leads to
X=XNB)®d(XNC)=XNC. Hence X < C. Since M is ADS this holds for any complement of B
in M, and hence XC D. O

It is known that an indecomposable regular ring which is right continuous is right self-injective
(cf. Corollary 13.20 in [G]). The following theorem is a generalization of this result for simple rings
without the assumption of regularity. We may add that an indecomposable two-sided continuous
regular ring is simple (cf. [G, Corollary 13.26]).

Theorem 3.9. Let R be an ADS simple ring. Then either Ry is indecomposable or R is a right self-injective
regular ring.

Proof. Let Q be the right maximal quotient of R which is regular right self-injective. Since R is
right (left) nonsingular E(R) = Q. Suppose R is not right indecomposable and let e be a nontrivial



A. Alahmadi et al. / Journal of Algebra 352 (2012) 215-222 219

idempotent. Then since R is ADS eR is (1 —e)R-injective (cf. Lemma 3.1). Furthermore, since Hom((1—
e)Q,eQ)=eQ(1—e), (eQ(1—e)(1—e)R CeR. Because R is simple, so R=R(1—e)RC Q(1—e)R.
This yields, 1 € Q (1 — e)R. Therefore Q = Q (1 —e)R, and so eQ =eR. Similarly (1 —e)Q = (1 —¢e)R
hence R = Q, i.e. R is a right self-injective regular ring. O

Corollary 3.10. A simple regular right continuous ring is right self-injective.
4. ADS hulls

We now proceed to construct an ADS hull of a nonsingular module. Burgess and Raphael (cf. [BR])
claimed that an example can be constructed of a finite dimensional module over a finite dimensional
algebra which has no ADS hull. We show that, under some circumstances, such an ADS hull does
exist.

Lemma 4.1. Suppose M is nonsingular. Then M is ADS iff for every decomposition E(M) = E1 & E; where
E1 N M is a direct summand of M, then M = (E1 N M) & (E; N M).

Proof. Suppose M is ADS. We may write M = (E1 N M) & K where K is a complement of E; N M.
Let e; : (E1NM) ® (E; N M) — E; N M be the projection map. Then by Proposition 3.2(ii) there exists
ef : M — M that extends e;. Let 7r; : E1 @ E; — E; be the natural projection. Since E(M) is injective
we can further extends e} to ef* € End(E(M)). We claim ej* is an idempotent in End(E(M)). Indeed
let x #0 be any element in E(M) and A an essential right ideal of R such that 0 # xA € M. We
have (e}*)?(x)A = (e]*)%(xA) = (e})*(xA) = e} (xA) = e}*(xA) = e}*(x)A. This yields the claim, since
M is nonsingular. Thus e*(E(M)) = m;(E(M)) = E;. Now M C, E(M) = E1 @ E; implies E1 "M C,
(E1 @ E2) N Eq. Similarly E; "M Ce E3 and so ef* =7m; on Ef{NM @ E; MM S M Ce E(M). Since M is
nonsingular ej* = 7r; on E(M). In particular, 77;(M) € M and so M = (71 +72)(M) C 11 (M) 72 (M) C
(E1NM) & (E; N M).

Conversely, let M =A@ B and C be a complement of A. We must show that M = A @ C. Since
A®C <e M, we get E(M) = E(A) & E(C). Since both A and C are closed in M, we have E(A)NM =A
and E(C) " M = C. Since A is a direct summand of M we have, thanks to the hypothesis, M =
(E(A)NM)® (E(C)NM)=A®C, as desired. O

Theorem 4.2. Let M be a right R-module. Then M is ADS if and only if for every e = €%, f = f2 € End(E(M))
witheM C M and fE(M) =eE(M), we have fM C M.

Proof. Let us prove necessity: (1 — f)(E(M))NM Ce (1 — f)(E(M)) and f(E(M)) "M C, f(E(M)).
Thus (1 — fY(E(M)) N M) & (f(E(M)) N M) S, M. We claim f(E(M)) N M = e(M). Note first that
e(E(M))NM = f(E(M))NM. Clearly eE(M)NM C eM. Let C = (1 — f)(E(M))NM. Then C eM C, M.
Because eM is closed C is a complement of eM in M (cf. Lemma 6.32 in Lam’s book). Because M is
ADS we have M =e(M)®C. Let g be the projection of eM along C, so that g(M) =e(M). Now g(M) =
e(M) C f(E(M)). This gives eM = (M) = fg(M) = fe(M). Since C is contained in (1 — f)(E(M)),
f(€©)=0.Then fM= f(C®deM)=eM C M.

