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1. Introduction and notations

The theory of complex linear differential equations has been developed since 1960s. Many authors have investigated the
complex linear differential equations

f (k) + Ak−1(z) f (k−1) + · · · + A0(z) f = 0 (1.1)

and

f (k) + Ak−1(z) f (k−1) + · · · + A0(z) f = F (z) (1.2)

and achieved many valuable results when the coefficients A0(z), . . . , Ak−1(z), F (z) (k � 2) in (1.1) or (1.2) are entire func-
tions of finite order (e.g. [1,4,7,13,14,18,20]). L.G. Bernal, L. Kinnunen and J. Tu investigated the growth of solutions of (1.1)
and (1.2) individually when the coefficients in (1.1) or (1.2) are entire functions of finite iterated order (see [2,17,19]). The
properties of the solutions of (1.1) and (1.2) also have been studied by T.-B. Cao and J. Heittokangas when the coefficients
are analytic functions in the unit disc (see [3,11,12]). In [15,16], O.P. Juneja and his co-authors investigated some properties
of entire functions of [p,q]-order, and obtain some results. In this paper, our aim is to make use of the concepts of entire
functions of [p,q]-order to investigate the complex linear differential equations (1.1) and (1.2).

We assume that readers are familiar with the fundamental results and the standard notations of the Nevanlinna’s theory
of meromorphic functions and the theory of complex linear differential equations (see [8,18]). First, we will introduce some
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notations. Let us define inductively, for r ∈ [0,∞), exp1 r = er and expi+1 r = exp(expi r), i ∈ N. For all sufficiently large r,
we define log1 r = log r and logi+1 r = log(logi r), i ∈ N. We also denote exp0 r = r = log0 r and exp−1 r = log1 r. Moreover,
we denote the linear measure and the logarithmic measure of a set E ⊂ (1,∞) by mE = ∫

E dt and ml E = ∫
E

dt
t , and the

upper logarithmic density of E ⊂ (1,∞) or (0,1) is defined respectively by

dens E = lim
r→∞

m(E ∩ [1, r])
log r

or dens E = lim
r→1−

m(E ∩ [0, r])
− log(1 − r)

.

We use p and M to denote a positive integer and a positive constant, not necessarily the same at each occurrence, and D
denotes the unit disc {z: |z| � 1}. Second, we will recall some notations about finite iterated order of entire functions or
analytic function in D (see [3,12,17,19]).

Definition 1.1. (See [17,19].) The iterated p-order of an entire function f (z) is defined by

σp( f ) = lim
r→∞

logp T (r, f )

log r
= lim

r→∞
logp+1 M(r, f )

log r
.

Definition 1.2. (See [17,19].) The finiteness degree of the iterated order of an entire function f (z) is defined by

i( f ) =

⎧⎪⎨
⎪⎩

0 for f polynomial,

min{ j ∈ N: σ j( f ) < ∞} for f transcendental for which some j ∈ N with σ j( f ) < ∞ exists,

∞ for f with σ j( f ) = ∞ for all j ∈ N.

Definition 1.3. (See [17,19].) The iterated exponent of convergence of zero sequence of an entire function f (z) is defined by

λp( f ) = lim
r→∞

logp n(r, 1
f )

log r
= lim

r→∞
logp N(r, 1

f )

log r
.

Remark 1.1. The iterated exponent of convergence of distinct zero sequence of f (z) (i.e., λp( f )) and the finiteness degree of
the iterated exponent of convergence f (z) (i.e., iλ( f )) can be defined similarly (see [19]).

Definition 1.4. (See [12].) The iterated p-order of an analytic function f (z) in D is defined by

σM,p( f ) = lim
r→1−

logp+1 M(r, f )

log 1
1−r

.

Definition 1.5. (See [12].) The iterated p-order of a meromorphic function f (z) in D is defined by

σp( f ) = lim
r→1−

logp T (r, f )

log 1
1−r

.

