JOURNAL OF COMBINATORIAL THEORY (B) 16, 139-144 (1974)

Bounding the Diameter of a Distance-Transitive Graph

D. H. Smith

Department of Mathematics and Computer Science, Glamorgan Polytechnic, Treforest, Wales, U.K.

Communicated by W. T. Tutte

Received April 5, 1973

A graph Γ is distance-transitive if for all vertices u, v, x, y such that d(u, v) = d(x, y) there is an automorphism h of Γ such that uh = x, vh = y. We show how to find a bound for the diameter of a bipartite distance-transitive graph given a bound for the order $|G_{\alpha}|$ of the stabilizer of a vertex.

In [10] Tutte initiated a study of s-transitive graphs by proving that for an s-transitive trivalent graph $s \leq 5$. Sims [4] generalized Tutte's result to find a bound for the order $|G_{\alpha}|$ of the stabilizer of a primitive permutation group with a suborbit of length 3. Sims, Thompson, and Quirin [5, 3] dealt with the case of a suborbit of length 4. Gardiner [2] gives bounds for $|G_{\alpha}|$ for an s-transitive graph of valency p + 1 (p prime).

A natural question is to ask when it is possible to convert a bound for $|G_{\alpha}|$ into a bound for the diameter of a graph. In fact for s-transitive graphs it is possible to show that for a particular valency and value of s there can be infinitely many s-transitive graphs and so no bound for the diameter in terms of $|G_{\alpha}|$ is possible. We work in the more restricted class of distance-transitive graphs. In the case of valency 2 the distancetransitive graphs are just circuits and no bound for the diameter is possible. In the case of valencies 3 and 4, bounds for the diameter were found in [1], [6], [7], and [8] together with a complete list of distance-transitive graphs of valencies 3 and 4.

We consider distance-transitive graphs of valency greater than 4 and assume that a bound for $|G_{\alpha}|$ exists. The purpose of this paper is to show how to find a bound for the diameter of a bipartite distance-transitive graph of valency >4 given a bound for $|G_{\alpha}|$. Notice that if we attempt to extend the result to any distance-transitive graph we can assume that the automorphism group acts primitively on the vertices, since if it acts imprimitively the graph is either bipartite or antipodal [9, Theorem 2]. If it is antipodal but not bipartite the derived graph is primitive and a bound for the diameter in the primitive case would imply a bound for the diameter in the antipodal case [9, Theorem 3].

DEFINITION. Γ is a distance-transitive graph if for all vertices u, v, x, y such that d(u, v) = d(x, y) there is an automorphism h of Γ such that uh = x, vh = y.

DEFINITION. Let Γ be a distance-transitive graph and for any vertex u let $\Gamma_i(u) = \{v \mid d(u,v) = i\}$. We define the intersection array of Γ by

	(*	c_1	C_2	•••	c_i	•••	C_{d-1}	C_d
$P(\Gamma) =$	<u>}</u> 0	a_1	a_2	•••	a_i	•••	a_{d-1}	$ a_d\rangle$
	(k	b_1	b_2	•••	b_i	•••	b_{d-1}	*)

where d is the diameter of the graph, k is the valency and if u and v are vertices such that d(u, v) = i then

$$c_i = |\Gamma_{i-1}(u) \cap \Gamma_1(v)|,$$

$$a_i = |\Gamma_i(u) \cap \Gamma_1(v)|,$$

$$b_i = |\Gamma_{i+1}(u) \cap \Gamma_1(v)|.$$

These numbers are independent of the choices of u and v. Clearly $c_1 = 1, c_i + a_i + b_i = k$. It was shown in [9] that $1 \le c_2 \le c_3 \le \cdots \le c_d$ and $k \ge b_1 \ge b_2 \ge \cdots \ge b_{d-1}$. We write $k_i = |\Gamma_i(u)|$. A simple counting argument shows $k_i b_i = k_{i+1} c_{i+1}$.

Now suppose Γ to be bipartite and the intersection array to be

We show that $s_2 \leq 3s_1 + 2$ from which it follows that the diameter is bounded since $k_{s_2-1} > k_{s_2} > k_{s_2+1} > \cdots$ and the bound on $|G_{\alpha}|$ implies a bound on s_1 . Assume $s_2 > 3s_1 + 2$.

