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A graph T is distance-transitive if for all vertices U, L’, X. J’ such that d(u, u) -: 
d(x, v) there is an automorphism h of rsuch that rrlt : x, th == y. We show how 

to find a bound for the diameter of a bipartite distance-transitive graph given 
a bound for the order ( G, ( of the stabilizer of a vertex. 

In [IO] Tutte initiated a study of s-transitive graphs by proving that for 
an s-transitive trivalent graph s < 5. Sims [4] generalized Tutte’s result 
to find a bound for the order ! G, j of the stabilizer of a primitive permu- 
tation group with a suborbit of length 3. Sims, Thompson, and Quirin [S, 31 
dealt with the case of a suborbit of length 4. Gardiner [2] gives bounds for 
1 G, 1 for an s-transitive graph of valency p f I (p prime). 

A natural question is to ask when it is possible to convert a bound 
for 1 G, ’ into a bound for the diameter of a graph. In fact for s-transitive 
graphs it is possible to show that for a particular valency and value of s 
there can be infinitely many s-transitive graphs and so no bound for the 
diameter in terms of 1 G, / is possible. We work in the more restricted 
class of distance-transitive graphs. In the case of valency 2 the distance- 
transitive graphs are just circuits and no bound for the diameter is possible. 
In the case of valencies 3 and 4, bounds for the diameter were found in 
[I], [6], [7]. and [8] together with a complete list of distance-transitive 
graphs of valencies 3 and 4. 

We consider distance-transitive graphs of valency greater than 4 and 
assume that a bound for j G, ( exists. The purpose of this paper is to show 
how to find a bound for the diameter of a bipartite distance-transitive 
graph of valency >4 given a bound for 1 G, I. Notice that if we attempt to 
extend the result to any distance-transitive graph we can assume that the 
automorphism group acts primitively on the vertices, since if it acts 
imprimitively the graph is either bipartite or antipodal [9, Theorem 21. If 
it is antipodal but not bipartite the derived graph is primitive and a bound 
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140 D. H. SMITH 

for the diameter in the primitive case would imply a bound for the diameter 
in the antipodal case [9, Theorem 31. 

DEFINITION. r is a distance-transitive graph if for all vertices II, c. .Y, y 
such that d(u, v) = d(x, ~2) there is an automorphism h of r such that 
uh = N, uh I= 4’. 

DEFINITION. Let r be a distance-transitive graph and for any vertex II 
let T,(U) = (U 1 ul(u,z~) = i). We define the intersection array of I’by 

Cl c-2 ... (‘i .*. Cd-1 Cd 

P(T) = a, a2 .** a, ... q-1 Ud 

k b, b, .a. bi ... b,-, * I 

where d is the diameter of the graph, k is the valency and if II and L’ are 
vertices such that d(u, u) = i then 

These numbers are independent of the choices of u and v. Clearly 
c,=l,ci+ai-+bj=k.ltwasshownin[9]that1 <c,<c,<Z...-<cd 

and k > b, 3 b, 2 ‘.. >, bClel . We write k, = ) r,(u)]. A simple counting 
argument shows k<bi = kj+lci+, . 

Now suppose r to be bipartite and the intersection array to be 

i 
* I i-2 c3 . 

i 

0 0 0 0 * 

k k--l b2 b3 * 

CS, 

0 

b $1 

k k 
T 2 
0 0 
k k 

T 3 

k 
-z 
0 
k 

T 

We show that sz ,< 38, mr 2 from which it follows that the diameter is 
bounded since k+ > kRp > k,2+l , y ... and the bound on 1 G, j implies 
a bound on s1 . Assume s2 > 3s, t 2. 

LEMMA 1. ,~j’t = 2s, + 1 und N is the number of vertices at distance <t 
from any chosen vertex II. 

