Bounding the Diameter of a Distance-Transitive Graph

D. H. Smith
Department of Mathematics and Computer Science, Glamorgan Polytechnic, Treforest, Wales, U.K.

Communicated by W. T. Tutte
Received April 5, 1973

Abstract

A graph Γ is distance-transitive if for all vertices u, v, x, y such that $d(u, v)=$ $d(x, y)$ there is an automorphism h of Γ such that $d h=x, i h=y$. We show how to find a bound for the diameter of a bipartite distance-transitive graph given a bound for the order $\left|G_{\alpha}\right|$ of the stabilizer of a vertex.

In [10] Tutte initiated a study of s-transitive graphs by proving that for an s-transitive trivalent graph $s \leqslant 5$. Sims [4] generalized Tutte's result to find a bound for the order $\left|G_{\alpha}\right|$ of the stabilizer of a primitive permutation group with a suborbit of length 3. Sims, Thompson, and Quirin [5, 3] dealt with the case of a suborbit of length 4 . Gardiner [2] gives bounds for $\left|G_{\alpha}\right|$ for an s-transitive graph of valency $p+1$ (p prime).

A natural question is to ask when it is possible to convert a bound for $\mid G_{\alpha}$ into a bound for the diameter of a graph. In fact for s-transitive graphs it is possible to show that for a particular valency and value of s there can be infinitely many s-transitive graphs and so no bound for the diameter in terms of $\left|G_{\alpha}\right|$ is possible. We work in the more restricted class of distance-transitive graphs. In the case of valency 2 the distancetransitive graphs are just circuits and no bound for the diametcr is possible. In the case of valencies 3 and 4 , bounds for the diameter were found in [1], [6], [7], and [8] together with a complete list of distance-transitive graphs of valencies 3 and 4.

We consider distance-transitive graphs of valency greater than 4 and assume that a bound for $G_{\alpha} \mid$ exists. The purpose of this paper is to show how to find a bound for the diameter of a bipartite distance-transitive graph of valency >4 given a bound for $\left|G_{\alpha}\right|$. Notice that if we attempt to extend the result to any distance-transitive graph we can assume that the automorphism group acts primitively on the vertices, since if it acts imprimitively the graph is either bipartite or antipodal [9, Theorem 2]. If it is antipodal but not bipartite the derived graph is primitive and a bound
for the diameter in the primitive case would imply a bound for the diameter in the antipodal case [9, Theorem 3].

Definition. $\quad \Gamma$ is a distance-transitive graph if for all vertices u, r, x, y such that $d(u, v)=d(x, y)$ there is an automorphism h of Γ such that $u h=x, v h=y$.

Definition. Let Γ be a distance-transitive graph and for any vertex u let $\Gamma_{i}(u)=\{v \mid d(u, v)=i\}$. We define the intersection array of Γ by

$$
P(T)=\left\{\begin{array}{llllllll}
* & c_{1} & c_{2} & \cdots & c_{i} & \cdots & c_{d-1} & c_{d} \\
0 & a_{1} & a_{2} & \cdots & a_{i} & \cdots & a_{d-1} & a_{d} \\
k & b_{1} & b_{2} & \cdots & b_{i} & \cdots & b_{d-1} & *
\end{array}\right\}
$$

where d is the diameter of the graph, k is the valency and if u and v are vertices such that $d(u, v)=i$ then

$$
\begin{aligned}
c_{i} & =\mid \Gamma_{i-1}(u) \cap \Gamma_{1}(v) \\
a_{i} & =\mid \Gamma_{i}(u) \cap \Gamma_{1}(v) \\
b_{i} & =\left|\Gamma_{i+1}(u) \cap \Gamma_{1}(v)\right|
\end{aligned}
$$

These numbers are independent of the choices of u and v. Clearly $c_{1}=1, c_{i}+a_{i}+b_{i}=k$. It was shown in [9] that $1 \leqslant c_{2} \leqslant c_{3} \leqslant \cdots \leqslant c_{d}$ and $k \geqslant b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{d-1}$. We write $k_{i}=\left|\Gamma_{i}(u)\right|$. A simple counting argument shows $k_{i} b_{i}=k_{i+1} c_{i+1}$.

