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We investigate local tomography in the case of limited-angle data. The main
theoretical tool is analysis of the singularities of pseudodifferential operators
(PDO) acting on piecewise-smooth functions. Amplitudes of the PDO we consider
are allowed to be nonsmooth in the dual variable ¢ across the boundary of a
wedge. Results of numerical simulation of limited-angle local tomography confirm
basic theoretical conclusions.  © 1997 Academic Press

1. INTRODUCTION

Let ®(x, @, p),x € R", @ € §" !, p € R, be a smooth, strictly positive
function. Here S"~ ' is the unit sphere in R". The generalized Radon
transform R® is defined as follows [14],

(RVf)(a,p) =FP(a,p) = qu)(x’ a,p)f(x)8(p — a-x) dx,
(1.1)

where & is the delta-function. If the weight function @ identically equals
1, we obtain the classical Radon transform f = Rf:

fla.p) = [ f(x)8(p = a-x) dx. (12)

Not many properties of the generalized Radon transform are known. In
particular, no inversion formula is known for R(®,
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Let n, the dimension of the space R”, be even. Define the local
tomography function [9, 4]

(-
2m)" .[S,. 1®(x, a, -x) dp”

f‘“b’(a p) de.
(1.3)

Using (1.1) and the oscillatory integral 8(¢) = (1/27)[* e'* dA, one
shows that f{®) = Bf, where B is an elliptic pseudodifferential operator
(PDO) with the principal symbol |£] [9, 4]. In the case of the classical
Radon transform, one has f{*’ = F “(|¢|Ff),® = 1, where F and F !
denote the direct and inverse Fourier transforms, respectively.

To compute f(* by formula (1.3) one has to know f(®(a, p) for all
a € §"~ 1. However, the full angle data are not always available, and one
frequently has the limited-angle data f'®(a, p), a € Q, p € R. Here Q is
an open set, Q ¢ §" 1 In [9] it was proposed to compute

R L PR
/SX)( ) = (277.)” [Qq)(x,a,a'X) ap"

() =

f®Ca,p)|  da, (14)

p=a-x
where y € C;(Q) is a smooth cut-off function. It was shown in [9] that
fA(? = B, f, where B, is a PDO of order one. Moreover, the “visible”
singularities of f: WF(f) N (R" X Q) can be located using (1.4) in a
relatively stable way (see [10] for the earlier work on the subject). Here
and everywhere below, for convenience of notation, we consider wave
fronts as subsets of the sphere bundle R” x §" 1.

Let us consider the practically important case n = 2. In this paper we
drop the assumption y € C3(Q) and suppose only that y € C*(Q}) and
x(®) =0 if ® ¢ Q. Therefore, y can be nonsmooth across J{), the
boundary of Q. The main reason for dropping the assumption y € C3(Q)
is as follows: if x vanishes smoothly near 7(, the operator B, suppresses
the singularities of f located close to w(WF(f) N (R? X 9Q)) (see Sec-
tion 4). Here 7 :R? x S — R? is the natural projection.

If x is not smooth, the relation f{}’ = B, f still holds, but now B, is
not a PDO in the classical sense, because its amplitude is not smooth in
the dual variable &. In the paper we study the singularities of B, f. We
show that the singular support of fA(‘I’) consists of two parts: VISIb|e
singularities S, == w(WF(f) N (R* X Q)), and “extra” singularities S,,
which are caused by the nonsmoothness of the corresponding symbol. We
study the behavior of f(‘l’) in a neighborhood of S, and S, and show that

(1) Knowing fA‘“ in a neighborhood of §,, one can recover values
of jumps of f across S, (recall that S, < singsupp f); and
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(2) Extra singularities S,, which cause artifacts in the tomographic
reconstruction, are weaker than visible singularities S,. This means that
even if one uses a sharp cut-off function y: x(®) =0 if ® ¢ Q and
x(®) =1if ® € Q, the resulting artifacts will not be strong. Moreover,
the faster y decays to zero near the boundary of (), the weaker extra
singularities S, are.

Since we derive an asymptotics in smoothness of fA(? in a neighborhood
of S,, the results obtained in the paper can also be used for finding an
optimal cut-off function y, not necessarily y € C5(Q), such that the
largest possible part of the visible singularities is recovered with minimal
distortions.

Note that the main point of the paper is theoretical investigation of the
singularities of fA“)’;) in the case when y is not C* smooth. Therefore, the
numerical experiments presented in Section 4 are intended primarily for
illustrating theoretical results obtained in the paper. The problem of
finding an optimal cut-off function y and testing the algorithm on compli-
cated phantoms will be the subject of future investigations.