N > (2t + I) -__ 
4 

k 
t’ 
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Proof. Application of kib, = kj+lci+l shows kSl+, = kSl+? = ... = k, . 
Then 

t+l 2t + 1 
t-Js,=s,+1=2> 4 

and 

k, + k, + k, + **a + k, > k,ql+l + k,,,, 5 **’ + kt 

> k . (2t + ‘> 
t 4 * I 

LEMMA 2. Let 2.5 + 1 < q < s3 - 1 and choose x1 , x, such that 
d(x, , xp) = q. Suppose vertex y in {rf(xl) n r&x,)} is joined to b,‘(y) 
vertices of {r,+,(x,) n rq-i-l(x,)} (i = 0, I,..., q - 1) and to c,‘(y) 
vertices ~f(~~-,(x,) n ~g-i+l(x,)} (i = I, 2 ,..., q). Then 

(1) 
1 
k(i = 

C,‘(y) = 2 Sl t l,..., q) 
ci (i = I, 2,..., sl) 

(2) 
(i = 0, I,..., q - s1 -1) 

C*-i (i = q - Sl )e*.y q - 1) 

k i 

(3) I ri(xJ *  rg--i(x2)l = 

( 1 -z 

ClC2 * 
... c. (1 < i < $1 

k n--i 

_ 0 2 

ClC2 . . . c,_i (4 - s1 G i d 4) 

Proof. (1) y is joined to ci vertices z of F,-,(x,) and d(x, , z) 6 
d(x, , v) + 1 < q - i + 1. Since x2 E F,(x,) and z E I’i-l(Xl), d(x, , z) > 
q-if 1. Hence z E ri-l(xl) n I’,-i+I(x2) and so ci’ = ci (i = 1, 2 ,..., q). 

(2) y is joined to caPi vertices z’ of Fg-i-l(xo) and 

d(x,,z’) <d(x,,y)+a’(y,z’) <i+l. 

Since x1 E rg(xz), z’ E Fq-i-l(xz), d(x, , z’) >, i + 1. Hence z’ E Fi+l(x,) A 
rq-i-1(X$) SO b,‘(y) = CQ-j (i = 0, l,..., 4 - I). 
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(3) This follows from repeated application of 

I Ti(xl) n Tq-i(x2)/ hi’ = j ri ,Jxl) n T,,p,-l(.u2)i c:, 1 1 

Now let y = Zs, + 1, choose x,, and choose s1 E I’,(x,), s, t Ti, i r(s,,) n 

r&x,X x3 E ~,&-,) n T,(x,) n F,., &Y,,). Let w, = F.,,p,) n r,,+p,) 
and W, r,l PI n r,,-,,-,(x2). Then since b& = /i/2 Y c:,,~ , the 
vertices of WI U W, together with the edges joinmg them form a (not 
necessarily connected) bipartite regular graph B of valency h-/2. 

LEMMA 3. I'.~l(~~l) n rq-,l(~2) = r,l+,(~~,) n ~u-s,(~y). 

Proqf: From Lemma 2 1 r,,(s,) n llqpsl(s.)), m= i ~,,.l(x,) n T,-.,,(x,)l. 
Since r,l(x,) n I’q,-.,Jx,) C I’.l, 1(xo) n I’,,ps,(x,) the result follows. 1 

LEMMA 4. ~,~+(x,) n rs-,,h3) Cl &,) n r,-,,.-,b-,I. 

Proojl From Lemma 2 

~\i~w choose an automorphism h such that s,,11 .yl . S& =T .v:, . Then 

Wl17 = (r,s,(xl) n I‘,-,l(x,)) 17 

= (~,5,+I(.~,,) n rs-.~,(~z)) 11 (Lemma 3) 

-= r,Jx,) n ~o-,v1(~3) 

= &i~l(~~l) n r,,-,,-,(x,) (Lemma 4) 

= WC. 

Also, since IV,/? C rr/..,+(,y3). IV, C r,l(~~,) and t/(s, , .Y& : 11 -I- I, 
W, n I+‘& -= $. Hence W, consists of half of the vertices of the graph B, 
and also it consists of half of the vertices of a graph B/I, isomorphic 
to B, with vertices IV? u W&I. 

