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1. INTRODUCTION

Let r >0 be a given real number, /> C([ —r, 0], R¥)— R" be a C? map,
D be an N x N real matrix with eigenvalues in the right half plane 4 >0,
and consider the system

%(x,t)zDAu(x,t)+f(u,(x,-)), xeR”, >0, (1.1)

where u, (x, 8)=u(x,1+6), xeR", —r<8<0and 4=3"_, 3%dx? is the
Laplacian operator.
Assume that the functional equation

o(t)=flv,) (1.2)

has a non-constant w-periodic solution v = p(z). Then uy(x, t) = p(t), xeR",
teR, is a solution of (1.1) and we examine its stability or instability in the
space y of bounded uniformly continuous functions u: R”"x [ —r,0] - R®"
with the sup—norm.

If p is unstable for (1.2), it is also unstable for (1.1) since the subspace
of the constant functions in the x-variable in y may be identified with
C([—r,0],R") and (1.1) becomes (1.2) on this subspace. Suppose p is
orbitally asymptotically stable for (1.2) and, in fact, that the characteristic
multipliers of the linearization of (1.2) around p—aside from the obvious
multiplier 1, assumed to be simple—are strictly inside the unit circle.
The solution uy(x, r)=p(r) of (1.1) may still not be stable for certain
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matrices D. In fact, as we show (cf. Section 3), (1.1) has a family of periodic
travelling waves near u,, so we cannot expect to prove orbital stability
(in the usual sense) of u,. However, this result suggests a weaker definition
of orbital stability (cf. Remark 2 in Section 3), but Theorem 4.4 shows that,
for certain matrices D, the solution u, is unstable even in this context.

The method we use to study Eq. (1.1} is semigroup theory, which con-
sists of treating (1.1} as an evolution equation in a Banach space as delin-
eated in [5]. Specifically, let X=C_(R”, R") be the space of bounded
uniformly continuous functions on R”. Then 4= D4 is the generator of
an analytic semigroup {e“:7>0} on X and, if F: RxC([—-r,0], X) - X is
defined by F(t, ¢)(x)= f(@(-)(x)), xeR", then Eq. (1.1) can be, at least
formally, written in the form

u(t) = Au(t) + F(t, u,), t>0, (1.3)

where, of course, u,:[ —r, 0] — X denotes the function u (8)=u(t+0),
—r £ 6<0. Equations like (1.3) are studied in Section 2 from an abstract
point of view, at first looking for mild solutions and then for C' solutions.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this paragraph, X is a (real or complex) Banach space, r >0 a real
number, and C=C([—r,0], X) the Banach space of the continuous
functions ¢: [ —r, 0] - X with the sup-norm. {e?:¢>0} always means
the analytic semigroup generated by the closed linear operator A: D(4) —» X
satisfying | e’ | .x, < M, for all 1 >0 and some constant M > 1.

Let F: R xC — X be continuous and ¢ € C. By a solution of (1.3) with
initial condition uy=¢@ we mean a continuous function w: [ —r, T)— X,
with 7 > r, such that

(1) u(t)=o(), for —r<1<0;
(i1) for 0<t¢<r, uis a solution of the integral equation

u(r)=e*p(0) + [ e** (s, u,) ds;
0

(i) for r<t< T, the function u is C', has u(t)e D(A) and u(t)=
Au(t)+ F(t,u,), for all te(r, T).

Remarks. 1. As we show below (cf. Theorem 2.7) if, besides continuity
in [—r,0], we suppose ¢ is locally Holder continuous on (—r, 0] and
@(0)e D((— A)*) for some o > 0, then a continuous functionu: [ —r, T) > X,
with T> 0, satisfying (i) on [ —r, 0] and (ii) on [0, T) is a C' function on
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(0, T'). In this case, our definition of solution coincides with the usual one
in the evolution equations theory.

2. The assumption T>r is not too restrictive for the problem we
study because, as we see later, solutions of (1.3) sufficiently close to a
periodic solution are defined on arbitrarely large interval of times.

THEOREM 2.1.  Suppose F: R x C — X is continuous and locally Lipschitzian
in the second argument. Given (s, 9} R x C, there exists a real number
x=a(s, @) >0 and a unique continuous function u:[s—r,s+a]— X such
that u,= @ and

u(t)=e’“’”‘"’(p(0)+f e~ F(q, u,) do (2.1)

5

for all s<t<s+a.

The proof is a rather simple application of the Contraction Mapping
Theorem, which the reader can supply. It is easy to see that, if
u,v; [s—r,s+B]—> X (any f>0) are continuous solutions of (2.1) such
that u,=v,=¢, then u=v on [s—r,s+ ] This result allows us to
consider the maximal solution u(s, @) of (2.1) through (s, ¢): for each
(s, ®), we define a*(s, @) =sup{a>s:(2.1) has a continuous solution on
[s—r,a]} and u(s, @):[s—r,a*(s,9))—= X by u(s, e)}t)=e(t—3s), if
s—r<t<s and, if s<t<a*(s, @), then u(s, ¢)(t)=the value at ¢ of a
solution of (2.1) satisfying u, = ¢, defined on [s—r, a], with ¢t <a. By the
previous result, « is a well-defined continuous function on [s—r, a*(s, ¢))
and is a solution of (2.1) satisfying u,= . Any other solution v of (2.1)
satisfying the same initial condition is a restriction of u(s, ¢ ). Of course, the
interval of existence of a maximal solution of (2.1) must be open to the
right and the case «*(s, ¢ )= oc is not excluded.

LEMMA 2.2. Suppose the solution u=u(s, @) of (2.1) with u,=¢ is
defined on [s—r, a), for some a>s, and let T be a real number such that
s< T <ua. Then, there is a number 6 >0 such that any solution v=yv(s, ) of
(2.1), with v,=y and |@— | <9, is defined at least on [s—r, T].
Moreover, for a fixed t, s <1< T, the map ¢+ u,(s, @) is continuous.

Proof. There exists a neighborhood V of G :={(r,u,):s<t<T}anda
positive real number L such that | F(t, ¢,) — F(t, ;)| < L @, — @,], for all
(¢, ©,), (1, ;) in V. The neighborhood V can be chosen in such a way that
it satisfies the following condition: there is a p >0 such that, if y € C and
W —u,|l <p for some te[s, T], then (¢, y)e V.
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Let k=Me"" 21 and d=p/k. If YyeC satisfies o —y|| <d and
v=uv(s, ¥ ) is the solution of (2.1) with v =y, then, for all values of
te [s—r, T for which the solution exists, we have

B A e

if 1—s5>0,
ot —s5)—Y(t—s), if t—s5<0.

u(t)—v(t)=

Hence, for —r<60<0 and te [s5, T] for which v exists, we have

ult+0)—olr+0) <M lo—yl+ [ MIF(o.u,)~Flo,s,)| do
and so

t
lu,—v | <M jo—yl +f ML \lu, —v,| do,

s

for all values of r for which (o,v,)eV for s<o<t By Gronwall’s
inequality, we have

lu, — ol <M lp—yl e "<k o —yll,

for all re[s, T] for which (t,u,)eV. Since |¢—y| <p/k, we have
u,—v,|| <p for s<t<T and, hence, (2, v,)e V and v is defined on [s, T].
The continuity of the map +— v,(s, ¢) follows from the above estimate.

LemMma 2.3. Let (s, 0)eRxC and w [s—r,a*)— X be the maximal
solution of (2.1)u,= @. If u* < o0, thenlim sup, _, ,._ |F(1, u,)}/(1 + u,|)) = c.

Proof. Suppose a*<oo and limsup,_ .. |F(z, u)]/(1 +|u, )< cc.
Then there exists B> 0 such that |F(z, u,)| < B(1 + |lu, | ), for all s<t <a*.
If t=s5sand —r<6<0, we have

t+0
eA|t+H»—.y)(p(O) _+_'f eA(1+0~ GJF(O’, u,)da,

ur+0)= if s<r+60<ua*,

e(t+0—13), if s—r<r+0<s,

SO

t+ 8 [
i+ O <M gl +[ M IF@,u,) do <M llgll+ | MB(1+]u,)do,

K s
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for all te[s,a*) and 8e [ —r, 0]. Therefore,

!
lu, | < M llgll + MB(x*—5) + | MB |u,| do,

for all 1= s. This implies ||u,| is bounded for 7€ [s, a*), and so |F(r, u,)]
is bounded on [s,2*) and, therefore, there exists B,>0 such that
|F(t,u)| < B, for s<t<a*

Let us prove that |u(t) —u(t)] -0 as ¢, - a*—. Indeed, given £> 0, let
O<eg <a*—s be such that ¢, <e/4B, M and let t*=o* —¢,. Choose
0<d<e, such that [(e?"—e?)u(t*) <e/2 whenever |t—o|<d and
0<o,1t<¢,. Looking at v as the solution of the integral equation (2.1)
with initial condition (¢*, u,.), we can write, for ¢, Te (¥, 2*),

1
u(t)= e”“”"u([*)+'[ e (e, u,) do,
’.