LEMMA 1. If $t = 2s_1 + 1$ and N is the number of vertices at distance $\leq t$ from any chosen vertex u,

$$N > \frac{(2t+1)}{4} k_t.$$

Proof. Application of $k_i b_i = k_{i+1} c_{i+1}$ shows $k_{s_1+1} = k_{s_1+2} = \cdots = k_t$. Then

$$t - s_1 = s_1 + 1 = \frac{t+1}{2} > \frac{2t+1}{4}$$

and

$$egin{aligned} &k_0+k_1+k_2+\cdots+k_t > k_{s_1+1}+k_{s_1+2}+\cdots+k_t \ &> k_t\cdot rac{(2t+1)}{4}\,. \end{aligned}$$

LEMMA 2. Let $2s_1 + 1 \leq q \leq s_2 - 1$ and choose x_1 , x_2 such that $d(x_1, x_2) = q$. Suppose vertex y in $\{\Gamma_i(x_1) \cap \Gamma_{q-i}(x_2)\}$ is joined to $b_i'(y)$ vertices of $\{\Gamma_{i+1}(x_1) \cap \Gamma_{q-i-1}(x_2)\}$ (i = 0, 1, ..., q - 1) and to $c_i'(y)$ vertices of $\{\Gamma_{i-1}(x_1) \cap \Gamma_{q-i+1}(x_2)\}$ (i = 1, 2, ..., q). Then

(1)
$$c_i'(y) = \begin{cases} \frac{k}{2} \ (i = s_1 + 1, ..., q) \\ c_i \ (i = 1, 2, ..., s_1) \end{cases}$$

(2)
$$b_i'(y) = \begin{cases} \frac{k}{2} & (i = 0, 1, ..., q - s_1 - 1) \\ c_{q-i} & (i = q - s_1, ..., q - 1) \end{cases}$$

(3)
$$|\Gamma_i(x_1) \cap \Gamma_{q-i}(x_2)| = \frac{\left(\frac{k}{2}\right)^i}{c_1c_2\cdots c_i} \quad (1 \leq i \leq s_1)$$

$$= \frac{\left(\frac{k}{2}\right)^{s_1}}{c_1 c_2 \cdots c_{s_1}} \quad (s_1 + 1 \leq i \leq q)$$
$$= \frac{\left(\frac{k}{2}\right)^{q-i}}{c_1 c_2 \cdots c_{q-i}} \quad (q - s_1 \leq i \leq q)$$

Proof. (1) y is joined to c_i vertices z of $\Gamma_{i-1}(x_i)$ and $d(x_2, z) \leq d(x_2, y) + 1 \leq q - i + 1$. Since $x_2 \in \Gamma_q(x_1)$ and $z \in \Gamma_{i-1}(x_1)$, $d(x_2, z) \geq q - i + 1$. Hence $z \in \Gamma_{i-1}(x_1) \cap \Gamma_{q-i+1}(x_2)$ and so $c_i' = c_i$ (i = 1, 2, ..., q).

(2) y is joined to c_{q-i} vertices z' of $\Gamma_{q-i-1}(x_2)$ and

$$d(x_1, z') \leqslant d(x_1, y) + d(y, z') \leqslant i + 1.$$

Since $x_1 \in \Gamma_q(x_2), z' \in \Gamma_{q-i-1}(x_2), d(x_1, z') \ge i+1$. Hence $z' \in \Gamma_{i+1}(x_1) \cap \Gamma_{q-i-1}(x_2)$ so $b_i'(y) = c_{q-i}$ (i = 0, 1, ..., q-1).

(3) This follows from repeated application of

$$|\Gamma_i(x_1) \cap \Gamma_{q-i}(x_2)| b_i' = |\Gamma_{i+1}(x_1) \cap \Gamma_{q-i-1}(x_2)| c_{i+1}'.$$

ł

Now let $q = 2s_1 + 1$, choose x_0 and choose $x_1 \in \Gamma_1(x_0)$, $x_2 \in \Gamma_{q+1}(x_0) \cap \Gamma_q(x_1)$, $x_3 \in \Gamma_{q+1}(x_1) \cap \Gamma_1(x_2) \cap \Gamma_{q+2}(x_0)$. Let $W_1 = \Gamma_{s_1}(x_1) \cap \Gamma_{q-s_1}(x_2)$ and $W_2 = \Gamma_{s_1+1}(x_1) \cap \Gamma_{q-s_1-1}(x_2)$. Then since $b'_{s_1} = k/2 = c'_{s_1+1}$, the vertices of $W_1 \cup W_2$ together with the edges joining them form a (not necessarily connected) bipartite regular graph *B* of valency k/2.

Lemma 3. $\Gamma_{s_1}(x_1) \cap \Gamma_{q-s_1}(x_2) = \Gamma_{s_1+1}(x_0) \cap \Gamma_{q-s_1}(x_2).$

Proof. From Lemma 2 $|\Gamma_{s_1}(x_1) \cap \Gamma_{q-s_1}(x_2)| = |\Gamma_{s_1+1}(x_0) \cap \Gamma_{q-s_1}(x_2)|$. Since $\Gamma_{s_1}(x_1) \cap \Gamma_{q-s_1}(x_2) \subset \Gamma_{s_1+1}(x_0) \cap \Gamma_{q-s_1}(x_2)$ the result follows.