Local tomography for the classical Radon transform was proposed in
[17, 16]. Investigation of some properties of the local tomography function
and results of testing local tomography on real data were presented in [2].
Further investigation of local tomography using the classical theory of
PDO was published in [11-13]. Local tomography for the generalized
Radon transform was developed in [9, 4]. In [9] it was shown that locations
of the visible singularities can be obtained using (1.4) in a relatively stable
way. Alternative approaches to locating visible singularities were described
in [10, 5]. A study of local tomography was the subject of the monograph
[14]. First results describing the behavior of Bf near visible singularities
S, and extra singularities S, were obtained in [14, Chap. 5]. In this paper
we investigate this subject in more detail. The present derivation is more
simple, and the results we obtain are more general. New results include

(1) Theorem 1, which describes the wave front of Bf in the case of
an arbitrary compactly supported distribution f € E'(R?);

(2) Consideration of the case when the radius of curvature of S =
singsupp f is infinite (see Remark 3 in Section 3);

(3) Consideration of cut-off functions of different degrees of
smoothness (parameter m in Theorem 2);

(4) More detailed numerical experiments, which illustrate the need
for choosing an optimal cut-off function y € C*(Q), which is not necessar-
ily in C3(Q); and

(5) A brief discussion of limited-angle local tomography for the
generalized Radon transform.
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The paper is organized as follows. In Section 2 we describe the wave
front of Bf in the case when the amplitude of B is honsmooth for finitely
many directions &/]¢| and f € E'(R?) is a compactly supported distribu-
tion. In Section 3 we obtain the asymptotics in smoothness of Bf near
visible singularities S, and extra singularities S,. Finally, application of the
obtained results to local tomography is described in Section 4.

2. WAVE FRONT OF Bf

Consider the operator B,

Bf(x) =

B(x,y, £)f(y)e ' Vdydé,  feE(R?),

(2.1)

and suppose that for some J > 1 and a finite partition of the unit circle
= UJ_,16,,6,,,],6,,, = 6, + 27, the amplitude B can be represented
as

(2m)°

B(x,y, &) = L x,(&1E)B,(x,y, &), B, € S7,(R?),

(®) - 1L, 0€[6,6,.4], 22)
Xi 0, 0¢[6,6..]. '

For convenience of the reader we recall that B; € S7, is equivalent to the
two conditions

Bi(x,y, &) € C*(R®), (2.3a)

and for any multi-indices «, = (a,,, a,,), u = x, y, £, and any compact set
G € R* aconstant C, ,, . exists for which

aax &C{ &af
Ixx Jy g

('x y é) a a),agG(l + |§|)77‘D‘§‘,

£e R?, (x,y) €G, lagl = oy + ag,. (2.3b)

In Eg. (2.2) and everywhere below, the variables ®, ®+, and 6 are
related as follows: ® = (cos ,sin §) and ®* = (—sin 0,cos 6). There-
fore, ©;,j = 1,2,...,J, is the set of directions across which the ampli-
tude B(x,y,t®) is nonsmooth. For a set 4, U.(A) c R? denotes an -
neighborhood of A. In particular, U.(x,) is a ball with radius € > 0 and
center x,. If A is a subset of S*, then we assume that U.(A4) c S*.
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THEOREM 1. Consider the operator B defined by (2.1) and (2.2). For a
compactly supported distribution f € E'(R?), define

Ap=WF(f) 0 (R* X U/_,0)). (2.4)

Then Bf € D'(R?) and, moreover, (x, ®) & WF( Bf) if

D (x,0) & WF(f); and
(2) either ® & U]_, 0, or (x —y)- @ # 0 forall (y,0) € A,.

In particular, x & singsupp Bf if

(1) x & singsupp f; and
() (x—y)-0®+0 forall (y,0) € A4,.

Proof. Fix ¢ € C5(R?). Clearly, the function W(y, ¢) = [zB(x,y,
E)o(x)e ¢ ¥ dx is C* in y. Using (2.2), (2.3), and integrating by parts, we
see that ¥(y, ¢) and its derivatives with respect to y decay rapidly (that is,
faster than any power of |£]) as |€] — <. Since the distribution f is of
finite order, the function W,(&) == [ W(y, £)f(y)e's” dy is well-defined
and decays rapidly. In view of the relation ( Bf, ¢) = 27) ?[r.W,(£) d¢,
we conclude that Bf is a continuous linear functional on C(R?).