Remark 1.2. If f (z) is an analytic function in D , it is well know that σ1( f ) � σM,1( f ) � σ1( f ) + 1 and σM,p( f ) = σp( f )
(p � 2) (see [12]).

Definition 1.6. (See [3].) The iterated exponent of convergence of zero sequence of an analytic function f (z) in D is defined
by

λp( f ) = lim
r→1−

logp n(r, 1
f )

− log(1 − r)
= lim

r→1−

logp N(r, 1
f )

− log(1 − r)
.

Finally, we will introduce the definitions of entire functions of [p,q]-order, where p,q are positive integers satisfying
p � q � 1. In order to keep accordance with Definition 1.1, we give a minor modification to the original definition of [p,q]-
order (see [15,16]).

Definition 1.7. If f (z) is a transcendental entire function, the [p,q]-order of f (z) is defined by

σ[p,q] = σ[p,q]( f ) = lim
r→∞

logp T (r, f )

logq r
= lim

r→∞
logp+1 M(r, f )

logq r
.

It is easy to see that 0 � σ[p,q]( f ) � ∞. If f (z) is a polynomial, then σ[p,q]( f ) = 0 for any p � q � 1. By Definition 1.7, we
have that σ[1,1] = σ1( f ) = σ( f ), σ[2,1] = σ2( f ) and σ[p+1,1] = σp+1( f ).
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Remark 1.3. If f (z) is an entire function satisfying 0 < σ[p,q] < ∞, then

(i) σ[p−n,q] = ∞ (n < p), σ[p,q−n] = 0 (n < q), σ[p+n,q+n] = 1 (n < p) for n = 1,2, . . . .
(ii) If [p′,q′] is any pair of integers satisfying q′ = p′ + q − p and p′ < p, then σ[p′,q′] = 0 if 0 < σ[p,q] < 1 and σ[p′,q′] = ∞

if 1 < σ[p,q] < ∞.

(iii) σ[p′,q′] = ∞ for q′ − p′ > q − p and σ[p′,q′] = 0 for q′ − p′ < q − p.

Definition 1.8. A transcendental entire function f (z) is said to have index-pair [p,q], if 0 < σ[p,q] < ∞ and σ[p−1,q−1] is not
a nonzero finite number.

Remark 1.4. If σ[p,p] is never greater than 1 and σ[p′,p′] = 1 for some integer p′ � 1, then the index-pair of f (z) is defined
as [m,m], where m = inf{p′: σ[p′,p′] = 1}. If σ[p,q] is never nonzero finite for any positive integer pair [p,q] and σ[p′′,1] = 0
for some integer p′′ � 1, then the index-pair of f (z) is defined as [n,1], where n = inf{p′′: σ[p′′,1] = 0}. If σ[p,q] is always
infinite, then the index-pair of f (z) is defined to be [∞,∞].

If f (z) has the index-pair [p,q] then σ = σ[p,q] is called its [p,q]-order. For example, set f1(z) = ez , f2(z) = eez
, by

Remark 1.4, we have that the index-pair of f1(z) is [1,1] and the index-pair of f2(z) is [2,1].

Remark 1.5. Let f1(z) be an entire function of [p,q]-order σ1 and let f2(z) be an entire function of [p′,q′]-order σ2 and let
p � p′ . The following results about their comparative growth can be easily deduced:

(i) If p′ − p > q′ − q, then the growth of f1 is slower than the growth of f2.
(ii) If p′ − p < q′ − q, then f1 grows faster than f2.

(iii) If p′ − p = q′ − q > 0, then the growth of f1 is slower than the growth of f2 if σ2 � 1 while the growth of f1 is faster
than the growth of f2 if σ2 < 1.

(iv) Let p′ − p = q′ −q = 0, then f1 and f2 are of the same index-pair [p,q]. If σ1 > σ2, then f1 grows faster than f2, and if
σ1 < σ2, then f1 grows slower than f2. If σ1 = σ2, Definition 1.7 does not give any precise estimate about the relative
growth of f1 and f2.

