Applied Mathematics Letters 20 (2007) 817-823

On the fractional-order logistic equation

A.M.A. El-Sayed ${ }^{\text {a }}$, A.E.M. El-Mesiry ${ }^{\text {b }}$, H.A.A. El-Saka ${ }^{\text {b, }}{ }^{\text {, }}$
${ }^{\text {a }}$ Faculty of Science, Alexandria University, Alexandria, Egypt
${ }^{\mathrm{b}}$ Department of Mathematics, Damietta Faculty of Science, New Damietta, Egypt

Received 14 November 2005; received in revised form 5 June 2006; accepted 4 August 2006

Abstract

The topic of fractional calculus (derivatives and integrals of arbitrary orders) is enjoying growing interest not only among mathematicians, but also among physicists and engineers (see [E.M. El-Mesiry, A.M.A. El-Sayed, H.A.A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput. 160 (3) (2005) 683-699; A.M.A. El-Sayed, Fractional differential-difference equations, J. Fract. Calc. 10 (1996) 101-106; A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (2) (1998) 181-186; A.M.A. El-Sayed, F.M. Gaafar, Fractional order differential equations with memory and fractional-order relaxation-oscillation model, (PU.M.A) Pure Math. Appl. 12 (2001); A.M.A. El-Sayed, E.M. El-Mesiry, H.A.A. El-Saka, Numerical solution for multi-term fractional (arbitrary) orders differential equations, Comput. Appl. Math. 23 (1) (2004) 33-54; A.M.A. El-Sayed, F.M. Gaafar, H.H. Hashem, On the maximal and minimal solutions of arbitrary orders nonlinear functional integral and differential equations, Math. Sci. Res. J. 8 (11) (2004) 336-348; R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997, pp. 223-276; D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in System Application, vol. 2, Lille, France, 1996, p. 963; I. Podlubny, A.M.A. El-Sayed, On Two Definitions of Fractional Calculus, Solvak Academy of science-institute of experimental phys, ISBN: 80-7099-252-2, 1996. UEF-03-96; I. Podlubny, Fractional Differential Equations, Academic Press, 1999] for example). In this work we are concerned with the fractional-order logistic equation. We study here the stability, existence, uniqueness and numerical solution of the fractional-order logistic equation.

(C) 2006 Elsevier Ltd. All rights reserved.

Keywords: Logistic equation; Fractional-order differential equations; Stability; Existence; Uniqueness; Numerical solution; Predictor-corrector method

1. Introduction

Now we give the definitions of fractional-order integration and fractional-order differentiation.

[^0]Definition 1. The fractional integral of order $\beta \in R^{+}$of the function $f(t), t>0$ is defined by

$$
\begin{equation*}
I^{\beta} f(t)=\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) \mathrm{d} s \tag{1}
\end{equation*}
$$

and the fractional derivative of order $\alpha \in(n-1, n)$ of $f(t), t>0$ is defined by

$$
\begin{equation*}
\mathrm{D}^{\alpha} f(t)=I^{n-\alpha} \mathrm{D}^{n} f(t), \quad \mathrm{D}=\frac{\mathrm{d}}{\mathrm{~d} t} . \tag{2}
\end{equation*}
$$

The following properties are some of the main ones of the fractional derivatives and integrals (see [10-19]).
Let $\beta, \gamma \in R^{+}$and $\alpha \in(0,1)$. Then we have
(i) $I_{a}^{\beta}: L^{1} \rightarrow L^{1}$, and if $f(x) \in L^{1}$, then $I_{a}^{\gamma} I_{a}^{\beta} f(x)=I_{a}^{\gamma+\beta} f(x)$.
(ii) $\lim _{\beta \rightarrow n} I_{a}^{\beta} f(x)=I_{a}^{n} f(x)$ uniformly on $[a, b], n=1,2,3, \ldots$, where $I_{a}^{1} f(x)=\int_{a}^{x} f(s) \mathrm{d} s$.
(iii) $\lim _{\beta \rightarrow 0} I_{a}^{\beta} f(x)=f(x)$ weakly.
(iv) If $f(x)$ is absolutely continuous on $[a, b]$, then $\lim _{\alpha \rightarrow 1} \mathrm{D}_{a}^{\alpha} f(x)=\frac{\mathrm{d} f(x)}{\mathrm{d} x}$.
(v) If $f(x)=k \neq 0, k$ is a constant, then $\mathrm{D}_{a}^{\alpha} k=0$.