Denote S = singsupp f. Fix two functions n, € C5(R?) and u, € C*(SY)
such that n(x) = 1if x € U(S), n(x) =0if x & U, (S), and pn(0) =1
if @ € U(U]_,0), n(0)=0if 6 ¢ U, (U]_,0,). We have

(2m)" Bf(x) = [ [ B(x.y. £)(1 = n(0))f(y)e € dydé

[ )@= (€N By )n(0) ()

Xe 1EG-y) dydé¢

+ [l €NEDB(x,y, E)ny) ()
()

£/1€1e ULUIZ, 0D ULS
Xe’if'(x’”dydg
= I(x) + I,(x) + I(x). (2.5)

Since (1 — n)f € C;(R?), one easily verifies using properties (2.3) that

fRzBf(x,y, )L - n(¥)f(y)e*dy =O0(I¢177),

&l > »,1<j<J, (26)
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where O(|£|™”) denotes a C* function of x, which decays with all
derivatives with respect to x faster than any negative power of |£| as
|&] — o0, Using (2.6), we immediately get the inclusion I,(x) € C*(R?).
The function B(x,y, &£X1 — u(&/1£D) is a conventional amplitude.
Using the pseudolocal property of PDO [15, pp. 15 and 224], we conclude

singsupp I, € singsupp n, f = singsupp f, (2.7a)
WF(1,) < WF(n.f) = WF(). (2.7b)

Let us rewrite the integral I; in polar coordinates,
Lx)=[ [ 1(®)B(x,y,10) () f(y)
0 “U(UI_,0p7ULS)

Xe O dy dotdt. (2.8)

Using properties (2.3) and Theorem 1.1 in [15, p. 6], we see that the
oscillatory integrals

fo Bi(x,y,t0)e "Ptdt = W(x,y,0,p), 1<j<lI,

define C*” functions of x, y, 6, and p, provided that p # 0. This together
with (2.2) and (2.8) implies that

singsupp I, C {x e R?:(x—y) -0 =0forsomey e U(S),
€ U(U]_19)), (y,0) € WF(f)}. (29)

Using that e > 0 can be taken arbitrarily small and taking into account
(2.5), (2.7a), and (2.9), we have proved the assertion about the singular
support of Bf.

Take an arbitrary ¢ € C5(R?) and fix any 0, & Uleﬁ)j. Suppose € > 0

is such that O, & IJE(U{:1®j). Here the overbar denotes closure. Using
(2.8), we have

Lio(s0,) = /Rzla(x) @(x)eim".x dx

=/ [ R(®)¥(y, 10,50, — 10)n.(y)f(y)
0 YUUI_,0p7TULS)

X e dydo tdt, (2.10)
where

W(y,10,50, — 10) = [ B(x,y,10)¢(x)e O dx. (2.11)
R
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Integrating by parts with respect to x in (2.11) and using properties (2.3)
and the fact that ®, is bounded away from IJG(Uj:1®j), we see that for
every N > 0 there is a constant c,(y) such that

(1+1)”
"

—_— 0 St s,t>0.
[max(s, 1)

[W(y. 10,50, — t0)] < cy(y)

Clearly, ¥(y,10,s0, — t0®) is a C* function of y. Therefore, the expres-
sion

V(10,50 = 10) = [ W(y,10,50, = 1O)n(y)e"® f(y) dy

€

is well-defined and we have for some ¢; > 0 (which depends on N)

(1+10)"™

"

—_— 0 e St s, t>0,
[max(s, 1)

|V,(10,50, —t0)| <c,

where M is the order of the distribution f. Together with (2.10) this
implies

(1+0)"™M

Feso)| e [ [w(®) 5 do tdr

(UL, 0) [max(s, )]

= (L4
< CZ'/(‘) Wtdt.

Since N > 0 can be taken arbitrarily large, this shows that E&(s@o) decays
rapidly as s — . Taking into account that e > 0 was arbitrarily small and
using (2.7b), we have finished the proof. |

3. ANALYSIS OF THE BEHAVIOR OF Bf IN A
NEIGHBORHOOD OF singsupp Bf

Consider now the case when f can be represented in the form
f(x) = Lea(x) x(x), ¢ € CY(R?), (3.1)
k

where the sum is finite and the yx, are the characteristic functions of
bounded domains D, with piecewise smooth boundaries JD,. Clearly,
S = singsupp f = U, dD,. According to Theorem 1,

singsupp Bf € S U (U; L),
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where each L; is tangent to S and perpendicular to some vector from the
set Uf=1®]—. Since B is linear, we can assume without loss of generality

that each L; is tangent to S at exactly one point.
Fixany x, € S, x, € U, L;. Let € > 0 be sufficiently small. We have