Definition 1.9. The [p,q]-type of an entire function f (z) of [p,q]-order σ (0 < σ < ∞) is defined by

τ[p,q] = τ[p,q]( f ) = lim
r→∞

logp M(r, f )

(logq−1 r)σ
.

Definition 1.10. The [p,q] exponent of convergence of the zero sequence of f (z) is defined by

λ[p,q] = λ[p,q]( f ) = lim
r→∞

logp n(r, 1
f )

logq r
= lim

r→∞
logp N(r, 1

f )

logq r
.

Definition 1.11. The [p,q] exponent of convergence of the distinct zero sequence of f (z) is defined by

λ[p,q] = λ[p,q]( f ) = lim
r→∞

logp n(r, 1
f )

logq r
= lim

r→∞
logp N(r, 1

f )

logq r
.

2. Main results

In this section, first we list some previous results that we are going to improve.

Theorem A. (See [17].) Let A j(z) ( j = 0, . . . ,k − 1) be entire functions satisfying max{σp(A j) | j = 0, . . . ,k − 1} � σ3 (p ∈ N), then
all solutions f (z) of (1.1) satisfy σp+1( f ) � σ3 .

Theorem B. (See [4].) Let A j(z) ( j = 1, . . . ,k − 1) be entire functions such that max{σ(A j) | j = 1, . . . ,k − 1} < σ(A0) < ∞, then
every nontrivial solution f (z) of (1.1) satisfies σ2( f ) = σ(A0).

Theorem C. (See [20].) Let A j(z) ( j = 0, . . . ,k − 1) be entire functions satisfying max{σ(A j) | j = 1, . . . ,k − 1} � σ(A0) and
τ (A j) < τ(A0) if σ(A j) = σ(A0) > 0, then every nontrivial solution f (z) of (1.1) satisfies σ2( f ) = σ(A0).

Theorem D. (See [17].) If 0 < p < ∞ and s = max{ j | i(a j) = p, j = 1, . . . ,k −1}, then (1.1) possesses at most s linearly independent
solutions f (z) with i( f ) � p.
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Theorem E. (See [12].) Let p ∈ N and σ � 0. All solutions of (1.1), where the coefficients A0(z), . . . , Ak−1(z) are analytic in D, satisfy
σM,p+1( f ) � σ if and only if σM,p(A j) � σ for all j = 0, . . . ,k − 1. Moreover, if s ∈ {0, . . . ,k − 1} is the largest index for which
σM,p(As) = max0� j�k−1{σM,p(A j)}, then there are at least k − s linearly independent solutions of (1.1) such that σM,p+1( f ) =
σM,p(As).

Theorem F. (See [17].) Let A0(z), . . . , Ak−1(z), F (z) be entire functions satisfying p = max{i(A j) | j = 0, . . . ,k − 1}, q = i(F ). If
0 < q < p + 1 < ∞, i(A0) = p, and i(A j) < p or σp(A j) < σp(A0) for all j = 1, . . . ,k − 1, then all solutions of (1.2) satisfy

i( f ) = iλ( f ) = p + 1, λp+1( f ) = λp+1( f ) = σp+1( f ) = σp(A0)

with at most one exceptional solution.

Theorem G. (See [17].) Let A0(z), . . . , Ak−1(z), F (z) be entire functions satisfying p = max{i(A j) | j = 0, . . . ,k − 1}, q = i(F ). If
p + 1 = q < ∞ and σq(F ) > max{σp(A j) | j = 0, . . . ,k − 1}, then

i( f ) = iλ( f ) = q, λq( f ) = σq( f ) = σq(F )

hold for all solutions of (1.2) with at most one exceptional solution.

