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We study the class of ADS rings and modules introduced by Fuchs
(1970) [F]. We give some connections between this notion and
classical notions such as injectivity and quasi-continuity. A simple
ring R such that R R is ADS must be either right self-injective or
indecomposable as a right R-module. Under certain conditions
we can construct a unique ADS hull up to isomorphism. We
introduce the concept of completely ADS modules and characterize
completely ADS semiperfect right modules as direct sum of
semisimple and local modules.
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1. Introduction

The purpose of this note is to study the class of ADS rings and modules. Fuchs [F] calls a right
module M right ADS if for every decomposition M = S ⊕ T of M and every complement T ′ of S
we have M = S ⊕ T ′ . Clearly any ring in which idempotents are central (in particular commuta-
tive rings or reduced rings) has the property that R R is ADS. Moreover, if R is commutative then
every cyclic R-module is ADS. We note that every right quasi-continuous module (also known as
π -injective module) is right ADS, but not conversely. However, a right ADS module which is also CS is
quasi-continuous. We provide equivalent conditions for a module to be ADS. A module need not have
an ADS hull in the usual sense but we show that, under some hypotheses, every nonsingular right
module possesses a right ADS hull which is unique up to isomorphism. We call a right module M
completely ADS if each of its subfactors is ADS. We characterize completely ADS semiperfect right
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modules as direct sums of semisimple and local modules. In particular we give an alternative proof
of the characterizations of semiperfect πc-rings (rings whose cyclics are quasi-continuous).

2. Definitions and notations

Throughout every module will be a right module unless otherwise stated. All rings have identity
and all modules are unital. A module M is called continuous if it satisfies (C1): each complement
in M is a direct summand, and (C2): if a submodule N of M is isomorphic to a direct summand
of M then N itself is a direct summand of M . A module M is called quasi-continuous (π -injective)
if it satisfies (C1) and (C3): the sum of two direct summands of M with zero intersection is again
a direct summand of M . Equivalently a module M is quasi-continuous if and only if every projection
πi : N1 ⊕ N2 → Ni , where Ni (i = 1,2) are submodules of M , can be extended to M .

For two modules A and B , we say that A is B-injective if any homomorphism from a submodule C
of B to A can be extended to a homomorphism from B to A. We note that if A is B-injective and
A is contained in B then A is a direct summand of B . A module M is called semiperfect if each of
its homomorphic images has a projective cover. A submodule N of a module M is small in M if for
any proper submodule P of M , P + N �= M . We will write N � M . Let A and P be submodules of
a module M . Then P is called a supplement of A if it is minimal with the property A + P = M .

A module M is discrete if it satisfies (D1): for every submodule A of M there exists a decomposition
M = M1 ⊕ M2 such that M1 ⊂ A and M2 ∩ A is small in M , and (D2): if A is a submodule of M such
that M/A is isomorphic to a direct summand of M , then A is a direct summand of M . A module M is
called quasi-discrete if it satisfies (D1) and (D3): if M1 and M2 are summands of M and M = M1 + M2
then M1 ∩ M2 is a summand of M .

For any module M , E(M) denotes the injective hull of M . We recall a useful result of Azumaya that
for any two modules M and N , if M is N-injective then for any R-homomorphism σ : E(N) → E(M),
σ(N) ⊆ M .

3. Properties of ADS modules

We begin with a lemma which is useful in checking the ADS property of a module. This was
proved by Burgess and Raphael [BR], however, for the sake of completeness, we provide the proof.

Lemma 3.1. An R-module M is ADS if and only if for each decomposition M = A ⊕ B, A and B are mutually
injective.

Proof. Suppose M is ADS. We prove A is B-injective. Let C be a submodule of B and let f : C → A be
an R-homomorphism. Set X = {c + f (c) | c ∈ C}. Then X ∩ A = 0. So X is contained in a complement,
say K , of A. Then by hypothesis, M = A ⊕ K . The trick is to define an R-homomorphism g : B → A
which is a composition of the projection πK : M → K along A followed by the projection πA : M → A
along B and restricting to B . By writing an element c ∈ C as c = (c + f (c)) − f (c), we see that
πAπK = f on C and hence πAπK is an extension of f .