Bf = B[(1 - x)f] + B[ xf], (32)

where y € C3(U, (x,)) is any function such that xy = 1 on U.(x,). Accord-
ing to Theorem 1, B[(1 — y)f] C“(q(xo)). According to our choice of
xo €S, WF(xf) N (R*X Uj_,0,)=(. Let §>0 be so small that
WF( xf) c R? x (§* \ UB(U 10)). Take any n € C*(S,) so that 7(®)
=0if © ¢ U;(U/_,0) and n(@)— 1if ® € U ,(U/_,0)). As in the
proof of Theorem 1,

.[szRzn( §/|§|)B(x,y, f)X(y)f(Y)e_ié.(x_y) dyd¢ e Cm(Rz)' (3.3)

From (3.2) and (3.3) we conclude that

C(Ux0))

Bf(x) = (2 X —n(&/1€ED)B(x,y. £)x(¥) f(y)
Xe '8N dydé. (3.4)
CHULx0))
The notation = means that the equality holds up to a C*(U.(x,))

function. According to our assumptions, (1 — n)B € C*(R? X R? X (R*\
0)). Therefore the right-hand side of (3.4) defines a conventional PDO, and
we can use the results obtained in [4] to find the asymptotics in smooth-
ness of Bf in a neighborhood of x,.

Let U be an open set such that S N U # J. We say that S is smooth
inside U if SNU={xeU:g(x)=0} for some g€ C*(U) such that
IVg| + 0 on § N U. Here U denotes the closure of U. For a point x, € S,
n(x,) denotes a unit vector perpendicular to S at x,, and D(x,) denotes a
jump of f across S at x, in the direction n(x,): D(xy) = lim,_, o[ f(x, +
sn(xy)) — f(x, — sn(x,y))]. The following proposition is a particular case of
Theorem 2.1 in [4].

PRoPOSITION 1. Suppose that f satisfies (3.1). Consider a classical PDO
B € CLY ((R") with amplitude B(x, y, ).
B(x,y,t0) ~ Y b (x,y,0)t" % t > oo,
k>0
by(x,y,0) € C*(R" X R" X §""1). (3.5)
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Suppose that B(x,y, &) is even in & B(x,y, &) =B(x,y, —&). Fix a
sufficiently small open set U, S N U # . Suppose that S is smooth inside U
and by(xy, x4, 1(xy)) # 0 forx, € S N U. Then one has

By (x) - oot 1) |m{/0

W(x,t)e™ dt},
x=xy+hn(xy) €U, x,€SNU, (3.6)

where ¥(x,t) € C*(U X [0, ). Moreover, ¥ admits the asymptotic expan-
sion

di.(x
W)~ D) + £ D

), t >, d, € C(U), (3.7)

which can be differentiated with respect to x € U and t.

Remark 1. The coefficients d, can, in principle, be expressed in terms
of f and B. However, the resulting formulas are rather cumbersome and,
therefore, are not given here.

The following result is an immediate corollary to Theorem 3.1 in [4].
PROPOSITION 2. Put y = 1 in (3.5). Then one has
bo(xq, X9, 1(x0)) D(xq)
T h
x=xy+hn(xy) €U, h— 0.

Bf(x) = + O(InlAl),

Now let L be any of the lines L; which are in singsupp Bf. Let y, be
the point of contact of L and S. Fix a sufficiently small neighborhood U of
yo. Since the operator B is linear, we may assume without loss of
generality that supp f € U and, according to Theorem 1, singsupp Bf C
singsupp f U L. The main reason for truncating supp f is that this allows
us to get rid of all the lines L; that are perpendicular to ®, and tangent to
S at other points y; # y,. In view of Theorem 1, the behavior of Bf(x)
as x —> S\ y, is given by Proposition 1. Therefore, it remains to find the
behavior of Bf(x) as x — x, for all x, € L. Thus, in what follows, we
always assume that x is in a sufficiently small neighborhood U of x,.

Suppose that S N U is smooth and strictly convex. Consider the integral

1
(2m)°

B.f(x) = [ Bx,y,10)f(y)e @ =) dydo v,
0 70, R?

(3.8)
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where B admits the following asymptotic expansion,

B(x,y,t0) ~ (60— 6))" ¥ b,(x,y,0)t"F, t — o, (3.9a)

k=0
b, € C*(R* X R* X [6,, 60, + €]),  k=0,1,2,...; bo(x,y,0y) #0;
(3.9b)
1)
ka(x,y,®)|9=90+e=0, k,j=0,1,2,..., (3.9c)

and expansion (3.9a) can be differentiated with respect to x, y, 6, and .
The integer parameter m used in (3.9a) regulates the degree of smooth-
ness of the amplitude B(x, y,t®) across 6 = 6, (cf. the discussion of the
degree of smoothness of the cut-off function y given in the Introduction).