T
u(t)=e1C- "’+J e~ 'F(o, u,) do,
"
from which we conclude

lu(t) — u(t)| <a/2+2f MB, do <e/2+2MB, e, <&

whenever 1, te (1*, o*) with a* - d < t, T <a*

By Cauchy’s criterion, there exists lim,_ ,._ u(f):=u,€X and the
function #(¢): [a* —r, a*] - X defined by da(t)=u(t), if a* <t<a* and
t(a*)=u, is continuous.

Taking (a*, u,«) as initial condition, we obtain a continuous solution of
2.1) v: [a* —r, a* +a] — X, for some a >0, such that v,. =#&,.. Hence the
function

W (1) = u(t), if s—r<t<a®,
v(t), if a*<i<a*+a,

is a solution of (2.1) satisfying u* = ¢, which contradicts the definition of
u(s, ). This contradiction shows limsup,_ . [F(s,u,)I/(1 +]u,|)= 0
and the proof is complete.

COROLLARY 2.4. In addition to the assumptions of Theorem 2.1, suppose
F satisfies the following hypothesis: F(B) is a bounded set in X, for all
bounded set B contained in R x C. Let u(s, @) and a*(s, @) be as above and
assume x*(s, @) < cc. Then lim sup, , 4u(;. o) 4. (s, )] = .
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THEOREM 2.5. Suppose F:RxC— X is C'. Let (s, 0)eRxC, u(s, ¢):
[s—r,a*(s, @) = X be the solution of (2.1) through (s, @) and s<T<
a*(s, @). Then there exists a neighborhood U of @ such that, for all Yy e U,
the solution u(s, ) of (2.1) with u(s, )= is defined at least on [s—r, T]
and, for each s<t<T, the map yeUu(s,y)(t)eX is C' and its
derivative (Ou/oy)(s, @) - E)(t)=v(t) at (s, @) applied to & is the solution of

p(1) = et~ “5(0)+j At "‘ (a (5, 0)) v, do (2.2)

on (s, T} and v(t)=E(t—s) on [s—r,s].
Proof. Define®: C([s—r, T, X)xC([—r 0], X)>C([s—r, T], X)by

u(t) e (0)~ [ e~ "F(o, u,) do,
P(u, §) = "

if s<t<T,
u(t)—y(t—s), if s—r<i<s.

We have ®(u(s, @), ¢) =0 and a simple calculation shows that @ is C'. In
order to prove that (8@/du)(u(s, @), @) is an isomorphism, we need to
prove that for any he C([s—r, T], X) there exists a unique continuous
solution v: [s—r, T} — X of the equation

o(1) — j At~ ’> (a uls, @) -v, do=h(t),s<t<T (2.3)

with initial condition v(¢)=h(?), for s —r <t<s, and that v depends con-
tinuously on A. Uniqueness follows immediately from Theorem 2.1. To prove
existence, define v(r) = h(t) + w(t), where w: [s —r, T] — X is the solution of

' oF ! F
W([) = J; eA‘Iia) % (O’, MU(S, (P)) W, do + J; eA(lAa) g—(; (0', uﬂ(s’ (P)) ) ha do
(2.4)
on (s, T] and w(t)=0 for s —r <t < s (the solution w exists on [s~r, T]

because the right-hand side is globally Lipschitzian with respect to w, in
R xC({—r, 0], X)). Then we have

v(l)—f e"‘”"’g—F(a, u,(s, @) -v, do
@

5

=w(t)+h(t)— fl ett=) oF (0, u,(s, ) (w, +h,)do=h(r),
oo

5

505/109/1-4
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for s<t¢< T and v(z) = A(t), for s— 1 <t <s, so v is the solution of (2.3) on
[s—r, T]. From Gronwall’s inequality, there exists K>0 such that
SUP, < ey |U(1) S Ksup,_,<,<r|A(2)], showing the continuous dependence
of v on A.

By the Implicit Function Theorem, there exist neighborhoods U of ¢, V
of u(s, ) and a C' map n: U — V such that n(¢)=u(s, ¢) and &(u, y)=0
on Ux V if and only if u =n(y). In particular, @(n(¥), y)=0 for all y € U,
that is, = n(y) is the solution of

!
wWﬂwm+jwmemmJ@, if s<i<T,
u(t)= K

Y(t—s), if s—r<r<s.
Furthermore, if £ C([ —r, 0], X) and v(1) = (7'(¢) - £)(1), then the identity

0P

od
i (u(s, @), @) '1’(<p)+5— (u(s, ), 0)=0
u ®

shows that v satisfies v, =¢ and

K

! oF
w0 =" O)+ [ e 2 (0, ks, @) v, do

on (s, T], and the proof is complete.

The Autonomous Case

Suppose Eq. (2.1) is autonomous, that is, F(¢, ¢) = g(¢) does not depend
ont If u:[—r,a*(¢))— X is the maximal solution of (2.1) such that
ug(@)=¢ and se [0, a*(¢)), then the function v(z)=u(@)(t+s), defined
on [—s—r, a*(p)—s) is the solution of (2.1) satisfying vy=u,(¢), so
v(ty=u(u o)), for all te[—r, a*(u,(@))). This implies a*(@)—s<
a*(u,(@)) and u(@)(t+s)=u(u,(@))(?t) for all ¢,s=0 such that s—r<
t+ s <a*(@). Therefore, if —r<0<0, then u,, (@)B)=u(e)(t+s+0)=
u(u,(@))(t+0)=u,(u,(¢))0), and so, u,, (¢)=u,(ulyp)) for all 1,5>0
such that ¢ + s <a*(¢). From these considerations and the previous results
we conclude that, if (2.1) is autonomous and the solutions u(¢) are defined
on [ —r, oo) for all ¢ € C, then the map U(z): C — C given by U(t)p = u, (o)
defines a (non-linear) strongly continuous semigroup {U(#): >0} on C.

Now, we will describe the relationship between {U(r):¢>0} and
{e*1>0}. Let {T(r): t >0} be the strongly continuous semigroup defined
on C by the operator A, that is,

e+ 00(0),  if t+0>0,

(T(t)w)(9)={(p(t+9), if —r<r+6<0.
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If u(¢) is the mild solution of u#(z) = Au(t)+ g(u,) such that u,= ¢, then

e'p(0) + Jﬂ e " g(u,) ds, if +>0,
u(t)= 0

o(1), if —r<r<0.

If r>0and —r<0<0, we have

t+86
A(t+6—-5) .
u,(0)(0) = (Te)0)+] e (@) ds, if 14050,

(T(t)p)(0), if —r<1+6<0.

Letting Xy: [ —r, 0] — L(X) be defined by Xy(0)=0, if —r<8<0 and
X,(0) =1, the above integral can be written as

[ enert gtuo)) ds= [ [T(=5)X01(0) gluto)) s,

which justifies the equality
u,(0)=T(1)(p)+ | [T(=5)X0] glu(0) ds

for ¢t > 0. Here, we define

e+ if t+6>0
[T(I)Xo](ﬂ)—{o, § r+6<0

which is (formally) the former definition.

Differentiability with Respect to t. In this section, we obtain sufficient
conditions for a solution of (2.1) to be a solution of (1.3). We assume that
F:RxC([—r,0], X)— X is locally Holder continuous in ¢ and locally
Lipschitzian in ¢. The next result is basic and the reader can find the
corresponding proof in [7].

LEMMA 2.6. Suppose {e*:1=0} is an analytic semigroup in a Banach
space X and let (0, TY— X be locally Hdilder continuous with
[& 11 f(s))l ds < oc for some p>0. For 0< 1< T, define F(1)= [ e~ *f(s) ds.
Then, F is continuous on [0, T), continuously differentiable on (0, T), with
Flt)e D(A) for 0<1<T, F(1)=AF(t)+ f(t) on (0, T) and F(t) >0 in X as
t—->0+.



50 LUIZ A. F. DE OLIVEIRA

In the next results the function u: [—r, T]— X a solution of (2.1) on
[0, T] with initial condition u, = ¢. As usual, D((—A)”) is the domain of
the fractional power of operator — A(cl. [7]).