Theorem H. (See [3].) Let p ∈ N, H be a set of complex numbers satisfying dens{|z|: z ∈ H ⊆ D} > 0, and let A0, A1, . . . , Ak−1 be
analytic functions in D such that max{σM,p(A j) | j = 1,2, . . . ,k − 1} � σM,p(A0) = σ < ∞ and for some constants 0 � β < α, we
have, for all ε > 0 sufficiently small

∣∣A0(z)
∣∣ � expp

{
α

(
1

1 − |z|
)σ−ε}

and

∣∣A j(z)
∣∣ � expp

{
β

(
1

1 − |z|
)σ−ε}

( j = 1,2, . . . ,k − 1)

as |z| → 1− for z ∈ H. Let F 
≡ 0 be analytic in D.

(i) If σp+1(F ) > σM,p(A0), then all solutions f (z) of (1.2) satisfy σp+1( f ) = σp+1(F ).
(ii) If σp+1(F ) < σM,p(A0), then all solutions f (z) of (1.2) satisfy σp+1( f ) = λp+1( f ) = λp+1( f ) = σM,p(A0) � σp(A0), with at

most one exception solution f0 satisfying σp+1( f0) < σM,p(A0).

In the following, we give our main results of this paper.

Theorem 2.1. Let A j(z) ( j = 0,1, . . . ,k − 1) be entire functions satisfying max{σ[p,q](A j) | j 
= s} < σ[p,q](As) < ∞, then every
solution f (z) of (1.1) satisfies σ[p+1,q]( f ) � σ[p,q](As). Furthermore, at least one solution of (1.1) satisfies σ[p+1,q]( f ) = σ[p,q](As).

Theorem 2.2. Let A j(z) ( j = 0,1, . . . ,k − 1) be entire functions satisfying max{σ[p,q](A j) | j 
= 0} < σ[p,q](A0) < ∞, then every
nontrivial solution f (z) of (1.1) satisfies σ[p+1,q]( f ) = σ[p,q](A0).

Theorem 2.3. Let A j(z) ( j = 0,1, . . . ,k − 1) be entire functions satisfying max{σ[p,q](A j) | j = 1, . . . ,k − 1} � σ[p,q](A0) < ∞
and max{τ[p,q](A j) | σ[p,q](A j) = σ[p,q](A0) > 0} < τ[p,q](A0), then every nontrivial solution f (z) of (1.1) satisfies σ[p+1,q]( f ) =
σ[p,q](A0).

Theorem 2.4. Let A0, A1, . . . , Ak−1 be entire functions, and let s ∈ (0, . . . ,k − 1) be the largest index for which σ[p,q](As) =
max0� j�k−1{σ[p,q](A j)}, then there are at least k − s linearly independent solutions f (z) of (1.1) such that σ[p+1,q]( f ) = σ[p,q](As).
Moreover, all solutions of (1.1) satisfy σ[p+1,q]( f ) � σ4 if and only if σ[p,q](A j) � σ4 for all j = 0,1, . . . ,k − 1.

Theorem 2.5. Let F (z) 
≡ 0, A j(z) ( j = 0,1, . . . ,k − 1) be entire functions satisfying max{σ[p,q](A j),σ[p+1,q](F ) | j = 1, . . . ,

k − 1} < σ[p,q](A0), then every solution f (z) of (1.2) satisfies

λ[p+1,q]( f ) = λ[p+1,q]( f ) = σ[p+1,q]( f ) = σ[p,q](A0)

with at most one exceptional solution f0 satisfying σ[p+1,q]( f0) < σ[p,q](A0).

Theorem 2.6. Let F (z) 
≡ 0, A j(z) ( j = 0,1, . . . ,k − 1) be entire functions satisfying max{σ[p,q](A j) | j = 0,1, . . . ,k − 1} <

σ[p+1,q](F ), then we have that
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(i) σ[p+1,q]( f ) = σ[p+1,q](F ) holds for all solutions of (1.2).
(ii) λ[p+1,q]( f ) = σ[p+1,q]( f ) = σ[p+1,q](F ) holds for all solutions of (1.2) with at most one exceptional solution f0 satisfying

λ[p+1,q]( f0) < σ[p+1,q](F ).