Introduce a local coordinate system with the origin at y,, the x,-axis of
which points in the direction ©,. Let y, = g(y,) be the local equation of S
in a neighborhood of y = y,. Clearly, 6, = 0 in the new coordinate system.
First, consider the integral

I, 0.0) = [ [ B(x.(31,2), 1) f( 1, 3,) "0 1000 dy dy,.

Since f(y,, y,) is discontinuous at y, = g(y,), substituting (3.9a) into the
last equation and integrating by parts with respect to y,, we find
Wi(x,y,,0,1) = / B(x,(¥1,72),10)f(yy, yy) e r800eos0 gy |

(3.10a)

T(x,0,0) = [ Wi(x,y,, 0, 1) E00 00550 gy, (3.10b)

where W, admits the asymptotic expansion

Vi(x,y,,0,1) ~ Z ‘l’l,k(an’zle)ﬂ_l_k1 [ — >,
k>0

P, €CT(UXRX[6,,60,+€]), (3.11a)

Py o(X,y,,0) =i(0— Oo)mbo(xl (8(¥2),2), B)D(g(YZ)J’z)/COS 6.
(3.11b)

Here D(g(y,), y,) is the jump of f across S at the point y = (g(y,), y,).



170 A. I. KATSEVICH

Since f is compactly supported, Eq. (3.10a) implies that the integration in
(3.10b) is over a compact set. Substituting (3.10b) into (3.8), we find

1 X € P
(277)2f0 fofw‘l’l(x,yz,e,z)

X @i1(8(y2) —x1)C08 6+ (y,—x)sin 0) dy, do tdr. (3.12)

B.f(x) =

Now consider the integral

€ .
5y = [T, 0,655 do.

a(x,y,,0) = (g(y;) —x1)cos 6 + (y, — x,)sin 6. (3.13)

Let x, # 0 be fixed. Without loss of generality we may assume that € > 0
is so small that da/d6 # 0if 0 < 0 < e. Indeed, if € > 0 is not sufficiently
small, we can represent B, as

1 =25 .
B.f(x) = (277)2/0 /0 /Rznﬁ(®)B(x,y,t@)f(y)ef”@)‘(x*“dydOtdt
1 ® e
+ (277)2[0 [ ] (= m(©))B(x.y.10)f(y)

Xe 1O dyde tdt
By f(x) + By f(x),

ns € C*([0, €]), 7,(0) = {é:

where & > 0 is sufficiently small. Since B, is a conventional PDO, B, f is
C” in a neighborhood of x,. The operators B, and B, are of the same
form. This shows that we can take € > 0 in (3.8) as small as we like.
Integrating by parts in (3.13) and using (3.11b), we get

Jo(x,y,,1) = \Pz(x’)’bt)eit(g(yz)ixl)! (3.14)

where ¥, admits the asymptotic expansion

W,o(x,y,,t) ~ Z l!fz,k(xvY2)ty727M7k’ L= % 4, € C*(U X R),
k>0

(3.15)
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and
" tmbyy (%, ,,0)
(y2 _xz)MJrl
bo(x'(g(J’z)’YZ)’O)D(g(YZ)IYZ)

= —i"m! — . (3.16)
(¥, —x3)

From (3.12)—(3.14) it follows that we have to study the integral

¥;0(%,¥,)

Jo(x,1) = f_ W,(x, y,,1)e" VD7) gy, . (3.17)

Suppose g"(0) # 0, that is, the radius of curvature of S at y, is finite. The
case g”(0) = 0 is briefly discussed in Remark 3 below. Then the stationary
phase method yields (see [18, pp. 76-81] and Theorem 14.5.2 in [14, p.
421))

Jy(x, 1) = Wy(x,t)e "™, (3.18)
where W, admits the asymptotic expansion

Wy(x,1) ~ 2 g (X)) 257K, 1=, 4y, € CY(U), (3.19)
k=0

and

05
Pa,0(¥) = ( ) /D' Oy, o(x,0). (3.20)

g"(0)]

Suppose now that x, = 0. In this case, the stationary point of the phase
a(x,y,, 0) (cf. (3.13)) is given by (y,, #) = (0,0). Consider the following
double integral (cf. (3.12))

Jo(x,t) = j;ej_wlPl(x, Vi, 0,1)e" 2 dy, dg. (3.21)

The stationary point is located on the boundary of the domain of integra-
tion. Using expansion (3.11a) and applying the stationary phase method
term by term (see Eq. (8.4.46) in [1, p. 348] and [18, pp. 440-442, 470, 471)),
we get

Jo(x, 1) =V, (xy,0)e” ™, x=(x,,0), (3.22)
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where ¥, admits the asymptotic expansion

Wy(xq,0) ~ X iy () 0772782, t >, 4y, €C7((—6,8)),
k>0

(3.23)

where 6 > 0 is sufficiently small. In particular, if m = 0, we have

m1,0((#1,0),0,0)

¢4,0(x1) = m

If m > 1, the formula for ¢, , is very cumbersome and we do not give it
here.