THEOREM 2.7.  Suppose @: [ —r, 0] — X is continuous and locally Hélder
continuous on (—r,0] and (0)e D((—A)°) for some 0<S<1. Then
tu(t): (= T)>X and t—F(t,u,): (0, T] - X are locally Holder
continuous and, therefore, t—u(t) is C' on 0<t<T.

Proof. Let us show that u is Holder continuous on [s, T], for any
—r<s<0. Let O<a<]1,L,B,>0 be such that [p(8,)—¢(0,)<
B, 10,— 0, for 0,,0,e[s,0]1 and |F(t,y)—F( &) <L(jt—1"+
Iy —¢ll), for (,4), (F, ) in a neighborhood of the curve {(1, u,):
0<1<T)<RxC.

Ifs<t<t+h<Tand 0<h<r, then

[ o(t+h)—el1), if s<r< —h,
r+h
e Pp(0) = (1) + | e IF(uy,u,) d,
0
if —h<t<0,

u(t+h)——u(l):< ,
(e — 1) eMp(0) +J (e — 1) F(s, u,) ds
0

t+h
+j A R-E(s u)ds, if 1>0.
1

Therefore, we have
(a) Ifs<r<< —h, then |u(t+ h)—u(2)| < B,
(b)) If —h<t<0, then t<0< ¢+ h and, therefore,

lu(t +h) —u(1)] <1@(0) — @(1)| + [ (""" = 1) @(0)]

!
+ f e rh—9F(s u ) ds|.

Q

Since @(0)e D((—A4)°), we have
(e ™M — 1) @(0)| S C(t+ h)° [(—A)° (0)] < KK,

for t<0<t+h, where C and K are constants. The integral can be
estimated as

r+h
[ AR5 uyds|<(t+ M sup  |F(s, u)| < Ch,
0

O<s<t+h
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for some constant C. Therefore, for t <0<t + 4 we have
lu(r +h)—u(t)| < B,h*+ Kh® + Ch.
(¢} Ift>0, then

lu(t + h) —u(2)| < |(e*” —T) e*'9(0)]

-+

J (e =I)e " ~9F(s, u,) ds
0

+

t+h
f et (s u ) ds
I3

The first and the last terms above can be estimated as in (b). For the
second, remember that

[(e*" Ty er" " F(s, u )l < Ch*(t—5)"* sup |F(s,u,)l,

0<s<t

for some constant C, and therefore, if r >0, we have

I3
ez + h) — ul(t)] < MKW + Cj Be(t—5)~* ds + Ch
0]

< (Const. )k’ + (Const.)A* + (Const.) k.

In any case, we have

sup |u(t+h)—u(t)| <max{B,h* C h*+ C,h°+ C;h} < (Const.)h¥,
ssi<T—h
where f=min{d, «} and C, are constants. This shows that u is locally
Holder continuous on (—r, T] and t+>u,: (0, '] » C is locally Holder
continuous. Since F is locally Holder continuous in ¢ and locally Lipschit-
zian in ¢, it follows that ¢+ F(¢, u,) is locally Holder continuous on (0, 7]
and, by Lemma 2.6, u: (0, T) - X is C'.

THEOREM 2.8. Suppose ¢: [ —r, 0] = X is continuous and u is defined on
[—r, T], for some T>r. Then, u is locally Hélder continuous on (0,r],
u(rye D((— A)*) for every 0 <a <1 and therefore, uis C' on r<t<T.

Proof. Suppose O0<t<t+h<T. Then

u(t+h)—u(t)= (e —I)e*p(0)

t t+h
+f (et — 1) eM =9 F(s, u.) ds +f A= E(s u ) ds.
0 3
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As in the previous result, we have

u(t+ h) — u(1)] SCh“t""+Cj Bt —s)"*ds + Ch< C'h*t*,
0

where C and C’ are constants. Therefore, u is locally Holder continuous
on (0, T].
On the other hand,

u(ry=e"p(0) + fr e TIF(s, u,) ds,
and therefore,
()], == 1(— AY* u(r)] < (Const.)| ¢(0))+j' (Const.)(r —s)~* ds < o0,
0

for every O<a < 1.
Finally, if r<s<t+h<T, we have

|F(t+ by, ) = F(L u )| SLR+ uy o —u, ) < Coh®
for some constant C, (depending only on s), since

lu n—uldl= sup Ju(t+h)—ulx)<Cih*(s—r)*

f—r<st

for s<t<T Therefore, t— F(t, u,) is locally Holder continuous on
r<t< T and the proof follows from Lemma 2.6.

The Equation du/ét=D Au+ f(u,)

Let us now apply the previous results to the equation

%:—-DAu+f(u,), xeR" >0 (2.5)
As mentioned in the Introduction, D is an N x N real matrix with eigen-
values in the half-plane Re 1> 0, f/: C([—r,0], R¥)—> R is C? and 4=
", 0%ox;.
Let X=C,,;(R", R") be the Banach space of bounded and uniformly
continuous functions u,: R” —R" endowed with the sup-norm. We are
going to show that the equation

—=DAu, xeR" >0, (2.6)
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with initial condition u(-, 0)=u,€ X defines an analytic semigroup on X.
In fact, taking formally the Fourier transform of (2.6) with respect to the
x-variable, we obtain

%(5,1)=—1512D13(f,1), a(g, 0)=4q($),

and so, (¢, f)=e 1P (&) for all EeR” and 1> 0. Since Re (D) >0,
for each >0, the map £eR"—e "2 ¢ L(R") is in the Schwartz
class % =2(R", R¥*") of the rapidly decreasing functions at infinity
and, since the Fourier transform is a bijection of &, there exists a
unique K:R"x (0, oc)— L(C") such that K(-,1)e, for >0 and
[ K(z, ) e * " dz=e "'P" We claim that

K(z, 1) = (dmr) "2 D "2 D7 Nar

for all ze R” and t>0. Indeed, by the Spectral Mapping Theorem, for
zeR" and 1> 0, we have
1

e~ iz12 D ljar __j e =12 )ﬁl;“dr(i _ D)fl di,
2ni r

where I' is a simple closed curve containing &(D) in its interior. By

changing the order of integration, we have

J ne*\:I‘D l‘meil:-:dz:%L(L,,eimz“/“’eﬂyz dz) ().——D)fl ai

1 .
- J (Amtyv? in2e1ePa(j _ D)yl di

bie] r
' _ 2
= (47.”);:/2 D"“Ze 1] Dl’

for all ze R” and >0, and the result follows.
Still from the Spectral Mapping Theorem, we have

. 2 :
D "= | A "i=D) " di,
)

where y is a simple closed curve containing a(D} in its interior, symmetric
with respect to the real axis, as shown in Fig. 1.

This implies that D" is real and therefore, K(z, t) is a real matrix, for
all zeR” and t>0.

Note that K is C™ in (z, 1)e R"x (0, o¢), [r.K(z, ) dz=1, the identity
matrix, and there exist positive constants 4, M, M’ such that |K(z, 1)} <
M't="2% °13% and (L. |K(z, 1)| dz< M, for all ze R" and > 0.
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~

Y
FIGURE 1
If uye X, it follows that
ux, 1) = | KGe—y, 1) uoly) dy (27)

is a solution of (2.6), has u(-, t)e X for each >0 and u(-, ¢) = u, in X as
t—+0,. As in the scalar case, we can show that the equation (2.6) has a
unique solution in the class of bounded functions on R"x[0xT),
therefore, the solution is given by (2.7) and from this representation we can
conclude that (e"®4(uy))(x) :=u(x, t) is a strongly continuous semigroup
on X satisfying e'”*| < M, for all 1>0.

Now, let us show that {e"”?:1>0} is actually an analytic semigroup.
Since Re o(D) >0, we have Re a(D ')>0 and therefore, there exists ¢ >0
such that arg 6(D)c(—n/2+¢, /2 —¢). Note that if fe C with {8] =1,
then the eigenvalues of #D ~! have real part = | u| cos(arg yu + arg 6), where
u is an eigenvalue of D~'. Therefore, if |#| =1 and |arg 6| <e/2, we have
Re (8D~ ')>min |a(D ~')| cos(n/2 —&/2) = 6 > 0. Therefore, there exists a
constant C> 1 such that |e~*%?"'| < Ce %, for all s >0, uniformly in fe C
with (6| =1 and |arg 8| <¢/2.