Theorem 2.7. Let H ⊂ (1,∞) be a complex set satisfying dens{|z|: z ∈ H} > 0, and let A j(z) ( j = 0,1, . . . ,k − 1) be entire functions
satisfying max{σ[p,q](A j) | j = 0,1, . . . ,k − 1} � α1 , if there exists a positive constant α2 (α2 < α1) such that for any given ε
(0 < ε < α1 − α2), we have

∣∣A0(z)
∣∣ � expp+1

{
(α1 − ε) logq r

}
,

∣∣A j(z)
∣∣ � expp+1{α2 logq r} (z ∈ H, j = 1, . . . ,k − 1),

then every nontrivial solution f (z) of (1.1) satisfies σ[p+1,q]( f ) = α1 .

Theorem 2.8. Suppose that H, A j(z) ( j = 0,1, . . . ,k − 1) satisfy the hypotheses in Theorem 2.7 and F (z) 
≡ 0, then we have the
following statements:

(i) If σ[p+1,q](F ) � α1 , then all solutions of (1.2) satisfy σ[p+1,q]( f ) = σ[p+1,q](F ).
(ii) If σ[p+1,q](F ) < α1 , then all solutions of (1.2) satisfy λ[p+1,q]( f ) = λ[p+1,q]( f ) = σ[p+1,q]( f ) = α1 with at most one exceptional

solution f0 satisfying σ[p+1,q]( f0) < α1 .

Remark 2.1. Theorems 2.1–2.3 are improvements and the extensions of Theorems A–C. As the counterpart to Theorem E,
Theorem 2.4 is also an extension of Theorem D. Theorem 2.5 and Theorem 2.6 are respectively the improvement and
extension of Theorem F and Theorem G. Theorems 2.7, 2.8 are the counterpart to Theorem H.

Remark 2.2. Besides the above theorems, there are still much work to do, such as the case in which the coefficients in
(1.1) or (1.2) are meromorphic functions of [p,q]-order and the case in which the coefficients in (1.1) or (1.2) are analytic
functions in D with [p,q]-order.

3. Preliminary lemmas

Lemma 3.1. (See [18].) Let g : [0,∞) → R and h : [0,∞) → R be monotone increasing functions such that g(r) � h(r) outside of an
exceptional set E1 of finite logarithmic measure. Then for any α > 1, there exists r0 > 0 such that g(r) � h(rα) for all r > r0 .

Lemma 3.2. (See [6].) Let f (z) be a transcendental meromorphic function, and let α > 1 be a given constant, for any given
ε > 0, there exist a set E2 ⊂ (1,∞) that has finite logarithmic measure and a constant B > 0 that depends only on α and (i, j)
(i, j integers with 0 � i < j) such that for all |z| = r /∈ [0,1] ∪ E2 , we have

∣∣∣∣ f ( j)

f (i)

∣∣∣∣ � B

[
T (αr, f )

r

(
logα r

)
log T (αr, f )

] j−i

.

Lemma 3.3. (See [8,9].) Let f (z) be a transcendental entire function, and let z be a point with |z| = r at which | f (z)| = M(r, f ). Then
for all |z| outside a set E3 of r of finite logarithmic measure, we have

f ( j)(z)

f (z)
=

(
ν f (r)

z

) j(
1 + o(1)

)
( j ∈ N),

where ν f (r) is the central index of f (z).

Lemma 3.4. (See [5].) Let f1, . . . , fk be linearly independent meromorphic solutions of (1.1) with meromorphic functions A0, . . . , Ak−1
as the coefficients, then

m(r, A j) = O
{

log
(

max
1�n�k

T (r, fn)
)}

( j = 0, . . . ,k − 1).

Lemma 3.5. (See [10].) Let f (z) = ∑∞
n=0 anzn be an entire function, μ(r) be the maximum term of f (z), i.e., μ(r) = max{|an|rn |

n = 0,1, . . .}, and let ν f (r) be the central index of f (z), then:

(i) if |a0| 
= 0, logμ(r) = log |a0| +
∫ r

0
ν f (t)

t dt,

(ii) for r < R, M(r, f ) < μ(r){ν f (R) + R
R−r }.
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Lemma 3.6. (See [19].) Let f (z) be an entire function of finite iterated order with i( f ) = p, and let ν f (r) be the central index of f (z),
then

lim
r→∞

logp ν f (r)

log r
= σp( f ).