The following lemma can be easily proved (see [15]).
Lemma 1.1. Let $\beta \in(0,1)$; if $f \in C[0, T]$, then $\left.I^{\beta} f(t)\right|_{t=0}=0$.
In Section 2 we will study the stability of the fractional-order differential equation and obtain results which agree with [2,3,17].

In Section 3 we will study the stability of the fractional-order logistic equation.
In Section 4 we will study the existence and uniqueness of the fractional-order logistic equation.
In Section 5 we will apply the PECE method for solving the fractional-order logistic equation.

2. Equilibrium and stability

Let $\alpha \in(0,1]$ and consider the initial value problem

$$
\begin{equation*}
\mathrm{D}^{\alpha} x(t)=f(x(t)), \quad t>0 \text { and } x(0)=x_{o} . \tag{3}
\end{equation*}
$$

To evaluate the equilibrium points of (3) let

$$
\mathrm{D}^{\alpha} x(t)=0,
$$

then

$$
f\left(x_{\mathrm{eq}}\right)=0 .
$$

To evaluate the asymptotic stability, let

$$
x(t)=x_{\mathrm{eq}}+\varepsilon(t),
$$

then

$$
\mathrm{D}^{\alpha}\left(x_{\mathrm{eq}}+\varepsilon\right)=f\left(x_{\mathrm{eq}}+\varepsilon\right)
$$

which implies that

$$
\mathrm{D}^{\alpha} \varepsilon(t)=f\left(x_{\mathrm{eq}}+\varepsilon\right)
$$

but

$$
\begin{aligned}
& f\left(x_{\mathrm{eq}}+\varepsilon\right) \simeq f\left(x_{\mathrm{eq}}\right)+f^{\prime}\left(x_{\mathrm{eq}}\right) \varepsilon+\cdots \Rightarrow \\
& f\left(x_{\mathrm{eq}}+\varepsilon\right) \simeq f^{\prime}\left(x_{\mathrm{eq}}\right) \varepsilon
\end{aligned}
$$

where $f\left(x_{\text {eq }}\right)=0$, and then

$$
\begin{equation*}
\mathrm{D}^{\alpha} \varepsilon(t) \simeq f^{\prime}\left(x_{\mathrm{eq}}\right) \varepsilon(t), \quad t>0 \text { and } \varepsilon(0)=x_{o}-x_{\mathrm{eq}} . \tag{4}
\end{equation*}
$$

Now let the solution $\varepsilon(t)$ of (4) exist. So if $\varepsilon(t)$ is increasing, then the equilibrium point $x_{\text {eq }}$ is unstable and if $\varepsilon(t)$ is decreasing, then the equilibrium point x_{eq} is locally asymptotically stable.

It must be noted that these results are the same results as for studying the stability of the initial value problem of the ordinary differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x(t)=f(x(t)), \quad t>0 \text { and } x(0)=x_{o} .
$$

Also these results agree with [2,3,17].

3. Fractional-order logistic equation

Now we study the equilibrium and stability of the fractional-order logistic equation.
Let $\alpha \in(0,1], \rho>0$ and $x_{o}>0$; the initial value problem of the fractional-order logistic equation is given by

$$
\begin{equation*}
\mathrm{D}^{\alpha} x(t)=\rho x(t)(1-x(t)), \quad t>0 \text { and } x(0)=x_{0}, \tag{5}
\end{equation*}
$$

and to evaluate the equilibrium points, let

$$
\mathrm{D}^{\alpha} x(t)=0 ;
$$

then $x=0,1$ are the equilibrium points.
Now, to study the stability of the equilibrium points, we have (see Section 2)

$$
f^{\prime}(x(t))=\rho(1-2 x(t)) \Rightarrow f^{\prime}(0)=\rho \quad \text { and } \quad f^{\prime}(1)=-\rho .
$$

Now the solution of the initial value problem

$$
\mathrm{D}^{\alpha} \varepsilon(t)=f^{\prime}\left(x_{\mathrm{eq}}=0\right) \varepsilon(t)=\rho \varepsilon(t), \quad t>0 \text { and } \varepsilon(0)=x_{o}
$$

is given by (see [11])

$$
\begin{equation*}
\varepsilon(t)=\sum_{n=0}^{\infty} \frac{\rho^{n} t^{n \alpha}}{\Gamma(n \alpha+1)} x_{o} \tag{6}
\end{equation*}
$$

and then the equilibrium point $x=0$ is unstable.
Also for the equilibrium point $x=1$ we have the initial value problem

$$
\mathrm{D}^{\alpha} \varepsilon(t)=f^{\prime}\left(x_{\mathrm{eq}}=1\right) \varepsilon(t)=-\rho \varepsilon(t), \quad t>0 \text { and } \varepsilon(0)=x_{o}-1
$$

which is (if $x_{o}>1$) the fractional-order relaxation equation and has the solution [13]

$$
\begin{equation*}
\varepsilon(t)=\sum_{n=0}^{\infty} \frac{(-\rho)^{n} t^{n \alpha}}{\Gamma(n \alpha+1)}\left(x_{o}-1\right) \tag{7}
\end{equation*}
$$

and then the equilibrium point $x=1$ is asymptotically stable.