Now suppose Γ to be bipartite and the intersection array to be

$$
\left\{\begin{array}{llllllllllllll}
* & 1 & c_{2} & c_{3} & \cdot & \cdot & c_{s_{1}} & \frac{k}{2} & \frac{k}{2} & \cdot & \frac{k}{2} & c_{s_{2}} & \cdot & \cdot \\
0 & 0 & 0 & 0 & \cdot & \cdot & 0 & 0 & 0 & \cdot & 0 & 0 & \cdot & \cdot \\
k & k-1 & b_{2} & b_{3} & \cdot & \cdot & b_{s_{1}} & \frac{k}{2} & \frac{k}{2} & \cdot & \frac{k}{2} & b_{s_{2}} & \cdot & *
\end{array}\right\} \begin{aligned}
& \left(c_{s_{2}}=\frac{k}{2}\right) \\
& (k>4)
\end{aligned}
$$

We show that $s_{2} \leqslant 3 s_{1}-2$ from which it follows that the diameter is bounded since $k_{s_{3}-1}>k_{s_{2}}>k_{s_{2}+1}>\cdots$ and the bound on $\left|G_{\alpha}\right|$ implies a bound on s_{1}. Assume $s_{2}>3 s_{1}+2$.

Lemma 1. If $t=2 s_{1}+1$ and N is the number of vertices at distance $\leqslant t$ from any chosen vertex u,

$$
N>\frac{(2 t+1)}{4} k_{t}
$$

Proof. Application of $k_{i} b_{i}=k_{i+1} c_{i+1}$ shows $k_{s_{1}+1}=k_{s_{1}+2}=\cdots=k_{t}$. Then

$$
t-s_{1}=s_{1}+1=\frac{t+1}{2}>\frac{2 t+1}{4}
$$

and

$$
\begin{aligned}
k_{0}+k_{1}+k_{2}+\cdots+k_{t} & >k_{s_{1}+1}+k_{s_{1}+2}+\cdots+k_{t} \\
& >k_{t} \cdot \frac{(2 t+1)}{4} .
\end{aligned}
$$

Lemma 2. Let $2 s_{1}+1 \leqslant q \leqslant s_{2}-1$ and choose x_{1}, x_{2} such that $d\left(x_{1}, x_{2}\right)=q$. Suppose vertex y in $\left\{\Gamma_{i}\left(x_{1}\right) \cap \Gamma_{q-i}\left(x_{2}\right)\right\}$ is joined to $b_{i}{ }^{\prime}(y)$ vertices of $\left\{\Gamma_{i+1}\left(x_{1}\right) \cap \Gamma_{q-i-1}\left(x_{2}\right)\right\} \quad(i=0,1, \ldots, q-1)$ and to $c_{i}^{\prime}(y)$ vertices of $\left\{\Gamma_{i-1}\left(x_{1}\right) \cap \Gamma_{q-i+1}\left(x_{2}\right)\right\}(i=1,2, \ldots, q)$. Then
(1) $\quad c_{i}{ }^{\prime}(y)=\left\{\begin{array}{l}\frac{k}{2}\left(i=s_{1}+1, \ldots, q\right) \\ c_{i}\left(i=1,2, \ldots, s_{1}\right)\end{array}\right.$
(2) $\quad b_{i}{ }^{\prime}(y)=\left\{\begin{array}{l}\frac{k}{2}\left(i=0,1, \ldots, q-s_{1}-1\right) \\ c_{q-i}\left(i=q-s_{1}, \ldots, q-1\right)\end{array}\right.$
(3)

$$
\begin{aligned}
\left|\Gamma_{i}\left(x_{1}\right) \cap \Gamma_{q-i}\left(x_{2}\right)\right| & =\frac{\left(\frac{k}{2}\right)^{i}}{c_{1} c_{2} \cdots c_{i}}\left(1 \leqslant i \leqslant s_{1}\right) \\
& =\frac{\left(\frac{k}{2}\right)^{s_{1}}}{c_{1} c_{2} \cdots c_{s_{1}}}\left(s_{1}+1 \leqslant i \leqslant q\right) \\
& =\frac{\left(\frac{k}{2}\right)^{q-i}}{c_{1} c_{2} \cdots c_{q-i}}\left(q-s_{1} \leqslant i \leqslant q\right)
\end{aligned}
$$