Lemma 4.
$$\Gamma_{s_1+1}(x_1) \cap \Gamma_{q-s_1}(x_3) = \Gamma_{s_1+1}(x_1) \cap \Gamma_{q-s_1+1}(x_2).$$

Proof. From Lemma 2

$$|\Gamma_{s_1+1}(x_1) \cap \Gamma_{q-s_1}(x_3)| = |\Gamma_{s_1+1}(x_1) \cap \Gamma_{q-s_1-1}(x_2)|.$$

Since $\Gamma_{s_1+1}(x_1) \cap \Gamma_{q-s_1}(x_3) \supseteq \Gamma_{s_1+1}(x_1) \cap \Gamma_{q-s_1-1}(x_2)$ the result follows.

Now choose an automorphism h such that $x_0h = x_1$, $x_2h = x_3$. Then

$$W_{1}h = (\Gamma_{s_{1}}(x_{1}) \cap \Gamma_{q-s_{1}}(x_{2}))h$$

= $(\Gamma_{s_{1}+1}(x_{0}) \cap \Gamma_{q-s_{1}}(x_{2}))h$ (Lemma 3)
= $\Gamma_{s_{1}+1}(x_{1}) \cap \Gamma_{q-s_{1}}(x_{3})$
= $\Gamma_{s_{1}+1}(x_{1}) \cap \Gamma_{q-s_{1}-1}(x_{2})$ (Lemma 4)
- W_{2} .

Also, since $W_2h \subseteq \Gamma_{q-s_1-1}(x_3)$, $W_1 \subseteq \Gamma_{s_1}(x_1)$ and $d(x_1, x_3) = q + 1$, $W_1 \cap W_2h = \phi$. Hence W_2 consists of half of the vertices of the graph *B*, and also it consists of half of the vertices of a graph *Bh*, isomorphic to *B*, with vertices $W_2 \cup W_2h$.

We now have vertices x_1 , $x_1h \in \Gamma_1(x_1)$, $x_3 \in \Gamma_{q+1}(x_1) \cap \Gamma_q(x_1h)$, $x_3h \in \Gamma_{q+1}(x_1h) \cap \Gamma_1(x_3) \cap \Gamma_{q+2}(x_1)$ with $W_2 = \Gamma_{s_1}(x_1h) \cap \Gamma_{q-s_1}(x_3)$, $W_2h = \Gamma_{s_1+1}(x_1h) \cap \Gamma_{q-s_1-1}(x_3)$. Repeating the process we find that W_2h , W_2h^2 are the vertices of a graph Bh^2 isomorphic to B. Hence we obtain in this way a sequence of graphs B, Bh, Bh^2 , Bh^3 ,... with Bh^i having vertices $\{W_2h^{i-1} \cup W_2h^i\}$. Since the graph is finite and since we have already found all edges adjacent to W_2 , W_2h ,... the only possibility is that there exists vertex $v \in W_2h^j \cap W_1$ for some j > 0. Suppose v is chosen so that j is as small as possible. We show that in this case $W_2h^j = W_1$.

Since $W_1 \subseteq \Gamma_{s_1}(x_1)$, $W_2 \subseteq \Gamma_{s_1+1}(x_1)$ it can be seen from the intersection

142

array that $W_2h \subset \Gamma_{s_1+2}(x_1)$, $W_2h^2 \subset \Gamma_{s_1+3}(x_1)$,..., $W_2h^{s_2-s_1-1} \subset \Gamma_{s_2}(x_1)$. Thus if $w_1 \in W_2h^{s_2-s_1-1}$, $w_2 \in W_1 d(w_1, w_2) \ge s_2 - s_1$. Hence $j + 1 \ge 2(s_2 - s_1) > 2(2s_1 + 2) = 2q + 2$ so j > 2q + 1. Then since $(j - s_1) - (q - s_1) > q$ we can choose $Z_1 \in W_2h^{j-s_1}$, $Z_2 \in W_1h^{q-s_1}$ such that $d(Z_1, v) = s$, $d(Z_2, v) = q - s_1$, $d(Z_1, Z_2) = q$. Then $W_1 \subset \Gamma_{q-s_1}(Z_2)$, $W_2h^j \subset \Gamma_{s_1}(Z_1)$. Let $v' \in \Gamma_{s_1}(Z_1) \cap \Gamma_{q-s_1}(Z_2)$ so $v' \in W_2h^j \cup W_2h^{j-1} \cup \cdots \cup W_2h^{j-2s_1}$ and $v' \in W_1 \cup W_2 \cup W_2h \cup \cdots \cup W_2h^q$. Since j > 2q + 1 these sets are disjoint except for vertices of $W_1 \cap W_2h^j$. It then follows from

$$|\Gamma_{s_1}(Z_1) \cap \Gamma_{q-s_1}(Z_2)| = |W_1| = |W_2h^j|$$
 that $\Gamma_{s_1}(Z_1) \cap \Gamma_{q-s_1}(Z_2)$
= $W_1 = W_2h^j$.