Let S={reC:Ret>0 and |arg 1] <¢/2}. For each re S and ze R"\ {0},
let y=|z|*/4t, s=|y| and @=y/|y|; then we have |argf}<e¢/2 and
therefore

qu:\Z D*‘/Azl — Ieﬂoof‘l < Ce—a]:ﬂ,um
for all ze R” and ¢ € § (this inequality is obviously true for z=0). From

0K —n_ |z,
t@t z,t)—[ 3 I+_417D ]K(z,t),
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for all zeR” and >0, it follows that there exist constants C' >0, >0
such that

oK ’
—{z, | < C' |t —nf2—-1 ,—f|z1%/4 M,
‘ ot (z ) | l e

for all ze R” and re S. These considerations shows that te S u(-, t)e X
is differentiable and |(du/0t)(-, 1) < (C'/|t]) |uol, for te S and this implies
that {e'”*:¢>0} is analytic.

Remark. In opposition to the scalar case, it is not always true that
K(z,1)=0 for all zeR” and t>0. The following example is due to
D. Henry and illustrates this fact: let n=1 and

p=irr(oa o)

where a > | | > 0. Then

_ a’—p% . 24 [ B
"(D)‘{(a2+ﬁ2)2i’(a2+a2)2}’ D 12_3_<—ﬁ a)

and therefore

D‘”ze’“’*'=Be*“’2=e*“°‘2—52'< acosf+pfsinf fcosf—asin 0)

—fBcosO+asinf acosf+ fsind

where @ =2ufs, which is not a matrix with non-negative entries for all
5s=0.

On the other hand, if D is real, has all eigenvalues in the half plane
Re i>0 and all entries D,<0 for i#j, then all entries of D" are
non-negative. Indeed, for any x> 0 sufficiently small, we have

oG

D V=g (aD) 2= 2 [I-(I—aD)] " =a"? Y c,(I—aD),

k=0

where co=1and ¢, =1-2-3.5..-(2k—1)/2-4.6--.2k>0, for k> 1 (the
above series is convergent because o(f—aD)= {1 —ad: dea(D)}, so the
spectral radius of 7—aD is equal to max{l—aRed+ O(a*):dea(D)},
which can be made strictly less than 1 by choosing « > 0 sufficiently small).
Since D,; <0 for i # j implies /—aD >0, it follows that D~ ' (and hence,
D™"2) has all entries > 0.

Another result which we quote from [1] is the following: for s> 0, all
entries of e """ are non-negative if and only if D;'<0, for i#j (ie., the
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outside of diagonal entries of D! are non-negative). Hence, it follows that
D;<0 and D‘.jf‘ <0 for i#j together the hypothesis Rea(D}>0 is a
sufficient condition for K(z, 1) >0 for all ze R” and ¢> 0. In the case N=2
these conditions imply that D is a diagonal matrix.

Now, let F:C([—r,0], X)— X be defined by F(o)x)=f(@(:)x)),
xeR" It is easy to prove the following result:

LemMma 29. If f:C([—r,0]),R") > R" is a C' map and ' is uniformly
continuous on bounded sets, then F is a C' map.

3. EXISTENCE OF TRAVELING WAVES

In this paragraph we consider the existence of travelling waves for (1.1),
that is, solutions of (1.1) of the special form u(x, t)=v(&-x+1t), where
v: R > R" is a C? bounded function and £ e R” is a fixed vector. Of course,
v must be a bounded solution of the equation

v'(s)=¢eDv"(s) + f(v,), (3.1

where “’” denotes the derivative with respect to the argument s=¢&.x + ¢
of v and e=|&|%

The main result here is the extension to Eq.(1.1), the one previously
obtained by [10], which asserts that, if the reaction equation

u(t) = flu,) (32)

has a simple non-constant periodic solution, then (1.1) has a family of
travelling waves.

THEOREM 3.1. Assume (3.2) has a simple non-constant w-periodic
solution u=p(t) and D is a real matrix with eigenvalues in the halfplane
Re A>0. Then, (1.1) has a family of travelling waves u(x, t; &), for |&]|
sufficiently small, periodic with respect to t of period w(&), such that
ul(x, 1;0)=p(t), u(x, t; &) — p(t) uniformly on compact sets of R" xR and
o) was £E-0.

The method we use to prove Theorem 3.1 is very similar to the one in
[6] on the persistence of a periodic orbit with respect to perturbation of
the vector field. First, we state some results related to the linear variational
equation of (3.2) around p,, that is,

J.’(t)=fl(Pz),Vr- (33)
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Recall that the periodic map of (3.3) is the linear operator U on
C([-r, 0], R") defined by Up =y,(-, ¢), where y(¢t, @) is the solution of
(3.3) with initial condition y,(-, ¢)=¢. Since p satisfies (3.3), we have
Up=p, so pu=1 is an eigenvalue of U. Recall that p is a simple periodic
solution of (3.2) if u=1 is a simple eigenvalue of U and, in this case, the
generalized eigenspace .#, _, corresponding to x =1 is unidimensional and
is generated by p. Furthermore, the adjoint equation of (3.3} has also a non-
constant w-periodic solution ¢ {row vector), which we can choose such
that {3 |g(t)|? dr=1.

Let 2, be the Banach space of continuous and w-periodic functions
h: R > R"™ with the sup-norm. Let 7: 2, - R and n: 2, — 2, be the con-
tinuous maps defined by *,'(h)=f§ q{(t) h(t) dv and w(h)(r) = p(¢) y(h)/y(p),
respectively. For the proof of the following result, the reader if referred to
[6, Thm. 9.1.2].

LEMMA 3.2. Let he #,. Then, the equation
»e)=r"(p,)+ k(1) (34)

has a solution in 2, if and only if y(h) =0. Moreover, there exists a bounded
linear operator X : N (y)— P, such that y=X"h is the unique w-periodic
solution of (3.4) satisfying n(H h)=0, for all he N(y).

LeMMA 33. Let J(t)=p(t)— ' (p)(-) p,, teR. Then, [y q(1) J(t) dr #0.
(here, ['(p,)(-) p, denotes ['(p,) applied to the function 8— 6p(t+0) in
C([_ra O]s RN))

Proof. 1t is easy to verify that J(¢+ w)=J(t), for all + and that the
function z(¢)=tp(t) is a solution of the equation

H)=["(p)z,+ (1) (3.5)

If jg’q(t) J(t) dr =0 then, by Lemma 3.2, Eq. (3.5) has a w-periodic solution
z* and therefore, y(r):=z*(t)—tp(t) is a solution of the homogeneous
equation (3.3). Let S be the subspace of C([ —r, 0], R") generated by the
restrictions of p and y to [ —r, 0] and consider the restriction of the period
map U of (3.3) to S. Since Up,=p, and Uy,=y,— wp,y, the matrix of
U|s with respect to the basis {p,, o} is (5 ). But this implies that p =1
is an eigenvalue of U with multiplicity >2, which contradicts the
hypothesis that p is simple. Therefore, {; g(¢) J(1)dr#0 and the proof is
complete.
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Proof of Theorem 3.1. Let u(x, t)=v(s), where s=¢-x+rand £eR" is
a fixed vector. Then, u is a solution of (1.1) if and only if v is a solution
of

v'(s)=¢eDv"(s) + f(v,), (3.1)

where ¢=|¢|? and “'” = d/ds.
On the other hand, Eq. (3.1), for £ >0, has a periodic solution v if and
only if v is a periodic solution of

D' tr o
v(s) =T P S, iy, (3.6)

It is sufficient to show that, for ¢ > 0 sufficiently small, (3.6) has a periodic
solution satisfying the conditions of the Theorem 3.1.
For each real number > —1, let s=(1+ f)t and v(s)= y(r). Then

6
v('7+9)=y<-—liﬂ+——1+ﬁ), —r<6<0.

Let us define y, 4(0)=y(n+0/(1 + B)), —r <0 <0. Equation (3.6) becomes

D--l

d",’ * —He T—
z1’;=(I+B)—£—Ll+m oD+ ) DVt + . ) A (3.7)

or, making the change of variables = (1 + f)t —é&v,

dy

S=+ADT [ e+ P (3T)
T Cw

Note that if y(¢) is a 7T-periodic solution of (3.7) (or (3.7)') then
v{s)=y(s/(1 +pB)) is a T(1+ B)-periodic solution of (3.6) and vice versa.
We show that if ¢ > 0 is sufficiently small, then, there exists = f(¢) > —1/2
such that (3.7)" has a periodic solution of fixed period w. For this, take
| B < 1/2 and consider (3.7)' in the space C(2r)=C([ —2r, 0], R") through
the natural extension f of f to C(2r): f{p)=f (¢ 3)—in the following we still
indicate by f that extension.