Let R(y,) be the radius of curvature of S at y,. Returning to the
original coordinate system and using (3.11b), (3.16), we can rewrite Eqgs.
(3.18)—(3.20) and (3.22)—(3.24) as

(3.24)

Jo(x,1) = Wy(x,t)e ™, x=xy+hOy, x, €L, x4 #*yq,

Wa(x, 1) ~ X g (X)07727 7K oo,
k>0

o) = (=) "ty R Cygy /2000 BIDU) g o)
’ [(xo _YO)'®0L]m+1

and
Jo(x,t) =W, (h,t)e ™, x=y,+ hO,,

W, (h,t) ~ ) ¢4,k(h)ty_2_(k/2)l t— o,
k>0

_imbo(x, yo, 01) D(yo) _
y,0(h) = 1+ (h/R(y,)) , "o (320

In (3.25) and (3.26), the signs in + and + are chosen according to where
the center of curvature of § at y, € S is located. More precisely, if O is
the center of curvature, then the top signs are chosen if (y, — O) - ©, > 0,
and the bottom signs are chosen if (y, — O) - ®, < 0.

Therefore, we have proved the following result.

THEOREM 2. Suppose that f satisfies (3.1). Consider the distribution B f
defined by (3.8) and (3.9). Fix the line L perpendicularto ©, and tangent to S
at y,. Let R(y,) be the radius of curvature of S at y,, 0 < R(y,) < o, and
D(y,) # 0 be the value of the jump of f across S at y, in the direction @,
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D(yo) =lim,_, o+[f(yy + sOy) — f(yy — sO)]. Fix any x, € L and let U be
a sufficiently small neighborhood of x,. If x, # y,, we have

R(y,) bo(x,9,0,)D(y,)
2m)*[(x = y0) - 0 ]""

B.f(x) = (—i)"mle™ 7/

X [Wy(x,)e dr,
0
x=xy+0h U, (3.27)

where ¥, € C*(U X [0, %)) admits the asymptotic expansion

e 0) ~ (1 T () e CFU),
k>1

(3.28)

which can be differentiated with respect to x € U and t.
If xo =y, and m = 0 in (3.92), we have

bo(x,¥9,00)D(y,
A

B.f(x) = )ifom\lfz(h,t)e‘”h dt,

x=y,+ 0O,h €U, (3.29)

where ¥, € C*((— 8§, ) X [0,%)) and & > 0 is sufficiently small. Moreover,
W, admits the asymptotic expansion

W,(h,t) ~t" 1+ ) apzyk(h)t‘(k“)), t — o,
k>1

r, € C°((=6,9)), (3:30)

which can be differentiated with respect to h € (=8, 8) and t.
Let O be the center of curvature of S aty,. Top signs + and + are chosen
if (yo — 0)- 0O, > 0, and bottom signs are chosen if (y, — O)- 0, < 0.

Since the function (1 + (h/R(y,)))~'/? is smooth for small 4 and
equals 1 when i = 0, we absorbed this function by the integral on the
right-hand side of (3.29), and this did not change the leading term in the
expansion of ¥,.
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Remark 2. Similarly to the proof of Theorem 2, one can show that in
the case of the operator given by the formula

1
(2m)°

Bf(0) = 5 [ [ [ Bluyt0)f (e e dvdorar

where B € C*(R? X R? x R?) satisfies the conditions

B(x,y,t0) ~ (60— 6))" ¥ b,(x,y,0)t"7F, t - », (3.31a)

k>0
by C*(R2X R2X [0, — €,6,]), k=0,1,2,...,bo(x,y,6,) #0,
(3.31b)
o7
—50 (8 0 lomg- =0, kj=0,1,2,...,  (33L)

the analog of Eq. (3.27) becomes

R(yo) bo(x,y9,00)D(y,)
(2m) (%o = y0) -0 ]" "

xf W, (x,t)e " dr,
0

B f(x) = —(—i)"mle ¥/

x=x,+0,heU, (3.32)

where ¥, admits asymptotic expansion (3.28), and Egs. (3.29), (3.30)
remain unchanged.