Conversely, suppose for each decomposition M = A ⊕ B , A and B are mutually injective. Let C be
a complement of A. Set U = B ∩ (A ⊕ C) which is nonzero because A ⊕ C is essential in M . Let πA be
the projection of A ⊕ C on to A and f : U → A be the restriction of πA to U . This can be extended
to g : B → A, by assumption. Let b ∈ B and let D = (b − g(b))R + C . We claim D ∩ A = 0. Let a ∈ A
and let a = br − g(b)r + c for some c ∈ C . This gives br = a + g(b)r − c ∈ U and so f (br) = a + g(b)r
because f is the identity on A and 0 on C . This yields a = 0, proving our claim. Thus D = C and
hence b − g(b) ∈ C for all b ∈ B . Therefore, b = (b − g(b)) + g(b) ∈ C ⊕ A and so M = A ⊕ B � C ⊕ A,
proving that M = C ⊕ A. �

Our next proposition gives equivalent statements as to when a module is ADS analogous to char-
acterization of quasi-continuous modules (cf. [GJ]).
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Proposition 3.2. For an R-module M the following are equivalent:

(i) M is ADS.
(ii) For any direct summand S1 and a submodule S2 having zero intersection with S1 , the projection map

πi : S1 ⊕ S2 → Si (i = 1,2) can be extended to an endomorphism (indeed a projection) of M.
(iii) If M = M1 ⊕ M2 then M1 and M2 are mutually injective.
(iv) For any decomposition M = A ⊕ B, the projection πB : M → B is an isomorphism when it is restricted to

any complement C of A in M.
(v) For any decomposition M = A ⊕ B and any b ∈ B, A is bR-injective.

(vi) For any direct summand A ⊆⊕ M and any c ∈ M such that A ∩ cR = 0, A is cR-injective.

Proof. (i) ⇒ (ii) Let Ŝ2 be a complement of S1 containing S2. Then by definition of ADS module,
M = S1 ⊕ Ŝ2. Hence the canonical projections π̂1 : S1 ⊕ Ŝ2 → S1 and π̂2 : S1 ⊕ Ŝ2 → Ŝ2 are clearly
extensions of π1 and π2.

(ii) ⇒ (i) Let M = A ⊕ B and let C be a complement of A in M . We must show that M = A ⊕ C .
By hypothesis, the projection π : A ⊕ C → C can be extended to an endomorphism f : M → M . We
claim f (M) ⊂ C . Since A ⊕ C is essential in M , for any 0 �= m ∈ M , there exists an essential right
ideal E of R such that 0 �= mE ⊂ A ⊕ C . This gives f (m)E = π(mE) ⊂ C . Since C is closed in M , this
yields f (m) ∈ C , proving our claim. We also remark that f 2 = f , M = Ker( f ) ⊕ im( f ) and Ker( f ) =
{m − f (m) | m ∈ M}. We now show that Ker( f ) = A. For any a ∈ A, clearly a = a − f (a) ∈ Ker( f ), hence
A ⊂ Ker( f ). Now let 0 �= m − f (m) ∈ Ker( f ). There exists r ∈ R such that 0 �= (m − f (m))r ∈ A ⊕ C .
This implies f [(m − f (m))r] = f (mr)− f ( f (mr)) = f (mr)− f (mr) = 0. Since f extends π , this means
that 0 �= (m − f (m))r ∈ Ker(π) = A. But A being closed in M , we conclude A = Ker( f ), completing the
proof.

(i) ⇔ (iii) This is Lemma 3.1 above.
(i) ⇔ (iv) Let C be a complement of A. Then ker(πB |C ) = 0. Since A ⊕ C = (A ⊕ C) ∩ (A ⊕ B) =

((A ⊕ C)∩ B)+ A, we have πB(C) = πB(A ⊕ C) = πB((A ⊕ C)∩ B) = (A ⊕ C)∩ B . This gives πB(C) = B
when M is ADS. On the other hand if πB(C) = B then M = A ⊕ C , hence M is ADS.

(i) ⇔ (v) This is classical (cf. Proposition 1.4 in [MM]).
(i) ⇒ (vi) Consider C a complement of A containing cR . Since M is ADS we have M = A ⊕ C .