Writing y(t) = p(t) + z(7), z satisfies

d
-diz ,(pr)zr,0+H(Z’ ﬁ’ 8)(‘[)’ (38)
T
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where
0 -1
H(Zs ﬂ» 8)(T)=(l +ﬁ)D‘l f 7 e‘VD _f(ztfsv/(l+ﬁ), ﬂ+pr— ev/(1 +[i).[1') dv

_f(pt) _f/(pr) Zr0-
Let us consider the equation

dz
£=f'(.ﬂz) z.o0+ H(z, B, e)(t) —y(H(z, B, &) q(1)" (3.9)

obtained from (3.8} by adding the term —y(H) g(t)”, where 7 and g are as
above mentioned. By Lemma 3.2., (3.9) has a w-periodic solution z with
nz=0 if and only if

R(z, B, e)(z) :=z(z) = H [H(z, B, &)~ y(H(z, B, £))g" 1(z)=0.

We intend to apply the Implicit Function Theorem. In order to do that, let
us define the spaces envolved. Let 2! be the Banach space of C'
w-periodic functions endowed with the C'-norm. A careful examination of
the expressions of the maps H: 2! x(—1/2, 1/2)x(—¢g,, &) ~> %, and
R: P! x (=172, 1/2) x (—¢g, g9) = 2., shows that they are C' maps, and
we have

oH o H
57(0,0,0)=0 0,0,0)(1) = p(1) — £(p)(-) B,
z af
(3.10)
R(0,0,0)=0 oR (0,0,0)=1.

oz

Therefore, for | #| and |e| sufficiently small, (3.9) has a unique w-periodic
solution z=z*(f, ¢) such that z*(0,0)=0 and is C' in 8, &. In order for
z*( B, &) to be a solution of the original equation (3.8), it is necessary and
sufficient that

B(B.#):= | () Hz*(B.e), B.e)(c) de =0,

Now, we have a C' map such that B(0,0)=0. The proof would be
complete if one could apply the Implicit Function Theorem once again to
obtain = f*(e) (¢>0 sufficiently small) as the roots of B(f,¢)=0. To
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compute (8B/2f)(0,0), observe that ¢ =(Jz*/0B)( B, ¢) is an w-periodic
solution of the equation

T~ f(po+ e (e B, s)a+% *B.o), s —@(ﬁ &) 4(t)

Therefore, by Lemma 3.2., we have

@ oH oz *
[ a0 | S a0 005 (o)

oH
+ﬁ(2*(ﬂ,8),ﬁ,8) %(ﬁ £) q(t )] =0

and since [ |¢(1)|*> dr =1, we get from (3.10)
¢B
op

and, by Lemma 3.3, we have (dB/6f)(0,0) #0.

©.0)=[ " 43 ~ S (p)() P,

Remark 1. The conclusion of Theorem 3.1 remains true even when D
has no eigenvalue in the imaginary axis and the proof is similar. Indeed, we
decompose RY¥=E®F and D=diag(D,, D,) where Reo(D,)>0 and
Re o(D,) <0; iff=(ﬂ) and v:(;'.i) with respect to this decomposition,
then travelling waves of (1.1) are solutions of

{(v ) () =eDy(v")" (s)+ f1(v], v]),

vy (S)=8Dz(v )” (s)+ f3(vy, vl),

and bounded solutions of these equations are solutions of the system
—1

Di' 1% v
@) () === [ e np il 2y d,

s

(%) ()==2= ] e nril o) di,

which can be treated as before.

Remark 2. Existence of travelling waves for (1.1) suggests that, at least
for unbounded regions, it could be useful to define a weaker condition of
stability imposing only that |u(x, 1) — p(t + ¥(x, £))| is uniformly small on
R"xR™* for some slowly varying function »: R”xR* - R.
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4., AN INSTABILITY RESULT

Since the existence of travelling waves near u, shows one cannot expect
to prove orbital stability of u, and suggests a weaker definition of stability,
it seems desirable to have a stronger result on instability. In order to study
this problem, we consider first the variational equation of (1.1) around p,,
that is,

%‘%:D Aw+ ' (p)w,. (4.1)

From the results of Section 2, for each seR and ¢ ey, there exists a
unique solution w(s, ¢): R" x [s—r, ov) —» R" of (4.1) such that w (s, )= ¢
and, for each (=5, the map L(t, s)¢ =w,(s, @) defines a bounded linear
operator on y. The family {7(¢, s):1>s} is called evolution operators of
(4.1) and the following properties are satisfied:

(a) L(s,s)=1Iand L(1,s) L(s,t)=L(t, 1)
(b) L(t+w,s+w)=L(t,s)
(c) Lt+w,5)=L(ts)L{s+w,s)

forall t<s<t

It follows from (b} that L(s+ nw,s)=L(s+ w, s)", for each positive
integer n. Also, if 7 > s, then there exist unique integer » and 0 <t < w such
that t=s+nw+1 and therefore L(t, s)=L(s+nw+1, s+nw) L(s+now, s) =
L(s+1,5) L(s +w, s)". Hence, since |L{s+ 1, s)| is uniformly bounded for
0 <1< w and s fixed, the asymptotic behaviour of L(t, s) depends only on
|L(s + w, )"} or, at ultimately of the spectral radius of L(s+ w, s).

The proof of the next result can be read in [7].

LeMMa 4.1. Let U(s) := L{s + w, s) for se R. Then, U(s + w) = U(s), for
all se R and a(U(s))\{0} is independent of s.

The map L(w) = L(w, 0)= U(0) is called period map of (4.1) and the
non-zero eigenvalues of L(w) are called characteristic multipliers of (4.1).
Consider now the w-periodic linear functional equations

= F'pui ~ |21 D) (42)

depending on the parameter &€ R”. One defines the period map 7;(w) and
the characteristic multipliers of (4.2) in the same way as for (4.1). If u(|&|?) =
e*1¥M js a non-zero characteristic multiplier of (4.2) corresponding to
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the value &, then there exists a w-periodic function ¢: R —» R”™ such that
W(r)=e*1¥Mg(1) is a solution of (4.2) and so w(x, t)=e ¥+ xg(y)
is a solution of (4.1) with initial value wo(x, 8) =e* 1" +% xp(9) xeR",
—r<0<0. Since L(w)wg=e*€2w it follows that e*¢9® is an eigen-
value of L(w) and therefore

o(L(@)\{0} 2 {J {u(1€1?): n(1E1*) e o(Te(w)) }\{0}.

feR”

The next result is important in the calculus of the spectral radius of the
period map of (4.2) and the reader is referred to [4] for the corresponding
proof.

LEMMA 4.2. Suppose x: [ —r, o) — R is a non-negative function satisfying

xX(t)= —oax(t)+F sup x(t+0),

—r<d<0

for t>0 and assume a>pB>0. Then, 0< x(t)<e ¥ |x,|, for all t=0,
where k >0 is the unique real solution of the equation k — « + pe*" = 0.

LemMma 4.3, Suppose u=p(t) is an orbitally stable non-constant
w-periodic solution of (1.2) and D is an N x N real matrix with eigenvalues
in the halfplane Re 4> 0. Let r(|£|?) be the spectral radius of the period map
of (4.2). Then, r(0)=1 and r(|£]*) =0 as |&] —» 0.

Proof. When £=0, (4.2) is the linear variational equation of (1.1)
around p and the hypotheses imply #(0) = 1. Suppose £#0 and let o, M, K
be positive constants such that | f'(p,)|| <M and |e ¥ 2| < Ke "¢, for
t=0. If w(-, &) is the solution of (4.2) such that wy(-, @)= ¢, then

, e FPp(0) + [ e AU p ) (L B ds, i (>0,
(1, £) = 0

o(1), if —r<r<o.

Therefore, |w(t, £)| <z(2), for all += —r, where z is the non-negative
function satisfying

Ke — &1 10(0)] +f KMe 2P 0—9 Ww,(., &)| ds, if >0,
Z([): 0

lo(1)], if —r<r<0.
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For t >0 we have

He)=—o [E]7 2(t)+ KM |, (-, &) < —a |E[2z(t) + KM sup  z(t+0).

—r<8=<0

Taking |[¢]>>KM/x and using Lemma 4.2, we obtain (s, &)| <
e ¥ o+, €|, for all >0, where k=k(|¢[?)>0 is the unique real
solution of k —« {£|* + KMe* =0, Therefore, if 1> r and |£]2> KM/a, then

I, (-, E) | S e U= g (&)
This implies that

I T:((D)j | Lig efk(lélzl(wfr‘{i)’

for all integer j sufficiently large and so, r(|¢|?) <e M if |&] > KM/a.
To complete the proof we observe that k(|&|?)— v as |&] - oc. In fact,
k(1€12) = (1/r) log({a/M) |€]*) as & — 0.