Proof. (1) y is joined to c_{i} vertices z of $\Gamma_{i-1}\left(x_{i}\right)$ and $d\left(x_{2}, z\right) \leqslant$ $d\left(x_{2}, y\right)+1 \leqslant q-i+1$. Since $x_{2} \in \Gamma_{q}\left(x_{1}\right)$ and $z \in \Gamma_{i-1}\left(x_{1}\right), d\left(x_{2}, z\right) \geqslant$ $q-i+1$. Hence $z \in \Gamma_{i-1}\left(x_{1}\right) \cap \Gamma_{a-i+1}\left(x_{2}\right)$ and so $c_{i}^{\prime}=c_{i}(i=1,2, \ldots, q)$.
(2) y is joined to c_{q-i} vertices z^{\prime} of $\Gamma_{q-i-1}\left(x_{2}\right)$ and

$$
d\left(x_{1}, z^{\prime}\right) \leqslant d\left(x_{1}, y\right)+d\left(y, z^{\prime}\right) \leqslant i+1 .
$$

Since $x_{1} \in \Gamma_{Q}\left(x_{2}\right), z^{\prime} \in \Gamma_{q-i-1}\left(x_{2}\right), d\left(x_{1}, z^{\prime}\right) \geqslant i+1$. Hence $z^{\prime} \in \Gamma_{i+1}\left(x_{1}\right) \cap$ $\Gamma_{q-i-1}\left(x_{2}\right)$ so $b_{i}^{\prime}(y)=c_{a-i}(i=0,1, \ldots, q-1)$.
(3) This follows from repeated application of

$$
\left|\Gamma_{i}\left(x_{1}\right) \cap \Gamma_{q-i}\left(x_{2}\right)\right| b_{i}^{\prime}=\left|\Gamma_{i-1}\left(x_{1}\right) \cap \Gamma_{q-i-1}\left(x_{2}\right)\right| c_{i \mid 1}^{\prime} .
$$

Now let $q=2 s_{1} \div 1$, choose x_{0} and choose $x_{1} \in \Gamma_{1}\left(x_{0}\right), x_{2} \in \Gamma_{0 ; 1}\left(x_{4}\right) \cap$ $\Gamma_{q}\left(x_{1}\right), x_{3} \in \Gamma_{q+1}\left(x_{1}\right) \cap \Gamma_{1}\left(x_{2}\right) \cap \Gamma_{0+2}\left(x_{0}\right)$. Let $W_{1}=\Gamma_{s_{1}}\left(x_{1}\right) \cap \Gamma_{4-s_{1}}\left(x_{2}\right)$ and $W_{2} \cdots \Gamma_{v_{1}-1}\left(x_{1}\right) \cap \Gamma_{4-s_{1}-1}\left(x_{3}\right)$. Then since $b_{s_{1}}^{\prime}=k / 2=c_{s_{1}+1}^{\prime}$, the vertices of $W_{1} \cup W_{2}$ together with the edges joining them form a (not necessarily connected) bipartite regular graph B of valency $k / 2$.

Lemma 3. $\quad \Gamma_{s_{1}}\left(x_{1}\right) \cap \Gamma_{q-s_{1}}\left(x_{2}\right)=\Gamma_{v_{1}+1}\left(x_{0}\right) \cap \Gamma_{q-s_{1}}\left(x_{2}\right)$.
Proof, From Lemma $2\left|\Gamma_{s_{1}}\left(x_{1}\right) \cap \Gamma_{q-s_{1}}\left(x_{2}\right)=\left|\Gamma_{n_{1}+1}\left(x_{0}\right) \cap \Gamma_{q-s_{1}}\left(x_{2}\right)\right|\right.$. since $\Gamma_{s_{1}}\left(x_{1}\right) \cap \Gamma_{a-s_{1}}\left(x_{2}\right) \subset \Gamma_{s_{1}+1}\left(x_{0}\right) \cap \Gamma_{a-s_{1}}\left(x_{3}\right)$ the result follows.