Using (v), this leads to A being cR-injective.
(vi) ⇒ (i) This is clear since if M = A ⊕ B , (vi) implies that A is bR-injective for all b ∈ B and

Proposition 1.4 in [MM] yields that A is B-injective. �
Let us mention the following necessary condition for a module to be ADS.

Corollary 3.3. Let MR be an ADS module. For any direct summand A ⊆⊕ M and any (a, c, r) ∈ A × M × R
such that cR ∩ A = 0 and ann(cr) ⊆ r.ann(a) there exists a′ ∈ A such that a = a′r. If R is a right PID the
converse is true.

Proof. By Proposition 3.2(vi), we know that A is cR-injective. Consider ϕ ∈ HomR(crR, A) defined by
ϕ(cr) = a. The condition on annihilators guarantees that ϕ is well defined. By relative injectivity, this
map can be extended to ϕ : cR → A, and hence we get a = ϕ(cr) = ϕ(c)r. We obtain the desired
result by defining a′ = ϕ(c).

If R is a principal ideal domain then the submodules of cR are of the form crR for some r ∈ R .
The condition mentioned in the statement of the corollary makes it possible to extend any map in
HomR(crR, A) to a map in HomR(cR, A) for any direct summand A ⊆⊕ M . Invoking Proposition 3.2(vi),
we can thus conclude that M is ADS. �

It is known that the sum of two closed submodules of a quasi-continuous module is closed [GJ].
We prove that the direct sum of two closed submodules of an ADS module is again closed when one
of them is a summand.



218 A. Alahmadi et al. / Journal of Algebra 352 (2012) 215–222
Proposition 3.4. Let A and B be two closed submodules of an ADS module M such that A is a summand and
A ∩ B = 0. Then A ⊕ B is a closed submodule of M.

Proof. Let C be a complement of A containing B . Since M is ADS, we have M = A ⊕ C . Let x = a + c
be in the closure of A ⊕ B in M , where a ∈ A and c ∈ C . Since a ∈ A ⊆ cl(A ⊕ B), we have that
a ∈ cl(A ⊕ B). Hence there exists an essential right ideal E of R such that cE ⊆ (A ⊕ B) ∩ C = B . The
fact that B is closed implies c ∈ B . Hence x ∈ A ⊕ B , as desired. �
Remark 3.5. Let A, B be closed submodules of an ADS module M such that A is a direct summand
of M . If A ∩ B is a direct summand of M , then A + B is closed. Indeed let K be a complement of
A ∩ B . Since M is ADS we have M = (A ∩ B) ⊕ K . Hence A + B = A ⊕ (K ∩ B). The above proposition
then yields the result.

The proposition that follows gives an interesting property of an ADS module. The original state-
ment is due to Gratzer and Schmidt (cf. Theorem 9.6 in [F]). We first prove the following lemma.

Lemma 3.6. Let M = B ⊕ C be a decomposition of M with projections β : M → B, γ : M → C. Then M =
B ⊕ C1 if and only if there exists θ ∈ End(M) such that C1 = (γ − βθγ )(M).

Proof. Suppose that M = B ⊕ C1 with projections β1 on B and γ1 on C1. We will show that β1 =
β + βθγ and γ1 = γ − βθγ with θ = γ − γ1. We have B < ker(θ), so θ = θβ + θγ = θγ .

If m = b +c = b1 +c1, where b,b1 ∈ B , c ∈ C , c1 ∈ C1. Then θ(m) = c −c1 = b1 −b ∈ B . Thus βθ = θ .
Hence γ1 = γ − θ = γ − βθγ . Also β1 = 1A − γ1 = β + γ − γ1 = β + βθγ .

Conversely, if β1, γ1 are defined as above, that is β1 = β + βθγ and γ1 = γ − βθγ for any θ ∈
End(M), then β1 + γ1 = 1A , β2

1 = β1, γ 2
1 = γ1, β1γ1 = γ1β1 = 0. Therefore, M = β1M ⊕ γ1M . Since

β1(M) ⊂ B and β1(b) = β(b) = b for b ∈ B , we have M = B ⊕ (γ − βθγ )(M), as required. �
Using the same notations as in the previous lemma we state the following corollary.