Conversely, let M =eM & (1 —e)(M) and C be a complement of e(M) in M. We want to show
M=e(M)®C. Now, Cde(M)Z, M and so E(C) ® E(eM) = E(M). Hence E(C) ® eE(M) = E(M). Let
f be the projection on eE(M) along E(C). We have f(E(M))=e(E(M)) and E(C) = (1 — f)(E(M)).
By hypothesis we have f(M) C M. Let m be in M. Then me M = E(C) & f(E(M)), say m=c + f(m),
where ¢ € E(C). c=m — f(m) € E(C) N M = C, because C is closed. We conclude that M = C &
e(M). O

We may recall that any endomorphism f € Endg(M) of a nonsingular module M can be uniquely
extended to an endomorphism f* of its injective hull E(M). Let us mention moreover that if f = f2
then f* = (f*)2. Under these notations we obtain the following corollary.
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Corollary 4.3. Let M be a right nonsingular R-module. M is ADS if and only if for every e = e? € End(M) and
f = f? € End(E(M)) with fE(M) = e*E(M), we have fM C M.

We are now ready to show, that under some circumstances, an ADS hull can be constructed for
a nonsingular module. For a nonsingular right R-module M, we continue to let e* denote the unique
extension of e2 = e € End(M) to the injective hull E(M) of M.

Theorem 4.4. Let My be a nonsingular right R-module. Let M denote the intersection of all the ADS submod-
ules of E(M) containing M. Suppose that for any e? = e € End(M) and for any ADS submodule N of E(M)
containing M we have e*(N) C N. Then, M is, up to isomorphism, the unique ADS hull of M.

Proof. Let £2 be the set of ADS submodules N such that M < N < E(M). Then M = (y.o N. We
claim that M is ADS. Clearly E(M) = E(M). Let e = e2 € Endg(M), f? = f € End(E(M)) such that
e(M) C M and f(E(M)) = e*(E(M)). Since M is nonsingular and e(M) € M, we have e(N) C N for
every N € £2. So, for every N € £2, f(N) C N because N is ADS. Let x € M. Then x € N for every
N € 2. Hence f(x) € N for every N € £2. Therefore f(x) € (\yeo N =M, that is f(M) C M, proving
our claim. O

Remarks 4.5. Let us remark that the condition stated in the above theorem is in particular fulfilled
if we consider the ADS hull of a nonsingular ring. Indeed in this case we consider the ADS rings
between R and Q := E(R) and projections are identified with idempotents of the rings. Of course,
these idempotents remain idempotents in overrings.

5. Completely ADS modules

Theorem 5.1. Let M = @;; M; be a decomposition of a module M into a direct sum of indecomposable
modules M;. Suppose M is completely ADS. Then

(i) Forevery (i, j) € I%,i # j, M; is Mj-injective.
(i) If i, j) € I, i 5 j are such that Homg (M;, M) #0, then M is simple.
(iii) M =S & T where S is semisimple and T = @jejd M; is a direct sum of indecomposable modules.
Moreover, for any 6 € End(M) we have 6(S) C Sandforje J,0(M;) SM; & S.

Proof. Since the ADS property is inherited by direct summands, statement (i) is an obvious conse-
quence of Lemma 3.1.

(ii) For convenience, let us write i =1, j =2 and suppose that 0 # o € Homg(M1, M3). We have
o(M1) @ My & --- = M /ker(o) @ My & --- = M/ ker(o) is ADS, by assumption. Hence o (M1) is
M>-injective and, since o (M) € M, we get that o (M) is a direct summand of M,. But M, is
indecomposable, hence o (M) = M3. We conclude that My @& My = o (M) & My is ADS. This means
that M, is Mj-injective i.e. M3 is quasi-injective.

Let us now show that for any 0 # my € My, myR = Mj. Since o (M1) = M>, there exists m; € My

such that o (m1) = my. We remark that o (m{R) @ My = % e M, = % is a submodule
of W. Since M is completely ADS, we conclude that o (m{R) & M, is ADS. As earlier in this

proof, relative injectivity and indecomposability lead to o (m{R) = M,. Hence myR = M>, as desired.