We now have vertices .vl , .rr/r 6 TI(x,). .yziQ E r,,,,(s,) n T,,(x,/7), 
X,/I E r,,,(x,lz) n r,(.u,) n r4,z(x1) with W, = F,l(x,h) n TQpsl(x3), 
WJ7 ~~ T,l+l(x1/7) n ra+-I(~a). Repeating the process we find that 
W,h, W,/7z are the vertices of a graph B/z” isomorphic to B. Hence we 
obtain in this way a sequence of graphs B. B/I, B/7?-, Bh3.... with BI7’ having 
vertices ; W&-l u W2hi]. Since the graph is finite and since we have 
already found all edges adjacent to W, . W,/7,... the only possibility is that 
there exists vertex 1’ E W&G n W, for somej -.. 0. Suppose 1’ is chosen so 
thatj is as small as possible. We show that in this case W&j -== WI . 

Since W, C I’,,(x,), WC C rslT1(.~l) it can be seen from the intersection 



DISTANCE-TRANSITIVE GRAPH 143 

array that IV& C r,s1+3(~1), W,h2 C ~,YI+3(xJ,..., W.JP~-“l-l C r,z(x,). Thus 
if M’~ E WJP~-sl-l, wz E IV, d(wl , w2) > s2 - s1 . Hencej + 1 > 2(s, -- sl) > 
2(2s,+2) = 2q+2soj>29 + 1. Then since (j - SJ - (q - sl) > q 
we can choose 2, E w&-Sl, 2, E WIhg-SI such that d(Z, , u) = s, 
d(Z, . I:) = q - s1 , d(Z, , Z,) = y. Then W, C T,p,l(Z,), W&j C Tsl(Zl). 
Let 1” E rSl(Z,) n r+,JZ,) so v’ E W&j u W&-l u ... u Wz/Fsl and 
v’ E WI u W, u W,h u ... u W2hQ. Since j > 2q + 1 these sets are dis- 
joint except for vertices of WI r\ Wr,hi. It then follows from 

= w, = W,h . 

Hence we have seen that the graph consists of a “ring” of copies of the 
graph B. We are now ready to obtain a contradiction. Suppose 

(I) b, > k/2 so 6, 2 (k/2) + 1. Let p = 2s, -t 1. The number M 
of vertices at distance <:p from any given vertex is given by 

M < (227 + l>i Wl I = 
(2p + I,(~)“’ 

c1c2 .*a csl . 

Repeated application of k,b, = ki.,,ci,l gives 

k, = 
k(k - 1) b2 *.* b,, 

k 
c,c,c3 ..- c, - 

‘2 

so 

(21, + I)(;)+ k, 

‘Vi’ ” k(k- l)b,b,...b,, 

,< 
(2~ + 1,($)“1-2 k, (;)($) 

2b,b, ..* b,,(k - I)(; + 11 

< 
(2p + l)(+,“-‘k, (;)(;) 

4b,b, ... b,, ((g)” + $ - ;) 

< (@ + ‘1 
4 

k 
P’ 

58zb/I6!2-4 



144 D. H. SMITH 

Combining this with Lemma 1 gives a contradiction so sE < 3.7, f 2. 

(2) Suppose b, = k/2. In this case the intersection array is * 1 k k 
22” 

0 0 oo... (k > 4) 

k k-1 k b- *.* 2 2 

Then j WI j = k/2 and so every vertex of Wz is joined to every vertex 
of WI and of W:,h. Similarly every vertex of W,h and of W, is joined to 
every vertex of W, . Hence if yl, yI E W? , y1 is joined to k vertices of 
r,(y,) contradicting c2 = k/2. Hence b, # k/2. 

(3) If b, < Ii/2 the diameter is at most 3. If d -;- 3 choose w E r,(u). 
u’ E r,(u) such that d(u’, w) = 2. u, u’ are joined by c2 arcs of length 2. 
Hence u’, \v are joined by c2 arcs of length 2 by distance-transitivity. Since 
u’ E rz(u), w E r4(z1), u’, w are joined by at most b, arcs of length 2, so 
b, > c., , which is a contradiction. 

In case of diameter 2 the graph is a complete bipartite graph and in case 
of diameter 3 the graph is the incidence graph of a symmetric block design. 

We have now proved the following theorem: 

THEOREM. Let r be a bipartite distance-transitive graph qf valency 14 
and suppose a bound,for 1 G, 1 exists. Then a boundfor the diameter qf r can 
be found. 
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