Corollary 3.7. A module M is ADS if and only if for any decomposition M = B ⊕ C the complements of B in M
are all of the form (γ − βθγ )(M) for some θ ∈ End(M).

Proposition 3.8. Let M = B ⊕ C be a decomposition of an ADS R-module M. Let β and γ be projections
on B and C respectively. Then the intersection D of all the complements of B is the maximal fully invariant
submodule of M which has zero intersection with B.

Proof. Let θ ∈ End(M). Then C1 = (γ − βθγ )(M) is again a complement of B . For c ∈ D we have
(γ − βθγ )(c) = c and γ c = c, because c ∈ C1 ∩ C . Hence βθc = 0 and θc ∈ C . This holds for all
complements C , so θc ∈ D , so D is fully invariant in M with D ∩ B = 0. On the other hand, assume
X is fully invariant with X ∩ B = 0. Since M = B ⊕ C , and πB(X) ⊆ X and πC (X) ⊆ X , this leads to
X = (X ∩ B) ⊕ (X ∩ C) = X ∩ C . Hence X < C . Since M is ADS this holds for any complement of B
in M , and hence X ⊆ D . �

It is known that an indecomposable regular ring which is right continuous is right self-injective
(cf. Corollary 13.20 in [G]). The following theorem is a generalization of this result for simple rings
without the assumption of regularity. We may add that an indecomposable two-sided continuous
regular ring is simple (cf. [G, Corollary 13.26]).

Theorem 3.9. Let R be an ADS simple ring. Then either R R is indecomposable or R is a right self-injective
regular ring.

Proof. Let Q be the right maximal quotient of R which is regular right self-injective. Since R is
right (left) nonsingular E(R) = Q . Suppose R is not right indecomposable and let e be a nontrivial
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idempotent. Then since R is ADS eR is (1−e)R-injective (cf. Lemma 3.1). Furthermore, since Hom((1−
e)Q , e Q ) ∼= e Q (1 − e), (e Q (1 − e)(1 − e)R ⊆ eR . Because R is simple, so R = R(1 − e)R ⊂ Q (1 − e)R .
This yields, 1 ∈ Q (1 − e)R . Therefore Q = Q (1 − e)R , and so e Q = eR . Similarly (1 − e)Q = (1 − e)R
hence R = Q , i.e. R is a right self-injective regular ring. �
Corollary 3.10. A simple regular right continuous ring is right self-injective.

4. ADS hulls

We now proceed to construct an ADS hull of a nonsingular module. Burgess and Raphael (cf. [BR])
claimed that an example can be constructed of a finite dimensional module over a finite dimensional
algebra which has no ADS hull. We show that, under some circumstances, such an ADS hull does
exist.

Lemma 4.1. Suppose M is nonsingular. Then M is ADS iff for every decomposition E(M) = E1 ⊕ E2 where
E1 ∩ M is a direct summand of M, then M = (E1 ∩ M) ⊕ (E2 ∩ M).

Proof. Suppose M is ADS. We may write M = (E1 ∩ M) ⊕ K where K is a complement of E1 ∩ M .
Let ei : (E1 ∩ M) ⊕ (E2 ∩ M) → Ei ∩ M be the projection map. Then by Proposition 3.2(ii) there exists
e∗

i : M → M that extends ei . Let πi : E1 ⊕ E2 → Ei be the natural projection. Since E(M) is injective
we can further extends e∗

i to e∗∗
i ∈ End(E(M)). We claim e∗∗

i is an idempotent in End(E(M)). Indeed
let x �= 0 be any element in E(M) and A an essential right ideal of R such that 0 �= xA ⊆ M . We
have (e∗∗

i )2(x)A = (e∗∗
i )2(xA) = (e∗

i )
2(xA) = e∗

i (xA) = e∗∗
i (xA) = e∗∗

i (x)A. This yields the claim, since
M is nonsingular. Thus e∗∗

i (E(M)) = πi(E(M)) = Ei . Now M ⊆e E(M) = E1 ⊕ E2 implies E1 ∩ M ⊆e

(E1 ⊕ E2)∩ E1. Similarly E2 ∩ M ⊆e E2 and so e∗∗
i = πi on E1 ∩ M ⊕ E2 ∩ M ⊆e M ⊆e E(M). Since M is

nonsingular e∗∗
i = πi on E(M). In particular, πi(M) ⊆ M and so M = (π1 +π2)(M) ⊆ π1(M)⊕π2(M) ⊂