Lemma 4. $\quad \Gamma_{s_{1}+1}\left(x_{1}\right) \cap \Gamma_{q-s_{1}}\left(x_{3}\right)=\Gamma_{s_{1}-1}\left(x_{1}\right) \cap \Gamma_{q-s_{1}-1}\left(x_{2}\right)$.
Proof: From Lemma 2

$$
\Gamma_{s_{1}+1}\left(x_{1}\right) \cap \Gamma_{q-s_{1}}\left(x_{3}\right)=\Gamma_{s_{1}+1}\left(x_{1}\right) \cap \Gamma_{q-s_{1}-1}\left(x_{2}\right) \mid
$$

Since $\Gamma_{s_{1}+1}\left(x_{1}\right) \cap \Gamma_{4-s_{1}}\left(x_{3}\right) \supset \Gamma_{v_{1}-1}\left(x_{1}\right) \cap \Gamma_{t-s_{1}-1}\left(x_{2}\right)$ the result follows.
Now choose an automorphism h such that $x_{0} h: x_{1}, x_{2} h=x_{3}$. Then

$$
\begin{aligned}
W_{1} h & =\left(\Gamma_{s_{1}}\left(x_{1}\right) \cap \Gamma_{q-s_{1}}\left(x_{2}\right)\right) h \\
& =\left(\Gamma_{s_{1}+1}\left(x_{0}\right) \cap \Gamma_{q-s_{1}}\left(x_{2}\right)\right) h \quad \text { (Lemma 3) } \\
& =I_{s_{1}+1}^{\prime}\left(x_{1}\right) \cap \Gamma_{\gamma-s_{1}}^{(}\left(x_{3}\right) \\
& =\Gamma_{s_{1}+1}\left(x_{1}\right) \cap \Gamma_{t-s_{1}-1}\left(x_{2}\right) \quad(\text { Lemma 4) } \\
& -W_{2} .
\end{aligned}
$$

Also, since $W_{0} h \subset \Gamma_{9-N_{1}-1}\left(x_{3}\right), \quad W_{1} \subset \Gamma_{s_{1}}\left(x_{1}\right)$ and $d\left(x_{1}, x_{3}\right)=4+1$, $W_{1} \cap W_{2} h=\phi$. Hence W_{2} consists of half of the vertices of the graph B, and also it consists of half of the vertices of a graph $B h$, isomorphic to B, with vertices $W_{2} \cup W_{2} h$.

We now have vertices $x_{1}, \quad x_{1} h \in \Gamma_{1}\left(x_{1}\right), \quad x_{3} \in \Gamma_{4+1}\left(x_{1}\right) \cap \Gamma_{9}\left(x_{1} h\right)$, $x_{3} h \in \Gamma_{a+1}\left(x_{1} h\right) \cap \Gamma_{1}\left(x_{3}\right) \cap \Gamma_{a+2}\left(x_{1}\right)$ with $W_{2}=\Gamma_{s_{1}}\left(x_{1} h\right) \cap \Gamma_{q-x_{1}}\left(x_{3}\right)$, $W_{2} h:-\Gamma_{s_{1}+1}\left(x_{1} h\right) \cap \Gamma_{q-s_{1}-1}\left(x_{3}\right)$. Repeating the process we find that $W_{2} h, W_{2} h^{2}$ are the vertices of a graph $B h^{2}$ isomorphic to B. Hence we obtain in this way a sequence of graphs $B, B h, B h^{2}, B h^{3} \ldots$ with $B h^{i}$ having vertices $\left\{W_{2} / r^{i-1} \cup W_{2} h^{i}\right\}$. Since the graph is finite and since we have already found all edges adjacent to $W_{2}, W_{2} h, \ldots$ the only possibility is that there exists vertex $v \in W_{2} h^{i} \cap W_{1}$ for some $j>0$. Suppose v is chosen so that j is as small as possible. We show that in this case $W_{2} h^{j}=W_{1}$.