Remark 3. Using Eg. (3.17), we see that the stationary phase method
allows one to find the behavior of B,f and B_f in a neighborhood of L
in the case when the function y, = g(y,) has a degenerate critical point at
y, =0

g(0) =g'(0) = --- =gl"b =0, gD #0,1>2.

Suppose, for example, that [ is even. Then we get

(=i)"m! bo(x,yo,00)D(¥,) zr(1/1)( I )1/1
@7’ [(x-y)-0¢]"" 1 g0

B.f(x) =

X g™ /20sgn gm(o)f \Ifl(x, t)ef"’h dt,
0

xX=x,+0,heU, | =2k,
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where I" is the gamma-function, and the leading term in the expansion of
W, is given by

Wy(x,t) ~const Y 1-@/Dmmi o0,

Remark 4. From Eq. (3.24) it follows that (3.29) holds even if g"(0) = 0,
that is, R(y,) = o.

4. APPLICATION TO LOCAL TOMOGRAPHY

Let x(O®) be a piecewise-smooth even function: y(®) = y(—0). Define
the family of local tomography functions f, [11, 12],

1 o ~
fa(x) = —— X(@)fpp(e,-x) de. (4.1)

Here f = d%/dp? f Suppose the Radon transform f(G p) is given for
0e [01, .land p € R. Since fis even, f(6 + m, p) = f(6, —p), we may
assume that £ is known for 6 € [0,,0,], 6[0,+ 7,6, + w],and p € R.
Denote Q:={@ S':0<[6,,0,] or 6 [0, + 7, 60, + w]}. Putting
x(®) =0,0 ¢ Q, in (4.1), we obtain the local tomography function which
uses only the known data. From (4.1) one easily gets using the Fourier slice
theorem,

fay = F Y (x(E/EDIEIF(E)),  f=Ff, (42)

where F and F ! denote the direct and inverse Fourier transforms,
respectively. From Eq. (4.2) we see that the theory developed in Sections 2
and 3 is directly applicable to the analysis of the singularities of f, . Let
us suppose for simplicity that x(®) = 1, ® € Q. Note that in this case
x (@) is discontinuous. As usual, n(x,) denotes a unit vector perpendicular
to § at x, € §. Theorem 1 implies that the singular support of f, consists
of

(1) Visible singularities: corner points of S and points x, € S, where
S is smooth and n(x,) € Q; and

(2)  Extra singularities: the lines which are tangent to S and which are
perpendicular to vectors ©; or 0,, ®, = (cos 6,,sin 6,), k = 1,2

Pick any x, such that n(x,) is strictly inside Q. Using Proposition 2 (see
Section 2), we get

D(x,) 1

fay(xo + hn(x,)) ~ h™Y,  h—>0x €S8. (4.3)
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The last equation shows that knowing f, , in a neighborhood of the visible
singularities S,, one can recover values of jumps of f across S,. This can
be done using, for example, the algorithm in [4].

Now pick any line L = {x:® -x = p}, where ® = ©, or ® = 0,, which
is tangent to S. Take, for example, ® = 0, and let y, be the point of
contact. Fix any x, € L, x, # y,. Clearly, we may always assume that
0, = n(y,). Equations (3.27), (3.28) yield with b,(x,y,0) = x(®) = 1,
0O, m=0and y=1,

\/R(yo)D(YO)
(277)15(3% = o) 1" (¥o)

Xfw\Ifl(x, t)e ' dt
0

VR()’O) (_D(YO))

(27) (%9 = ¥o) - (—n* (¥p))

xfx\lfl(x, t)ei dr, (4.9)
0

fAX(xo + hn()’o)) ~e /Y

+ eim/®

where n* (y,) is the unit vector perpendicular to n(y,) such that n* (y,)
is obtained by rotating n(y,) 90 degrees counterclockwise. The first and
the second terms on the right-hand side of (4.4) correspond to the
contributions from the discontinuities of x(®) at ® = n(y,) and © =
—n(y,), respectively. We made the following changes in the second term:

(1) & was replaced by —#h, so that the point under consideration
x, + hn(y,) does not change when we replace n(y,) by —n(y,);

(2) We took into account that D(y,) and n* (y,) change signs when
we replace n(y,) by —n(y,).