(E1 ∩ M) ⊕ (E2 ∩ M).
Conversely, let M = A ⊕ B and C be a complement of A. We must show that M = A ⊕ C . Since

A ⊕ C <e M , we get E(M) = E(A)⊕ E(C). Since both A and C are closed in M , we have E(A)∩ M = A
and E(C) ∩ M = C . Since A is a direct summand of M we have, thanks to the hypothesis, M =
(E(A) ∩ M) ⊕ (E(C) ∩ M) = A ⊕ C , as desired. �
Theorem 4.2. Let M be a right R-module. Then M is ADS if and only if for every e = e2 , f = f 2 ∈ End(E(M))

with eM ⊂ M and f E(M) = eE(M), we have f M ⊂ M.

Proof. Let us prove necessity: (1 − f )(E(M)) ∩ M ⊆e (1 − f )(E(M)) and f (E(M)) ∩ M ⊆e f (E(M)).
Thus ((1 − f )(E(M)) ∩ M) ⊕ ( f (E(M)) ∩ M) ⊆e M . We claim f (E(M)) ∩ M = e(M). Note first that
e(E(M))∩ M = f (E(M))∩ M . Clearly eE(M)∩ M ⊆ eM . Let C = (1− f )(E(M))∩ M . Then C ⊕eM ⊆e M .
Because eM is closed C is a complement of eM in M (cf. Lemma 6.32 in Lam’s book). Because M is
ADS we have M = e(M)⊕C . Let g be the projection of eM along C , so that g(M) = e(M). Now g(M) =
e(M) ⊆ f (E(M)). This gives eM = (M) = f g(M) = f e(M). Since C is contained in (1 − f )(E(M)),
f (C) = 0. Then f M = f (C ⊕ eM) = eM ⊆ M .

Conversely, let M = eM ⊕ (1 − e)(M) and C be a complement of e(M) in M . We want to show
M = e(M) ⊕ C . Now, C ⊕ e(M) ⊆e M and so E(C) ⊕ E(eM) = E(M). Hence E(C) ⊕ eE(M) = E(M). Let
f be the projection on eE(M) along E(C). We have f (E(M)) = e(E(M)) and E(C) = (1 − f )(E(M)).
By hypothesis we have f (M) ⊆ M . Let m be in M . Then m ∈ M = E(C) ⊕ f (E(M)), say m = c + f (m),
where c ∈ E(C). c = m − f (m) ∈ E(C) ∩ M = C , because C is closed. We conclude that M = C ⊕
e(M). �

We may recall that any endomorphism f ∈ EndR(M) of a nonsingular module M can be uniquely
extended to an endomorphism f ∗ of its injective hull E(M). Let us mention moreover that if f = f 2

then f ∗ = ( f ∗)2. Under these notations we obtain the following corollary.
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Corollary 4.3. Let M be a right nonsingular R-module. M is ADS if and only if for every e = e2 ∈ End(M) and
f = f 2 ∈ End(E(M)) with f E(M) = e∗E(M), we have f M ⊂ M.

We are now ready to show, that under some circumstances, an ADS hull can be constructed for
a nonsingular module. For a nonsingular right R-module M , we continue to let e∗ denote the unique
extension of e2 = e ∈ End(M) to the injective hull E(M) of M .

Theorem 4.4. Let MR be a nonsingular right R-module. Let M denote the intersection of all the ADS submod-
ules of E(M) containing M. Suppose that for any e2 = e ∈ End(M) and for any ADS submodule N of E(M)

containing M we have e∗(N) ⊂ N. Then, M is, up to isomorphism, the unique ADS hull of M.