4. Existence and uniqueness

Let $I=[0, T], T<\infty$ and $C(I)$ be the class of all continuous functions defined on I, with norm

$$
\begin{equation*}
\|x\|=\sup _{t}\left|\mathrm{e}^{-N t} x(t)\right|, \quad N>0 \tag{8}
\end{equation*}
$$

which is equivalent to the sup-norm $\|x\|=\sup _{t}|x(t)|$. When $t>\sigma \geq 0$ we write $C\left(I_{\sigma}\right)$.
Consider the initial value problem of the fractional-order logistic equation (5).

Definition 2. We will define $x(t)$ to be a solution of the initial value problem (5) if
(1) $(t, x(t)) \in \mathrm{D}, t \in I$ where $\mathrm{D}=I \times B, B=\{x \in R:|x| \leq b\}$.
(2) $x(t)$ satisfies (5).

Theorem 4.1. The initial value problem (5) has a unique solution $x \in C(I), x^{\prime} \in X=\left\{x \in L_{1}[0, T],\|x\|=\right.$ $\left.\left\|\mathrm{e}^{-N t} x(t)\right\|_{L_{1}}\right\}$.
Proof. From the properties of fractional calculus the fractional-order differential equation in (5) can be written as

$$
I^{1-\alpha} \frac{\mathrm{d}}{\mathrm{~d} t} x(t)=\rho x(t)(1-x(t))
$$

Operating with I^{α} we obtain

$$
\begin{equation*}
x(t)=x_{o}+I^{\alpha} \rho\left(x(t)-x^{2}(t)\right) . \tag{9}
\end{equation*}
$$

Now let the operator $F: C(I) \rightarrow C(I)$ be defined by

$$
\begin{equation*}
F x(t)=x_{o}+I^{\alpha} \rho\left(x(t)-x^{2}(t)\right) . \tag{10}
\end{equation*}
$$

Then

$$
\begin{aligned}
\mathrm{e}^{-N t}(F x-F y) & =\rho \mathrm{e}^{-N t} I^{\alpha}\left[(x(t)-y(t))-\left(x^{2}(t)-y^{2}(t)\right)\right] \\
& \leq \rho \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \mathrm{e}^{-N(t-s)}(x(s)-y(s))(1+(x(s)+y(s))) \mathrm{e}^{-N s} \mathrm{~d} s \\
& \leq \frac{(1+2 b) \rho}{N^{\alpha}}\|x-y\| \int_{0}^{t} \frac{s^{\alpha-1} \mathrm{e}^{-N s}}{\Gamma(\alpha)} \mathrm{d} s
\end{aligned}
$$

This implies that

$$
\|F x-F y\| \leq\|x-y\| \frac{(1+2 b) \rho}{N^{\alpha}}
$$

and it can be proved that if we choose N such that $N^{\alpha}>(1+2 b) \rho$, we obtain

$$
\|F x-F y\|<\|x-y\|
$$

and the operator F given by (10) has a unique fixed point.
Consequently the integral equation (9) has a unique solution $x \in C(I)$. Also we can deduce that [15] $\left.I^{\alpha}\left(x-x^{2}\right)\right|_{t=0}=0$.

Now from Eq. (9) we formally have

$$
x(t)=x_{o}+\rho\left[\frac{t^{\alpha}}{\Gamma(\alpha+1)}\left(x_{o}-x_{o}^{2}\right)+I^{\alpha+1}\left(x^{\prime}(t)-2 x(t) x^{\prime}(t)\right)\right]
$$

and

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=\rho\left[\frac{t^{\alpha-1}}{\Gamma(\alpha)}\left(x_{o}-x_{o}^{2}\right)+I^{\alpha}\left(x^{\prime}(t)-2 x(t) x^{\prime}(t)\right)\right] \\
& \mathrm{e}^{-N t} x^{\prime}(t)=\rho \mathrm{e}^{-N t}\left[\frac{t^{\alpha-1}}{\Gamma(\alpha)}\left(x_{o}-x_{o}^{2}\right)+I^{\alpha}\left(x^{\prime}(t)-2 x(t) x^{\prime}(t)\right)\right]
\end{aligned}
$$

from which we can deduce that $x^{\prime} \in C\left(I_{\sigma}\right)$ and $x^{\prime} \in X$.
Now from Eq. (9), we get