THEOREM 4.4. In addition to the hypotheses of the previous lemma,
suppose that r(|E)*)> 1 for some & e R™. Then, the solution u(x, t)=p(t) of
(1.1) is unstable. Moreover, there exist R>0 and a>0 such that, for any
£>0, there are 9 C(R"x [—r, 0], RY) with (@ —poll <& and t,>0 such
that the solution u of (1.1) with initial condition uy = ¢ satisfies |lu, —p, | 2 a,
and, in fact,

sup sup [u(x,, t,+80)—u(x,, 1,+0)| = 2a.

S r<0<0 |y |<R |x2l<R

Observe that the solution w cannot be interpreted as being close
to p(z+(x, 1)) for some slowly varying phase function . Spatial
inhomogeneities develop of definite amplitude >a and wavelength <R

Before proving Theorem 4.4, we prove the following result, which is
related to a more general result in [7, 8]. In our situation, we have more
detailed information about the direction in which a given point leaves a
neighborhood of the origin, as we see in the proof.

LEMMA 4.5. Let X be a real Banach space, L: X — X be a bounded linear
operator with spectral radius r =r(L)> 1 and assume that there is an eigen-
value i of L such that |Al=r. If T:UcX— X is a map defined in a
neighborhood U of the origin such that T(0)=0 and || T(x) — Lx| = O(||x||?)
Jor some p>1, then 0 is an unstable fixed point of T. In fact, there exists
ue X, |ul| =1 with the following property: there exist constants C, 6,>0
such that if 0 < < gy, then there exist arbitrarily small ¢ >0 and arbitrarily
large integers N such that (1) xo=¢u, X, ,="T(x;), 0<k <N are defined
and (it) ||x x| = 06/4 and ||xy — ou| < Co”.

505/109/1-5
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Proof. Let 0<n<r?—r; since r=lm, _  [L"|'", there is a constant
K> 0 such that | L"|| < K(r + )", for all ne N. Choose positive constants a
and b such that T(x) is defined and || 7(x) — Lx| < b ||x||” whenever || x| < a.
Let C=27bK/(r” —r —n)and choose ¢ > 0 such that ¢ <a/2 and Co? ' < 172,

Let A=re® and € =u+ ive X + iX (the complexification of X) such that
fflull =1, llv]l <1 and L&=AE Given a positive integer Ny, and a real
number & such that 0 < < 1/2, let N> N, be a positive integer such that
cos NO — |sin N0} = 1—6 and put e=o/r".

Since L"u=r"(ucosnf—vsinnf), for all neN, we have (L <
r"(Jcos nf| + |sin nf|) < ﬁ r* for 0<n<N and |L"u| =r"(cos NO—
|sin NB})= (1 —6)r". Note that ||LYu—rVu|| <dr”.

Taking x,=-eu, let us show that x,=T"(x,) is defined and satisfies
lx, |l <2er" whenever 0<n< N and |xy||=20(1/2—6). This shows the
instability of the origin as a fixed point of 7. First, let us show that
x| <2er”, for 0<n<N. Obviously, this inequality holds for n=0.
Assume that ||x, || <2er*, for 0<k<n—1<N; since x,,,= T(x,) and
x|l < 2er* <2er™ =20 < a, we have

n—1

X,=L"xq+ Y L" ""HT(x,)— Lx,).
k=0

The summation can be estimated as follows:

n—1

<Y Kr+n)" " tbxll”
k=0

n—1 n- k-1
— Kprtn— s (’*”) A
k

=0 r’
Kbh2Pgryin—1ip
g —
1= (r+nj/r?

B Kb27err™

r’—r—n

n—1

|
% L"*"*"(T(xk)—ka)[
k=0

=C(er")” ' er"

< Co? lertg ! ert.
2
Thus, |lx, || < \/5 er" 4+ Jer” <2er” and, by induction, the inequality holds
for 0 <n < N. Finally,
N-—-1
S LY RN T(x, )~ Lxy)
k=0

er (1-98)o 3 a<2 5),

lxall 2 1Ll —

>e(1—0)r —

NS |

and the proof is complete.
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Proof of Theorem 4.4. Let u(x, t)=p(1)+v(x, t), so

a.
6*,;=DAU+f'(p,)v,+R(t, v,), (4.3)

where R(¢, @)= f(p,+¢)— f(p,)—f(p,)o. It is sufficient to prove the
instability of the null solution of (4.3), and we verify that the hypotheses
of Lemma 4.5 are satisfied by the period map T(w) of (4.3).

Let m =1 be such that | L(¢, s)]j <m for 0<s<t<m. Since fis C?, we
have R(t, )= 0O(|@|?) as ¢ -0 and therefore, there exist constants a>0
and b >0 such that |R(t, @)| <& |@|? whenever o] <a.

If ¢ € 1 satisfies [l@| < min{1/2m*bw, a/2m} :=p and v is the solution of
(4.3) with initial condition v, = ¢, then for all 1t >0, as long as ||y, €,
0<s<1t we have

v,=L(1,0)p +J’ [L(r,s)X,]) R(s,v,)ds
0

and so, v, || <m ||lo| + |5 bm|v,||* ds, for all >0 as long as ||v,|| <a,0<
s<t This implies that |v,|| <m ||/l —m*b ||t as long as 0<1<
1/m?b ||¢| and ||¢| <a. Since |o| <1/2bm’w, we have 2w < 1/bm? |o|
and 1—m?b || t>1—bm*2bm*w >3, for all 0<t<w. Therefore,
vt <2m @l <aforall 0<i<w.

On the other hand,

T(w)e — L{w)e| =

[ L@, )%,] Ris. v,) ds

(]

<j“’ bm |v, |12 ds < 4bm’w |02,
0

for | ¢l € p, which shows that | T(w)ep — L(w)e| = O{|¢|*) as ¢ = 0.

From Lemma 4.3, there exist £,eR” and u>0 such that r(|&,|%)=
max,  g. r(1¢ |?)=e*~. The hypotheses imply that &;# 0 and the compact-
ness of the period map of (4.1) (or some of its powers) implies that
there are i€ C with Rei=py and a non-constant w-periodic function
t— (1) e C" such that w(¢) = e*(¢) satisfies (4.2) and therefore, w(x, t) =
Re(e* %0 (1)) is a solution of (4.1). We can assume that
SUp_, <g<o €Y (0) = 1.

Let R = 2n/|{,|. Note that sup ,_gco SUp,<r IW(x;, t +0)—
wix,, t+8) =2" for all r>0. As in the Lemma45, let C=
8bm*w/(e” — 1). Choose ¢ >0 such that ¢ <p/2 and Ca<1/2 and put
a = o/2. Given arbitrarily small ¢ > 0, choose a positive integer N, such that
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age """ < ¢ and let v'(x, 1) be the solution of (4.1) with initial condition
vi(x, 0) = Re(ge* * 0¥y (0)) = ew(x, 0), xe R", —r<0<0.
Then we have

sup sup |v°(x, £+ 8)—Re[ee™ + 0%y (1 4+ 0)]) < Co?,

—r<f0<0xeR”

for all 0<r<¢, and |v%(-, t.)|| 2 0/2=a, where t,=wN,. On the other
hand, if |x;,| <R, i=1, 2, we have

sup  sup |v°(x,, f,+8)—0v(x,, 1.+ 0)) =26 —2C6> 2 6 =2a,

—r<6<0 x| <R

which completes the proof.

In the next result, we compute B ={(dr(|é|?)/d 1€1%)]:—o when the
solution u=p(z) of (1.2) has 1 as a simple characteristic multiplier. The
condition >0 implies that r(|&|?)>1 for every &#0 sufficiently small,
giving thus a sufficient condition for instability of wu(x, t)=p(t) as a
solution of (1.1), according to Theorem 4.4. This in an instability condition
equivalent to the one in [3], where the case N=2 and r =0 is considered.

THEOREM 4.6. Assume p is a simple non-constant w-periodic solution of
(1.2) and D is a real matrix. Then, for each sufficiently small real number 2,
there exists an unique characteristic multiplier (1) near 1 of the equation

o(1)=f"(p.)v,— ADv(1). (44),

The map A u(2) is differentiable (in fact, analytic) in a neighborhood of
A=0, satisfies W(Qy=1, and

du .

=5 )= = | () Dp(1) i,

where w (row vector) is the w-periodic solution of the adjoint equation of
(3.3) satisfying the condition

1 w
= [ wOLHO ~ (PP di=1. (45)
w o

If all the other characteristic multipliers of (3.3) have modulus less than 1,
then r(|&)?)=u(|€]?), when |&| is close to zero. In any case, r(|¢]?)=

#OE1).