Proof. Let Ω be the set of ADS submodules N such that M < N < E(M). Then M = ⋂
N∈Ω N . We

claim that M is ADS. Clearly E(M) = E(M). Let e = e2 ∈ EndR(M), f 2 = f ∈ End(E(M)) such that
e(M) ⊆ M and f (E(M)) = e∗(E(M)). Since M is nonsingular and e(M) ⊆ M , we have e(N) ⊆ N for
every N ∈ Ω . So, for every N ∈ Ω , f (N) ⊂ N because N is ADS. Let x ∈ M . Then x ∈ N for every
N ∈ Ω . Hence f (x) ∈ N for every N ∈ Ω . Therefore f (x) ∈ ⋂

N∈Ω N = M , that is f (M) ⊆ M , proving
our claim. �
Remarks 4.5. Let us remark that the condition stated in the above theorem is in particular fulfilled
if we consider the ADS hull of a nonsingular ring. Indeed in this case we consider the ADS rings
between R and Q := E(R) and projections are identified with idempotents of the rings. Of course,
these idempotents remain idempotents in overrings.

5. Completely ADS modules

Theorem 5.1. Let M = ⊕
i∈I Mi be a decomposition of a module M into a direct sum of indecomposable

modules Mi . Suppose M is completely ADS. Then

(i) For every (i, j) ∈ I2 , i �= j, Mi is M j-injective.
(ii) If (i, j) ∈ I2 , i �= j are such that HomR(Mi, M j) �= 0, then M j is simple.

(iii) M = S ⊕ T where S is semisimple and T = ⊕
j∈ J⊂I M j is a direct sum of indecomposable modules.

Moreover, for any θ ∈ End(M) we have θ(S) ⊂ S and for j ∈ J , θ(M j) ⊆ M j ⊕ S.

Proof. Since the ADS property is inherited by direct summands, statement (i) is an obvious conse-
quence of Lemma 3.1.

(ii) For convenience, let us write i = 1, j = 2 and suppose that 0 �= σ ∈ HomR(M1, M2). We have
σ(M1) ⊕ M2 ⊕ · · · ∼= M1/ker(σ ) ⊕ M2 ⊕ · · · = M/ker(σ ) is ADS, by assumption. Hence σ(M1) is
M2-injective and, since σ(M1) ⊆ M2, we get that σ(M1) is a direct summand of M2. But M2 is
indecomposable, hence σ(M1) = M2. We conclude that M2 ⊕ M2 = σ(M1) ⊕ M2 is ADS. This means
that M2 is M2-injective i.e. M2 is quasi-injective.

Let us now show that for any 0 �= m2 ∈ M2, m2 R = M2. Since σ(M1) = M2, there exists m1 ∈ M1
such that σ(m1) = m2. We remark that σ(m1 R) ⊕ M2 = m1 R

kerσ∩m1 R ⊕ M2 = m1 R⊕M2
kerσ∩m1 R is a submodule

of M
kerσ∩m1 R . Since M is completely ADS, we conclude that σ(m1 R) ⊕ M2 is ADS. As earlier in this

proof, relative injectivity and indecomposability lead to σ(m1 R) = M2. Hence m2 R = M2, as desired.
(iii) Let I1 consist of those i ∈ I such that there exists j ∈ I , j �= i with HomR(M j, Mi) �= 0. We

define S := ⊕
i∈I1

Mi and T := ⊕
j∈ J M j where J := I \ I1. Statement (ii) above implies that M =

S ⊕ T where S is semisimple and T is a sum of indecomposable modules. Moreover if j ∈ J , then
for any i ∈ I , i �= j, we have HomR(Mi, M j) = 0. It is clear that, for any θ ∈ End(M) we must have
θ(S) ⊂ S . For j ∈ J and x ∈ M j let us write θ(x) = y + z, where z ∈ S and y ∈ T . Since, for l ∈ J ,
l �= j, HomR(M j, Ml) = 0, we have πlθ(x) = 0, where πl : M → Ml is the natural epimorphism. Thus
πl(y) = 0. This shows that y ∈ M j , as required. �
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Oshiro’s theorem states that any quasi-discrete module is a direct sum of indecomposable modules
(cf. [MM, Theorem 4.15]). Hence the above Theorem 5.1 applies to completely ADS quasi-discrete
modules. In general for a quasi-discrete module we have the following theorem:

Theorem 5.2. Let M be a completely ADS quasi-discrete module. Then M can be written as M = S ⊕ M1 ⊕ M2 ,
where S is semisimple, M1 is a direct sum of local modules and M2 is equal to its own radical.