Hence we have seen that the graph consists of a "ring" of copies of the graph B. We are now ready to obtain a contradiction. Suppose

(1) $b_2 > k/2$ so $b_2 \ge (k/2) + 1$. Let $p = 2s_1 + 1$. The number M of vertices at distance $\le p$ from any given vertex is given by

$$M \leq (2p+1) |W_1| = \frac{(2p+1)(\frac{k}{2})^{s_1}}{c_1 c_2 \cdots c_{s_1}}$$

Repeated application of $k_i b_i = k_{i+1} c_{i+1}$ gives

$$k_{p} = \frac{k(k-1) b_{2} \cdots b_{s_{1}}}{c_{1}c_{2}c_{3} \cdots c_{s_{1}} \frac{k}{2}}$$

so

$$M \leqslant \frac{(2p+1)\left(\frac{k}{2}\right)^{s_1+1}k_p}{k(k-1)b_2b_3\cdots b_{s_1}}$$

$$\leqslant \frac{(2p+1)\left(\frac{k}{2}\right)^{s_1-2}k_p\left(\frac{k}{2}\right)\left(\frac{k}{2}\right)}{2b_3b_4\cdots b_{s_1}(k-1)\left(\frac{k}{2}+1\right)}$$

$$\leqslant \frac{(2p+1)\left(\frac{k}{2}\right)^{s_1-2}k_p\left(\frac{k}{2}\right)\left(\frac{k}{2}\right)}{4b_3b_4\cdots b_{s_1}\left(\left(\frac{k}{2}\right)^2+\frac{k}{4}-\frac{1}{2}\right)}$$

$$\leqslant \frac{(2p+1)}{4}k_p.$$

143

Combining this with Lemma 1 gives a contradiction so $s_2 \leq 3s_1 + 2$.

(2) Suppose $b_2 = k/2$. In this case the intersection array is

(*	1	$\frac{k}{2}$	$\frac{k}{2}$	•	•	•	
{0	0	0	0	•	•	.}	(k > 4)
k	k - 1	$\frac{k}{2}$	$\frac{k}{2}$	•	•	.)	

Then $|W_1| = k/2$ and so every vertex of W_2 is joined to every vertex of W_1 and of W_2h . Similarly every vertex of W_2h and of W_1 is joined to every vertex of W_2 . Hence if y_1 , $y_2 \in W_2$, y_1 is joined to k vertices of $\Gamma_1(y_2)$ contradicting $c_2 = k/2$. Hence $b_2 \neq k/2$.

(3) If $b_2 < k/2$ the diameter is at most 3. If d > 3 choose $w \in \Gamma_4(u)$, $u' \in \Gamma_2(u)$ such that d(u', w) = 2. u, u' are joined by c_2 arcs of length 2. Hence u', w are joined by c_2 arcs of length 2 by distance-transitivity. Since $u' \in \Gamma_2(u)$, $w \in \Gamma_4(u)$, u', w are joined by at most b_2 arcs of length 2, so $b_2 \ge c_2$, which is a contradiction.

In case of diameter 2 the graph is a complete bipartite graph and in case of diameter 3 the graph is the incidence graph of a symmetric block design.

We have now proved the following theorem:

THEOREM. Let Γ be a bipartite distance-transitive graph of valency >4 and suppose a bound for $|G_{\alpha}|$ exists. Then a bound for the diameter of Γ can be found.

References

- 1. N. L. BIGGS AND D. H. SMITH, On trivalent graphs, Bull. London Math. Soc. 3 (1971), 155–158.
- 2. A. GARDINER, Arc transitivity in graphs, Quart. J. Math. (Oxford) 24 (1973), 399-407.
- 3. W. L. QUIRIN, Primitive permutation groups with small orbitals, *Math. Z.* **122**(1971), 267–274.
- 4. C. C. SIMS, Graphs and finite permutation groups, Math. Z. 95 (1967), 76-86.
- 5. C. C. SIMS, Graphs and finite permutation groups, II, Math. Z. 103 (1968), 276-281.
- 6. D. H. SMITH, On tetravalent graphs, J. London Math. Soc. (2) 6 (1973), 659-662.
- 7. D. H. SMITH, Distance-transitive graphs of valency four, J. London Math. Soc., to appear.
- 8. D. H. SMITH, On bipartite tetravalent graphs, to appear.
- D. H. SMITH, Primitive and imprimitive graphs, Quart. J. Math. (Oxford) 22 (1971), 551–557.
- W. T. TUTTE, A family of cubical graphs, Proc. Cambridge. Philos. Soc. 43 (1947), 459–474.