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=\rho \frac{\mathrm{d}}{\mathrm{~d} t} I^{\alpha}\left[x(t)-x^{2}(t)\right] \\
& I^{1-\alpha} \frac{\mathrm{d} x}{\mathrm{~d} t}=\rho I^{1-\alpha} \frac{\mathrm{d}}{\mathrm{~d} t} I^{\alpha}\left[x(t)-x^{2}(t)\right] \\
& I^{1-\alpha} \frac{\mathrm{d} x}{\mathrm{~d} t}=\rho \frac{\mathrm{d}}{\mathrm{~d} t} I^{1-\alpha} I^{\alpha}\left[x(t)-x^{2}(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}^{\alpha} x(t)=\rho \frac{\mathrm{d}}{\mathrm{~d} t} I\left[x(t)-x^{2}(t)\right] \\
& \mathrm{D}^{\alpha} x(t)=\rho\left[x(t)-x^{2}(t)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& x(0)=x_{o}+\left.I^{\alpha} \rho\left[x(t)-x^{2}(t)\right]\right|_{t=0} \\
& x(0)=x_{o}+0 \\
& x(0)=x_{o}
\end{aligned}
$$

Then the integral equation (9) is equivalent to the initial value problem (5) and the theorem is proved.

5. Numerical methods and results

An Adams-type predictor-corrector method has been introduced in [4,5] and investigated further in [1,6-10,14]. In this work we use an Adams-type predictor-corrector method for the numerical solution of a fractional integral equation.

The key to the derivation of the method is replacing the original fractional differential equation in (3) by the fractional integral equation (11)

$$
\begin{equation*}
x(t)=x_{o}+I^{\alpha} f(x(t)) . \tag{11}
\end{equation*}
$$

The product trapezoidal quadrature formula is used with nodes $t_{j}(j=0,1, \ldots, k+1)$, taken with respect to the weight function $\left(t_{k+1}-.\right)^{\alpha-1}$. In other words, one applies the approximation

$$
\begin{aligned}
\int_{t_{0}}^{t_{k+1}}\left(t_{k+1}-u\right)^{\alpha-1} g(u) \mathrm{d} u & \approx \int_{t_{0}}^{t_{k+1}}\left(t_{k+1}-u\right)^{\alpha-1} g_{k+1}(u) \mathrm{d} u \\
& =\sum_{j=0}^{k+1} a_{j, k+1} g\left(t_{j}\right),
\end{aligned}
$$

where

$$
a_{j, k+1}=\left\{\begin{array}{ll}
\frac{h^{\alpha}}{\alpha(\alpha+1)}\left[k^{\alpha+1}-(k-\alpha)(k+1)^{\alpha}\right] & \text { if } j=0, \\
\frac{h^{\alpha}}{\alpha(\alpha+1)} & \text { if } j=k+1
\end{array}\right\}
$$

and h is a step size, and for $1 \leq j \leq k$

$$
a_{j, k+1}=\frac{h^{\alpha}}{\alpha(\alpha+1)}\left[(k-j+2)^{\alpha+1}-2(k-j+1)^{\alpha+1}+(k-j)^{\alpha+1}\right] .
$$

This yields the corrector formula, i.e. the fractional variant of the one-step Adams-Moulton method

$$
\begin{equation*}
x_{k+1}=x_{0}+\frac{1}{\Gamma(\alpha)}\left(\sum_{j=0}^{k} a_{j, k+1} f\left(x_{j}\right)+a_{k+1, k+1} f\left(x_{k+1}^{p}\right)\right) . \tag{12}
\end{equation*}
$$

The remaining problem is the determination of the predictor formula that is needed to calculate the value x_{k+1}^{p}. The idea used to generalize the one-step Adams-Bashforth method is the same as the one described above for the Adams-Moulton technique: the integral on the right-hand side of Eq. (11) is replaced by the product rectangle rule, i.e.

$$
\int_{t_{0}}^{t_{k+1}}\left(t_{k+1}-u\right)^{\alpha-1} g(u) \mathrm{d} u \approx \sum_{j=0}^{k} b_{j, k+1} g\left(t_{j}\right),
$$