Proof. The period map T,(w) of (4.4); depends analytically on A and,
since To(w) has u=1 as a simple real eigenvalue, it follows that, for A
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sufficiently small, T,(w) has a simple eigenvalue y(A) with 4(0)=1 and the
map 4+ pu(4) is analytic (see, e.g., [9]).

Let p(A)=(1/w) log u(A). Since u(Ai) is a characteristic multiplier of
(4.4),, there exists a function g¢(7, 4), w-periodic in ¢ and analytic in 4, with
q(1,0)=p(z) such that v(¢, 1)=e"*g(1, 1) is a solution of (4.4);. This
implies that ¢(t, ) is a w-periodic solution of

an=r"(p) g+ (pIle’* —11q,— [p(4)+ iD] q(r)

and, from Lemma 3.2, we have
L w(t)[ [ (p)Ne?? —1)q,(-, 1) — (p(A) + AD)qg(1, 1)1 dt =0,

for all w-periodic solution w(z) of the adjoint equation of (3.3). By taking
derivative with respect to A and setting A =0, we have

J, L O (P15, = (910)+ D) p(e)) dr =0,

and choosing w so that (4.5) is satisfied, we obtain wp'(0)=
— ¢ w(t) Dp(1) dt. Since wp'(0) = p'(0), the proof is complete.

In the next theorem we give a result connecting u'(0) with the periods
of periodic solutions of a family of equations related to (1.2). This is an
extension of the results contained in [11] to parabolic-delay equations.

THEOREM 4.7. Assume p is a simple non-constant w-periodic solution of
Eq.(1.2) and D is a real matrix. If ¢ is sufficiently small, then the equation

6(t)y=(I+¢D) ' f(v,) (4.6)

has a unique periodic solution v(-, &) of periodic T(g) such that v(-,0)=p
and T(0) =w. Moreover, the maps ¢ v(-, &) and ¢— T(e) are differen-
tiable in a neighborhood of zero and T'(0)= —pu'(0).

Proof. The proof is a slight modification of the proof of Theorem 3.1.
First, we choose the w-periodic solution w of the adjoint equation of (3.3)
such that (4.5) is satisfied.

Let y and n be the continuous functional and the continuous projection
defined on 2, by y(h)= |3 w(r) A(1) dr and (nh)(1) = p(t) y(h)/y(P), respec-
tively. By changing variables 1= (1+ )}t and v(r) = y(t), where | | <1/2
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and using the same notations as in the proof of Theorem 3.1, (4.6) can be
written as

d
?.Ti=“ +B)I+eD) " f(y. ). (4.7)

Letting y(t) = p(7) + z(t), z then satisfies
dz
5= tp) 2ot Hiz, B, e)n), (4.8)

Where H(Z3 ﬂ’ 8)(T) = (1 + B)(1+£D)7lf(pt,[f+ ZT,ﬁ)_f(pt)—f,(pt)z‘r,O‘
Let a= {3 |w(t)]*dr=7(w"). As in the proof of Theorem 3.1, we can
show that the equation

d.
TSP 2ot Hiz, B e)(x) = y(HIz, B e)) i) Ja

has a unique w-periodic solution z =z*(f3, ¢) such that z*(0,0}=0 and z*
is C' in a neighborhood of (0, 0). In order that z=z*(#, ¢) to be a solution
of (4.8) it is necessary and sufficient that y(H(z*(f, ¢), §, ¢)) =0, that is,

B(B.e):= | () H*(B.e). B. ) e =0.

Since B is C', B(0,0)=0 and (3B/3p)0,0)= [y w(t)[p(z)—
f(p)() p(t)] dr = @, we apply the Implicit Function Theorem to solve
B(B,e)=0 to get f=pf(e) as a C' function of ¢ in a small neighborhood
of (0, 0).

Therefore, v{t, &) =p(t)+ z*( B(e), €)(t) is the unique periodic solution
of (4.6) of period T(¢)=aw(l + f(e)) such that v(-,0)=p and T(0)=w.
Since T'(0)=wf (0)=(; w(t) Dp(t) dr, from Theorem 4.6, we have
T'(0)= —u'(0) and the proof is complete.

5. EXAMPLES

1. Consider N=2 and f(¢)=({ ~§) @(0)+ (1 — ¢,(0)* ~ ¢,(0)%)
“ %) o(—2n), where a, b, ¢, d are real numbers. Then p(t)=(53!) is a

2r-periodic solution of (1.2) and the variational equation around p, is

; 0 -1 a b cos’t sintcost
U(t)_{<1 0>‘2(C d)(sintcost sin? ¢ )}v(:), (5.1)
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so the characteristic multipliers are 1 and u=e 2"“*% and, therefore, p is
orbitally stable with respect to the flow of (1.2) when a +d>0.

Let us choose b=c¢=0, a=2 and d= —1. In this case, the adjoint
equation of (5.1) is

4 cos?t —1 —sin 2¢

1+2sin2r —2sint )1=—W(I)A(t). (5.2)

W(t)zw(t)<

We are looking for the 2m-periodic solution of (5.2) satisfying
[g’ w(t) p(¢) dr=2n. Since w(t) p(¢) is constant, we must look for the
2n-periodic solution of (5.2) such that —w,(¢)sin 1+ w,(t)cost=1, for
all ¢

By changing variables

cost sint\/w\ [(x
—sint cost\w,) \y/)’
the above condition means y(¢)=1 and x satisfies

x(t)=(1+3cos 2t) x(¢) — 3 sin 2¢. (5.3)

Equation (5.3) has a unique n-periodic solution, which we write as a
Fourier series x(1)=3Y.7_ _ c,e*™. The coefficients c, satisfy ¢_, = ¢, and

¢y +3(co+ ey +i)=2ic,

cat3(c, 1 +Cpyy)=2nic,, if n#xl

Let ¢, =(1/2n) [;"x(t)e " dt:=p+ig (p,qgeR). Since ¢, ,+ o=
2(2in—1)c,, for nm#+l, letting D,=c,_,/c,, we obtain D,=
z,—1/D, ., where z,=3(2in— 1) and therefore

1
Dot f(zner= 1z )

In particular,

D2 Cy p+ql
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and thus

3p—i 2
———=(4A+ Bi)— < (2i—1),
piai (d+Bi)—3Qi—1)

so, p and ¢ are solutions of the equations

{(A—é)p—(B—%)q=0
(B=3)p+(4+3)g=—1

Cutting off the continuous fraction defining 1/D, in the zs-term, we obtain
A+ B;x~ —0.0716 — 0.3292/ and, therefore, p =~ 1.2470 and ¢ ~ 1.8039. Thus,
fg x(1) cos 2t dt ~ 1.2470m and (§ x(¢) sin 2t dt ~ 1.80397.

Finally, we obtain

2rn d —sin {
u'(0)= —JO (x(2) cos t —sin 1, x(1) sin 1 + cos 1) (Z;: d;)( ccs)lsnt ) dt

~ —(2.8039d,, — 2.4941d,, + 4.9883d,, — 0.8039d,,).

If we take D=('y %), we have p'(0)>0 (therefore, instability) when
&> 1.88.

When ¢ =1, we have D=7 and the fundmental solution X(z, &) of (4.2)
satisfying X(0, £) =1 is given by X(z, &) = X,(r) e~ """ for all £ R", where
Xo(1) is the fundamental solution of (4.2) with £=0. When |e— 1} is
sufficiently small, there exist constants C > 0 and § > 0 such that | X(s, £)| <
Ce #1%" for all £ eR” and ¢ > 0. Letting K(x, 1) := (21) " [ X(1, &)™~ dE,
we can show (see the Appendix) that (g, |K(x, r)| dx < o0, so the solution
of (4.1), for this example, is given by

w(x, 1) = L" K(x—y, 1) woly) dy,

and this implies that the linear equation (4.1} is stable when ¢ is sufficiently
close to 1.

Still in this example, we note that 4'(0) <0 for ¢ > 0 sufficiently small and,
therefore, we cannot use Theorem 4.6 to conclude instability of p. However,
we show that Theorem 4.4 can be used to prove instability of p as a solution
of (1.1) when ¢ is sufficiently small. Actually, we show that Eq. (4.2), with
|&f =1, has a characteristic multiplier whose modulus is greater than 1 when
¢ — 0 +. In this case, with |£] =1, Eq. (4.2) is written as

di —1lfe—4cos?’t —1—2sin2r\ |
:1?([)—< 1 +sin 2t —s+2sin21)um (54)
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Let #=(;!) be a solution of (5.4) and x=(}) be the function given by
xi(1)=Ae " —2Ae” (1 + §sin 21) — eC(1 + 2 sin 21) elosin®+
and
X, = Ce? §i,sin? s ds’

where 4 =17,(0)+ £6,(0) and C=5,(0).