Since $W_{1} \subset \Gamma_{s_{1}}\left(x_{1}\right), W_{2} \subset \Gamma_{s_{1}+1}\left(x_{1}\right)$ it can be seen from the intersection
array that $W_{2} h \subset \Gamma_{s_{1}+2}\left(x_{1}\right), W_{2} h^{2} \subset \Gamma_{s_{1}+3}\left(x_{1}\right), \ldots, W_{2} h^{s_{2}-s_{1}-1} \subset \Gamma_{s_{2}}\left(x_{1}\right)$. Thus if $w_{1} \in W_{2} h^{s_{2}-s_{1}-1}, w_{2} \in W_{1} d\left(w_{1}, w_{2}\right) \geqslant s_{2}-s_{1}$. Hence $j+1 \geqslant 2\left(s_{2}-s_{1}\right)>$ $2\left(2 s_{1}+2\right)=2 q+2$ so $j>2 q+1$. Then since $\left(j-s_{1}\right)-\left(q-s_{1}\right)>q$ we can choose $Z_{1} \in W_{o} h^{j-s_{1}}, Z_{2} \in W_{1} h^{q-s_{1}}$ such that $d\left(Z_{1}, v\right)=s$, $d\left(Z_{2}, v\right)=q-s_{1}, d\left(Z_{1}, Z_{2}\right)=q$. Then $W_{1} \subset \Gamma_{a-s_{1}}\left(Z_{2}\right), W_{2} h^{j} \subset \Gamma_{s_{1}}\left(Z_{1}\right)$. Let $v^{\prime} \in \Gamma_{s_{1}}\left(Z_{1}\right) \cap \Gamma_{q-s_{1}}\left(Z_{2}\right)$ so $v^{\prime} \in W_{2} h^{j} \cup W_{2} h^{j-1} \cup \cdots \cup W_{2} h^{j-2 s_{1}}$ and $v^{\prime} \subset W_{1} \cup W_{2} \cup W_{2} h \cup \cdots \cup W_{2} h^{2}$. Since $j>2 q+1$ these sets are disjoint except for vertices of $W_{1} \cap W_{2} h^{j}$. It then follows from

$$
\begin{aligned}
& \Gamma_{s_{1}}\left(Z_{1}\right) \cap \Gamma_{q-s_{1}}\left(Z_{2}\right)\left|=\left|W_{1}\right|=\left|W_{2} h^{j}\right| \text { that } \Gamma_{s_{1}}\left(Z_{1}\right) \cap \Gamma_{q-s_{1}}\left(Z_{2}\right)\right. \\
& \quad=W_{1}=W_{2} h^{j}
\end{aligned}
$$

Hence we have seen that the graph consists of a "ring" of copies of the graph B. We are now ready to obtain a contradiction. Suppose
(1) $b_{2}>k / 2$ so $b_{2} \geqslant(k / 2)+1$. Let $p=2 s_{1}+1$. The number M of vertices at distance $\leqslant p$ from any given vertex is given by

$$
M \leqslant(2 p+1)\left|W_{1}\right|=\frac{(2 p+1)\left(\frac{k}{2}\right)^{s_{1}}}{c_{1} c_{2} \cdots c_{s_{1}}}
$$