(iii) Let Iy consist of those i € I such that there exists j eI, j#i with Homg(Mj, M;) # 0. We
define S := @ie,l M; and T := @je] M;j where ] :=1\ I;. Statement (ii) above implies that M =
S® T where S is semisimple and T is a sum of indecomposable modules. Moreover if j € J, then
for any i €I, i # j, we have Homgr(M;, M;) = 0. It is clear that, for any 6 € End(M) we must have
6(S) C S. For je ] and x € Mj let us write f(x) =y + z, where ze S and y € T. Since, for I € ],
1 # j, Homg(Mj, M) = 0, we have m;0(x) =0, where m; : M — M is the natural epimorphism. Thus
m(y) = 0. This shows that y € M, as required. O
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Oshiro’s theorem states that any quasi-discrete module is a direct sum of indecomposable modules
(cf. [MM, Theorem 4.15]). Hence the above Theorem 5.1 applies to completely ADS quasi-discrete
modules. In general for a quasi-discrete module we have the following theorem:

Theorem 5.2. Let M be a completely ADS quasi-discrete module. Then M can be writtenas M = S & My & Ma,
where S is semisimple, M1 is a direct sum of local modules and M is equal to its own radical.

Proof. Corollary 4.18 and Proposition 4.17 in [MM] imply that M = N & M, where N has a small
radical and M; is equal to its own radical. Theorem 5.1 applied to N yields the conclusion. O

We now apply the previous theorem to the case of semiperfect modules.

Theorem 5.3. Let M be a semiperfect module with a completely ADS projective cover P. Then M can be pre-
sented as M = S & T where S is semisimple and T is a sum of local modules. Moreover any partial sum in this
decomposition contains a supplement of the remaining terms.

Proof. Clearly P is semiperfect and projective (cf. Theorem 11.1.5 in [K]). Combining the statements
in 42.5 in [W] and Corollary 4.54 in [MM], we get that P is discrete and is a direct sum of local mod-
ules. The remark preceding the present theorem then implies that we can write P = S’ @ T’ where
S’ is semisimple and T’ is a direct sum of indecomposable local modules. Let o be an onto homomor-
phism from P to M with small kernel K. We thus have M = ¢ (§’)+ 0o (T’). Since homomorphic images
of M have projective covers, Lemma 4.40 [MM] shows that ¢ (T’) contains a supplement X of o (S’).
In particular, we have o (5") N X <« X. Since o (S’) is semisimple we conclude that o (§’) N X =0 and
hence M =0 (S") @ o (T’). Since homomorphic images of a local module are still local, we conclude
that the terms appearing in o (T’) are local modules. The last statement is a direct consequence of
Lemma 4.40 [MM]. O

Let us mention that local rings which are not uniform give examples of semiperfect completely
ADS modules which are not CS and hence not quasi-continuous.

The following corollary characterizes semiperfect 7 c-rings providing a new proof of Theorem 2.4
in [G]].

Theorem 5.4. Let R be a semiperfect ring such that every cyclic module is quasi-continuous. Then R = @;; A;
where each A;, i € I is simple artinian or a valuation ring.

Proof. Since R is semiperfect R =B1 ® B, & --- @ B, a direct sum of indecomposable right ideals.
In view of the fact that quasi-continuous modules are ADS, Theorem 5.1 gives a decomposition R =
eitR®eRB---DeyRD--- @ eyR where e;R are simple right ideals for 1 <i <k and e;R are local
right ideals for k < j <n. Let 0 be a homomorphism from esR to e;R for some 1 <s,t <n. Then
esR/kero embeds in e;R. Since R/ker(o) is quasi-continuous, esR/kero is e;R-injective and hence
esR/ker(o) splits in e;R. This shows that either esR/ker(o) = e;R or ker(o) = esR, that is 0 =0.
Since e(R is projective, if esR/ker(o) = e;R, then ker(o) splits in esR, thus ker(c) = 0. In short we
get that if o £ 0 then egR = e(R, the latter isomorphism implies esR and e;R are minimal right ideals
(cf. Lemma 2.3 in [G]]). By grouping the right ideals e;R according to their isomorphism classes, we
get R=A1 DA, D - D Aj, | <n, where each A; is either a simple artinian ring or a local ring. We
claim that if A; is a local ring then it is a valuation ring. We thus have to show that any pair of two
nonzero submodules C, D of the ring A; are comparable. Let us consider the right submodules ﬁ

and 25 of &5. Since A;/(CN D) is a local quasi-continuous it is uniform, but C/(C N D)N D/(CN

D) = 0. Therefore C/(CN D) or D/(CN D) =0 hence C and D are indeed comparable. O
Let us conclude this paper with some questions:

1. It is known that if Rg and gR are both CS then R is Dedekind finite. What could be the analogue
of this for ADS modules?
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2. Does a directly finite ADS module have the internal cancellation property? (Cf. Theorem 2.33
in [MM], for the quasi-continuous case.)
3. What can be said of a module which is ADS and has the C, property?
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