It can be shown that 6,(¢)=x,(1)+ O(e)+ e ""O(1) and ©,=x,(1) +
O(e), uniformly on 0 <7< 2% as ¢ — 0+. Thus, it follows that the period
map T, of (5.4) has matrix given by

(1—47[)6*21#:: 8[(1—47‘[)@727[“1—27[]
0 el’rr

[T,,,]=( )+O(£)+02”O(1),

and so [T,]— (5 %) as e >0+, and the result follows.

2. Consider the system

15

a—?:d“ Au+dy; Av +glulx, 1 —1)),

. (5.5)
é—t= day Au+dyy Av+ a(ulx, 1 = 1) = yo(x, 1)),

where «,7 are positive constants and g:R—R is an odd C? function
satisfying the conditions g'(0) < —n/2 <lim,_, . g(u)/u, and g'(u) <0 and
g"(u)>0 for all u>0.

Under these conditions, the reaction equation

{lft=g(u(x, t—1))

6 =a(u(x, 1 —1)—yo(x, 1)) 0

has a 4-periodic solution ¢(r)=(p(r), g(t)) satisfying the symmetry

condition ¢(r—2)=¢g(r) for all teR. Indeed, the existence of p follows
from the results in [2] and ¢ is given by

r 0 s

qm=af e‘“"’""”"p(s—l)ds=—f eAp(z—1+‘—)ds. (5.7)

—x P oy

We assume that p(—1)=0 and p(r)=20forre[—1,1].

By using the results contained in [2], it is not difficult to prove that ¢
is exponentially asymptotically stable for (5.6) and therefore the hypotheses
of Theorem 4.6 are satisfied for this example. We are going to show that ¢
is unstable for (5.5) if d,, >0 and =« is sufficiently large.
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Since the linearized equation around ¢ is

u=g(plt—1))uz—1), (58)
b= ou(t— 1) —ayo(t); '
the corresponding adjoint equation is given by
{x=—g’(p(t))x(t+1)—ay(t+1), (59)
y=ayy(t). '

The 4-periodic solutions of the adjoint equation are given by w(f)=
k(p(t—1),0), where k is a constant. In order to satisfy condition (4.5) we
choose k=2(", g'(p(1)) p(1)* dt)~". It follows that

4 2
~w(O)=k | ple—D)ldy, p(0)+ diag(0)] di= ~2kdiz [ (1= 1) g(0) e

2 10 ;
- —2kd12j0 ﬁ(t—l);j ep (z—1+&%> ds dt.

Since {® _ e’p(t— 1+ sfay)ds—p(t—1) as o— oc, uniformly on com-
pact sets, the right-hand side tends to

-2k 2 2k 2 2k b
—dp [ B0 plt—Dydi==dp, [ pr—D?di="dp, | p(0)*dr.
Y 0 b 0 Y -1

Therefore, if d;, > 0 and « is sufficiently large, we have u’(0) > 0, and the
result follows from Theorem 4.6.

APPENDIX

The main purpose of this Appendix is to state and prove some results we
had used in Example 1. Since the linear equations envolved in the example
do not contain delays, we will restrict ourselves to the linear O.D.E. case.
The general case will be considered elsewhere. I am indebted to Professor
D. Henry for many of the computations below.

Let A:R — L(R") be an w-periodic matrix and D an N x N real matrix
with eigenvalues in the half plane Re 1> 0. Let X,(¢) be the fundamental
matrix solution of

Xo(1)=A(1) Xo(1),  Xo(0)=1, (A1)
and assume that 1 is a simple eigenvalue of X,(w) and the others have

modulus <1, so that |Xy(¢) Xo(s) '| <M, for some positive constant M
and all t=s.
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For ¢eR” let X(1, s5; &)%) be the fundamental solution of

-

X

o (b 1E7)= (A1)~ 1E1? D) X(1, 53 1¢1%),  X(s, 5 [E17) =1 (A2)

LemMma A1, If D is sufficiently close to the identity matrix, then there
exist positive constants C and f such that

|X(1, 5 |E|2)] < Ce FIEP =)

forall t=2s520 and £eR”,

Proof. Since X(t,s;|&|?) is the fundamental matrix solution of a
periodic system, it is sufficient to find estimates for X(¢, 0; |£]2) := X(1; |€}?).
Letting R= D — I, we have

X(; 817y = Xo(0) e 0= [ Xol0) Xols) ™" &R0 [¢]2 RX(s; 1¢1%) b,
0
and so,

X(5 1812 P < M+ | MRIE €5 |X(s (217 ds,

0

for 1> 0. Gronwall’s lemma implies |X(z, [£]?)] < Me —1¥1"0 =M IR) for 1 >0,
and the proof is complete by taking |R| < !/M and f=1— M |R|.

In the following, the notation 47 X(z, s, |£1%) means the mth iteration of
the Laplacian of X{(¢, s; |£|?) with respect to the ¢é-variable, and L,-norms
are taken with respect to £eR”".

LEMMA A.2. Suppose D as in Lemma A.1. Then, there is a positive
constant A, such that

1X(2, 53 112 1, < Aolt —s) ™2,

for t > 5. Furthermore, for each m > n/4, there is a positive constant A,, such
that

147 X(1, 83 1812) 1, S At —5)" 7",

for t>5.
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Proof. As before, it is sufficient to find estimates for X(z, 0; |£|?) :=
X(t; 16]?). Define X'%%t; A)= X{(r; 4) and X¥(1; )= (d*"X/di*)(1; 1), for
AeR, and ke N. By induction, it is easy to show that

ox ™
5, (5 4)=(A(1) = AD) X9t 1)~ kDX V(13 ),

and X%(0;2)=0, for k>0 and X'“(0; 4)=1. It follows that, for each
k €N, there is a positive constant C, such that [X*)(¢; 1}| < C,t*e ~#*, for
all t>0 and AeR.

Now, we have

A XU L) =202 +n—=2) [PV X5 1817)
+2(4j+n) [E17 XV 1€12)
+A [P XED (8 (8)2).

Note that we have a sum of terms |&|% X'9'(¢; [£]?) with g —p=Kk —j + 1,
k<qg<k+2,p>0,andj—1<p<j+1 (ifj=0, the term |&[2Y D X F)(¢; [£]?)
is absent).

It follows that A7(|&|¥ X(#;1£]%)) is a sum of terms of the form
| )2+ m) X @ 1E]%), with m—j< g <2m. In particular,

2m
ATX(ENEP) = Y, a, 1829 X (22,
g=m

for some real constants a,. Thus, for >0, we have

2m
147 X518 < Y Iaqlcm(j g4 oI g1

I

2m
— Z ‘aql Cq,qu‘qtﬂns‘d*-qu=Amtm rne4,

q=m

for some positive constant 4,,, and the proof is complete.

LEmMa A3, Suppose D as in Lemma A.l and let
K@mxy=um'j X(t, 53 |E17) 5 de.
R'Y

Then there is a constant C such that jRn |K(t, 53 x)| dx < C, for all t>s.
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Proof. Let m>nj/4 be a positive integer and R any positive real
number. Using the Cauchy-Schwarz inequality, we have

j IK(1, xndx=j 1-1K(t, x)] dx + x| =2 x> |K(1, x)| dx
R" R

lx|<R ¢l =

1/2

<(j 1dx> " (j \K(1, X)) dx )
Ix| < R x| < R

1,2 s
* <frx| >R 2 dx) (J‘m . |x)4 1K(t, x)|? dx)

‘ ‘ l;‘ZRns‘Z --2m
<ol R K(1,)] 5(’"—"1—_—nW|HxV'"Ku,x)an,

L:+

where @, is the area of the unit sphere on R”.

Since X(¢, [¢|?) and 47 X(1; |¢[?) are the Fourier transforms of the maps
x+— K(1, x) and x> |x|>™ K(1, x), respectively, it follows from Plancherel’s
Theorem that

Ln [K(t, x)| dx S C,R" [ X(t, )| 1, + C RYZ 72 NAT X ) 1

for some constants C, and C,, ,,, and by Lemma A.2, we have

J' IK([, x)l < Can‘e‘ZAOt —ni4 + C,/, mRn‘s‘Zf?.mAmtm»» ni4
R’l

= CAo(RI/1Y 4 C AR,
for all 1>0, m>n/4 and R>0.

Taking R=\/;, we have jR,. [K(t, x)| dx < C, for some constant C and
all £>0 and the proof is complete.
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