Proof. Corollary 4.18 and Proposition 4.17 in [MM] imply that M = N ⊕ M2 where N has a small
radical and M2 is equal to its own radical. Theorem 5.1 applied to N yields the conclusion. �

We now apply the previous theorem to the case of semiperfect modules.

Theorem 5.3. Let M be a semiperfect module with a completely ADS projective cover P . Then M can be pre-
sented as M = S ⊕ T where S is semisimple and T is a sum of local modules. Moreover any partial sum in this
decomposition contains a supplement of the remaining terms.

Proof. Clearly P is semiperfect and projective (cf. Theorem 11.1.5 in [K]). Combining the statements
in 42.5 in [W] and Corollary 4.54 in [MM], we get that P is discrete and is a direct sum of local mod-
ules. The remark preceding the present theorem then implies that we can write P = S ′ ⊕ T ′ where
S ′ is semisimple and T ′ is a direct sum of indecomposable local modules. Let σ be an onto homomor-
phism from P to M with small kernel K . We thus have M = σ(S ′)+σ(T ′). Since homomorphic images
of M have projective covers, Lemma 4.40 [MM] shows that σ(T ′) contains a supplement X of σ(S ′).
In particular, we have σ(S ′) ∩ X � X . Since σ(S ′) is semisimple we conclude that σ(S ′) ∩ X = 0 and
hence M = σ(S ′) ⊕ σ(T ′). Since homomorphic images of a local module are still local, we conclude
that the terms appearing in σ(T ′) are local modules. The last statement is a direct consequence of
Lemma 4.40 [MM]. �

Let us mention that local rings which are not uniform give examples of semiperfect completely
ADS modules which are not CS and hence not quasi-continuous.

The following corollary characterizes semiperfect πc-rings providing a new proof of Theorem 2.4
in [GJ].

Theorem 5.4. Let R be a semiperfect ring such that every cyclic module is quasi-continuous. Then R = ⊕
i∈I Ai

where each Ai , i ∈ I is simple artinian or a valuation ring.

Proof. Since R is semiperfect R = B1 ⊕ B2 ⊕ · · · ⊕ Bn a direct sum of indecomposable right ideals.
In view of the fact that quasi-continuous modules are ADS, Theorem 5.1 gives a decomposition R =
e1 R ⊕ e2 R ⊕ · · · ⊕ ek R ⊕ · · · ⊕ en R where ei R are simple right ideals for 1 � i � k and e j R are local
right ideals for k < j � n. Let σ be a homomorphism from es R to et R for some 1 � s, t � n. Then
es R/kerσ embeds in et R . Since R/ker(σ ) is quasi-continuous, es R/kerσ is et R-injective and hence
es R/ker(σ ) splits in et R . This shows that either es R/ker(σ ) ∼= et R or ker(σ ) = es R , that is σ = 0.
Since et R is projective, if es R/ker(σ ) ∼= et R , then ker(σ ) splits in es R , thus ker(σ ) = 0. In short we
get that if σ �= 0 then es R ∼= et R , the latter isomorphism implies es R and et R are minimal right ideals
(cf. Lemma 2.3 in [GJ]). By grouping the right ideals ei R according to their isomorphism classes, we
get R = A1 ⊕ A2 ⊕ · · · ⊕ Al , l � n, where each Ai is either a simple artinian ring or a local ring. We
claim that if Ai is a local ring then it is a valuation ring. We thus have to show that any pair of two
nonzero submodules C , D of the ring Ai are comparable. Let us consider the right submodules C

C∩D
and D

C∩D of R
C∩D . Since Ai/(C ∩ D) is a local quasi-continuous it is uniform, but C/(C ∩ D) ∩ D/(C ∩

D) = 0. Therefore C/(C ∩ D) or D/(C ∩ D) = 0 hence C and D are indeed comparable. �
Let us conclude this paper with some questions:

1. It is known that if R R and R R are both CS then R is Dedekind finite. What could be the analogue
of this for ADS modules?
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2. Does a directly finite ADS module have the internal cancellation property? (Cf. Theorem 2.33
in [MM], for the quasi-continuous case.)

3. What can be said of a module which is ADS and has the C2 property?
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