Fig. 1.
where

$$
b_{j, k+1}=\frac{h^{\alpha}}{\alpha}\left[(k+1-j)^{\alpha}-(k-j)^{\alpha}\right] .
$$

Thus, the predictor x_{k+1}^{p} is determined by the fractional Adams-Bashforth method:

$$
\begin{equation*}
x_{k+1}^{p}=x_{0}+\frac{1}{\Gamma(\alpha)} \sum_{j=0}^{k} b_{j, k+1} f\left(x_{j}\right) . \tag{13}
\end{equation*}
$$

This completes the description of the basic algorithm, namely, the fractional version of the one-step Adams-Bashforth Moulton method. Recapitulating, one first calculates the predictor x_{k+1}^{p} according to Eq. (13), then evaluates $f\left(x_{k+1}^{p}\right)$, uses this to determine the corrector x_{k+1} by means of Eq. (12), and finally evaluates $f\left(x_{k+1}\right)$ which is then used in the next integration step. Methods of this type are usually called predictor-corrector or, more precisely, PECE (Predict, Evaluate, Correct, Evaluate) methods.

Now we apply the PECE method to the fractional logistic equation in (5).
The approximate solutions are displayed in Fig. 1 for the step size 0.05 and different values of α. In Fig. 1 we take $\rho=0.5$ and $x_{0}=0.85$.

References

[1] E. Ahmed, A.M.A. El-Sayed, E.M. El-Mesiry, H.A.A. El-Saka, Numerical solution for the fractional replicator equation, Internat. J. Modern Phys. C. 16 (7) (2005) 1-9.
[2] E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys. Lett. A 358 (1) (2006).
[3] E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl. 325 (2007) 542-553.
[4] K. Diethelm, A. Freed, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, in: F. Keil, W. Mackens, H. Voß, J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties, Springer, Heidelberg, 1999, pp. 217-224.
[5] K. Diethelm, A. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, in: S. Heinzel, T. Plesser (Eds.), Forschung und wissenschaftliches Rechnen 1998, Gesellschaft für Wisseschaftliche Datenverarbeitung, Göttingen, 1999, pp. 57-71.
[6] K. Diethelm, N.J. Ford, The numerical solution of linear and non-linear fractional differential equations involving fractional derivatives several of several orders, Numerical Analysis Report 379, Manchester Center for Numerical Computational Mathematics.
[7] K. Diethelm, Predictor-corrector strategies for single- and multi-term fractional differential equations, in: E.A. Lipitakis (Ed.), Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and its Applications, LEA Press, Athens, 2002, pp. 117-122 [Zbl. Math. 1028.65081].
[8] K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29 (2002) 3-22.
[9] K. Diethelm, N.J. Ford, A.D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms 36 (2004) 31-52.
[10] E.M. El-Mesiry, A.M.A. El-Sayed, H.A.A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput. 160 (3) (2005) 683-699.
[11] A.M.A. El-Sayed, Fractional differential-difference equations, J. Fract. Calc. 10 (1996) 101-106.
[12] A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (2) (1998) $181-186$.
[13] A.M.A. El-Sayed, F.M. Gaafar, Fractional order differential equations with memory and fractional-order relaxation-oscillation model, Pure Math. Appl. 12 (2001).
[14] A.M.A. El-Sayed, E.M. El-Mesiry, H.A.A. El-Saka, Numerical solution for multi-term fractional (arbitrary) orders differential equations, Comput. Appl. Math. 23 (1) (2004) 33-54.
[15] A.M.A. El-Sayed, F.M. Gaafar, H.H. Hashem, On the maximal and minimal solutions of arbitrary orders nonlinear functional integral and differential equations, Math. Sci. Res. J. 8 (11) (2004) 336-348.
[16] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997, pp. 223-276.
[17] D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in System Application, vol. 2, Lille, France, 1996, p. 963.
[18] I. Podlubny, A.M.A. El-Sayed, On Two Definitions of Fractional Calculus, Solvak Academy of science-institute of experimental phys, ISBN: 80-7099-252-2, 1996. UEF-03-96.
[19] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.

[^0]: * Corresponding address: Department of Mathematics, Damietta Faculty of Science, Mansoura University, 34517 New Damietta, Egypt. Fax: +20 57403868 .

 E-mail addresses: amasayed@maktoob.com (A.M.A. El-Sayed), elmisiery @hotmail.com (A.E.M. El-Mesiry), halaelsaka @ yahoo.com (H.A.A. El-Saka).