After simple transformations, we get using Eg. (21) in [3, p. 360]
280D D00 e asgin
(2m) " (xo = Yo) *1* (o) 0
_ ZMD(YO)
- (277)1'5()‘0 —¥o) 1" (o)
XRe[e™/DiT(1/2)(e "/ Dp /2 — e/ Dp=1/2))

V2R(y,) D(y,) L1/

- 2m(xo = Yo) "nt (o)

fAX(xO + h”()’o)) ~

. h—0. (45
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Here h,=0if h <0, h,=h if h>0,and h_=h — h . From (4.5) we
see that the leading singular term of f, (x)as x = x, € L, x, # y,, is on
the same side of L as S in a neighborhood of y,. In (4.5) we took into
account the contribution of the leading term of ¥, as r — «. The second
term of the expansion of ¥, is O(t ) as ¢t — =« (see (3.28)). Since the
function [fO(¢t 1®)e """ dt is continuous at & = 0, together with (4.5) this
implies that there exists the limit of f, (x) as x approaches x, € L,
Xy # o, from the side of L opposite to the location of S in a neighbor-
hood of y,.

Equations (4.3) and (4.5) are illustrated by Fig. 1, where the behavior of
fr, In @ neighborhood of singsupp f,, is sketched. The shaded disc
represents the phantom, which is more dense than the surrounding

missing data

+7 (¢4
% 2 a>b
gy
- =
\ I
X bl
- L

missing data

Fic. 1. Schematic behavior of the local tomography function f, , in a neighborhood of
singsupp f , in the case of the limited-angle data. €2, angular interval of available data; S,
pieces of the boundary of the phantom which are in singsupp f,,; S;,, pieces of the
boundary of the phantom which are not in singsupp f} , . One has singsupp f, , = §; U L, U
L,UL;UL,.
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Fic. 2. Density plot of the local tomography function computed from the limited angle
data. The phantom consists of one disk.

medium. According to (4.3), f, (x) ~consth™! as h = dist(x, S,) = O,
where S, denotes the visible singularities. Now let us consider, for exam-
ple, the line L, (see Fig. 1). The function f, s continuous as x
approaches L, from the side opposite to S. In Fig. 1 this is denoted by
cont. Equation (4.5) implies that f, (x) is proportional to h™ %5 as h =
dist(x, L,) — 0 if x approaches L, from the side of S. Moreover, since the
disc is more dense than the surrounding medium, the coefficient of
proportionality is positive to the right of the point of contact y,, and it is
negative to the left of y,. In Fig. 1 this is denoted by +47%° and —h ™,
respectively.

In Fig. 2 we see the density plot of fAX(x) computed for the same
phantom as in Fig. 1. The intervals of missing data are [80°, 100°] and [260°,
280°]. The vertical cross-section of Fig. 2 along the black line is shown in
Fig. 3. Let us note that Figs. 1 and 3 are in complete agreement.

Figure 4 illustrates the influence of the degree of smoothness of the
cut-off function y on the limited-angle local tomographic reconstructions.
We took the function y of the form,

1—(6/80)) 6| < 80°, .
x(0) = | (1= (6/8097) el X (0 + 180°) = x (),
0, 80° < |0]| < 90°,
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Fic. 3. Vertical cross-section of the local tomography function.

and computed f,, for different values of m. The top panel in Fig. 4
corresponds to m = 1, the center panel corresponds to m =5, and the
bottom panel to m = 10. As we can see, the extra singularities L; are
much less visible in the top panel of Fig. 4 than those in Fig. 2. However, a
part of the visible singularities of f, , located close to the points of contact
of L; and § are suppressed a little. As m increases, we do not see a
significant improvement in suppressing the artifacts caused by the non-
smoothness of y at # = 4+80°. On the other hand, the visible singularities
became more strongly distorted. This shows that when choosing an optimal
X, there should be a trade-off between suppressing artifacts caused by the
nonsmoothness of the cut-off function y and preserving visible singulari-
ties.

Consider now the case of the generalized Radon transform. Choosing
the function y(0) as above, one can easily show that

20 = L/MEQ/RZX(f/'fl)B(x,y, E)f(y)e ¢ dydé, (4.6)

where f(?) is defined by (1.4) (with n = 2) and B can be represented as a
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Fic. 4. Density plots of f, , in the case of the cut-off function x(6) = (1 — (6,/80°)'°)".
From top to bottom, m = 1,5, 10.
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sum

B(x,y, &) =&+ by(x,y, &/1E]) + by(x,y, £/1EDIEIT,
by, b, € C*(R* X R X ). (4.7)

Formulas (4.6) and (4.7) imply that Egs. (4.3)-(4.5) remain valid if we

re

place f,, by f{. Therefore, the behavior of f{?’ in a neighborhood of

singsupp £}’ is the same as the one depicted in Fig. 1.
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