Repeated application of $k_{i} b_{i}=k_{i+1} c_{i+1}$ gives

$$
k_{p}=\frac{k(k-1) b_{2} \cdots b_{s_{1}}}{c_{1} c_{2} c_{3} \cdots c_{s_{1}} \frac{k}{2}}
$$

so

$$
\begin{aligned}
M & \leqslant \frac{(2 p+1)\left(\frac{k}{2}\right)^{s_{1}+1} k_{p}}{k(k-1) b_{2} b_{3} \cdots b_{s_{1}}} \\
& \leqslant \frac{(2 p+1)\left(\frac{k}{2}\right)^{s_{1}-2} k_{p}\left(\frac{k}{2}\right)\left(\frac{k}{2}\right)}{2 b_{3} b_{4} \cdots b_{s_{1}}(k-1)\left(\frac{k}{2}+1\right)} \\
& \leqslant \frac{(2 p+1)\left(\frac{k}{2}\right)^{s_{1}-2} k_{p}\left(\frac{k}{2}\right)\left(\frac{k}{2}\right)}{4 b_{3} b_{4} \cdots b_{s_{1}}\left(\left(\frac{k}{2}\right)^{2}+\frac{k}{4}-\frac{1}{2}\right)} \\
& \leqslant \frac{(2 p+1)}{4} k_{p} .
\end{aligned}
$$

Combining this with Lemma 1 gives a contradiction so $s_{2} \leqslant 3 s_{1}+2$.
(2) Suppose $b_{2}=k / 2$. In this case the intersection array is

$$
\left\{\begin{array}{ccccccc}
* & 1 & \frac{k}{2} & \frac{k}{2} & . & . & . \\
0 & 0 & 0 & 0 & . & . & \cdot \\
k & k-1 & \frac{k}{2} & \frac{k}{2} & \cdot & . & .
\end{array}\right\}(k>4)
$$

Then $\left|W_{1}\right|=k / 2$ and so every vertex of W_{2} is joined to every vertex of W_{1} and of $W_{2} h$. Similarly every vertex of $W_{2} h$ and of W_{1} is joined to every vertex of W_{2}. Hence if $y_{1}, y_{2} \in W_{2}, y_{1}$ is joined to k vertices of $\Gamma_{1}\left(y_{2}\right)$ contradicting $c_{2}=k / 2$. Hence $b_{2} \neq k / 2$.
(3) If $b_{2}<k / 2$ the diameter is at most 3 . If $d>3$ choose $w \in \Gamma_{4}(u)$, $u^{\prime} \in \Gamma_{2}(u)$ such that $d\left(u^{\prime}, w\right)=2 . u, u^{\prime}$ are joined by c_{2} arcs of length 2 . Hence u^{\prime}, w are joined by c_{2} arcs of length 2 by distance-transitivity. Since $u^{\prime} \in \Gamma_{2}(u), w \in \Gamma_{4}(u), u^{\prime}, w$ are joined by at most b_{2} arcs of length 2 , so $b_{2} \geqslant c_{2}$, which is a contradiction.

In case of diameter 2 the graph is a complete bipartite graph and in case of diameter 3 the graph is the incidence graph of a symmetric block design.

We have now proved the following theorem:
Theorem. Let Γ be a bipartite distance-transitive graph of valency >4 and suppose a bound for $\left|G_{\alpha}\right|$ exists. Then a bound for the diameter of Γ can be found.

References

1. N. L. BiggS and D. H. Smith, On trivalent graphs, Bull. London Math. Soc. 3 (1971), 155-158.
2. A. Gardiner, Arc transitivity in graphs, Quart. J. Math. (Oxford) 24 (1973), 399-407.
3. W. L. Quirin, Primitive permutation groups with small orbitals, Math. Z. 122(1971), 267-274.
4. C. C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967), 76-86.
5. C. C. Sims, Graphs and finite permutation groups, II, Math. Z. 103 (1968), 276-281.
6. D. H. Smitiı, On tetravalent graphs, J. London Math. Sac. (2) 6 (1973), $659-662$.
7. D. H. Smith, Distance-transitive graphs of valency four, J. London Math. Soc., to appear.
8. D. H. Smith, On bipartite tetravalent graphs, to appear.
9. D. H. Smith, Primitive and imprimitive graphs, Quart. J. Math. (Oxford) 22 (1971), 551-557.
10. W. T. Turte, A family of cubical graphs, Proc. Cambridge. Philos. Soc. 43 (1947), 459-474.