Lemma 3.7. (See [15].) Let f (z) be an entire function of [p,q]-order, and let ν f (r) be the central index of f (z), then

lim
r→∞

logp ν f (r)

logq r
= σ[p,q]( f ).

Lemma 3.8. (See [17].) Let f (z) be a meromorphic function with i( f ) = p, then

σp( f ) = σp
(

f ′).
Using the same proof of Lemma 3.8, we can easily prove the following lemma.

Lemma 3.9. Let f (z) be an entire function of [p,q]-order, then

σ[p,q]( f ) = σ[p,q]
(

f ′).
Lemma 3.10. Let f (z) be an entire function of [p,q]-order satisfying σ[p,q]( f ) = σ5 , then there exists a set E4 ⊂ (1,∞) having
infinite logarithmic measure such that for all r ∈ E4 , we have

lim
r→∞

logp T (r, f )

logq r
= σ5 (r ∈ E4).

Proof. By Definition 1.7, there exists a sequence {rn}∞n=1 tending to ∞ and satisfying (1 + 1
n )rn < rn+1 and

lim
n→∞

logp T (rn, f )

logq rn
= σ[p,q]( f ) = σ5,

there exists an n1 (∈ N) such that for n � n1 and for any r ∈ [rn, (1 + 1
n )rn], we have

logp T (rn, f )

logq(1 + 1
n )rn

�
logp T (r, f )

logq r
�

logp T ((1 + 1
n )rn, f )

logq rn
.

Set E4 = ⋃∞
n=n1

[rn, (1 + 1
n )rn], then for any r ∈ E4, we have

lim
r→∞

logp T (r, f )

logq r
= lim

n→∞
logp T (rn, f )

logq rn
= σ5,

where

ml E4 =
∞∑

n=n1

(1+ 1
n )rn∫

rn

dt

t
=

∞∑
n=n1

log

(
1 + 1

n

)
= ∞. �

Lemma 3.11. Let f1(z) be an entire function of [p,q]-order with σ[p,q]( f1) = σ1 > 0, and let f2(z) be an entire function of [p′,q′]-
order with σ[p′,q′]( f2) = σ2 < ∞, if σ[p,q]( f1) and σ[p′,q′]( f2) satisfy one of the following conditions:

(i) p′ − p = q′ − q = 0 and σ[p′,q′]( f2) < σ[p,q]( f1);
(ii) p′ − p < q′ − q;

(iii) p′ − p = q′ − q > 0, σ[p′,q′]( f2) < 1;
(iv) p′ − p = q′ − q < 0, σ[p,q]( f1) > 1;

then there exists a set E5 ⊂ (1,∞) having infinite logarithmic measure such that for all r ∈ E5 , we have

lim
r→∞

T (r, f2)

T (r, f1)
= 0 (r ∈ E5).
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Proof. (i) By Definition 1.7, if |z| = r is sufficiently large, we have

T (r, f2) � expp

{
(σ2 + ε) logq r

}
. (3.1)

By σ[p,q]( f1) = σ1 and Lemma 3.10, there exists a set E5 of infinite logarithmic measure satisfying

lim
r→∞

logp T (r, f1)

logq r
= σ1 (r ∈ E5),

then

T (r, f1) � expp

{
(σ1 − ε) logq r

}
(r ∈ E5, p � q) (3.2)

where 0 < 2ε < σ1 − σ2. By (3.1) and (3.2), we get

T (r, f2)

T (r, f1)
�

expp{(σ2 + ε) logq r}
expp{(σ1 − ε) logq r} → 0 (r ∈ E5, p � q)

then

lim
r→∞

T (r, f2)

T (r, f1)
= 0 (r ∈ E5).

(ii) Since σ[p,q]( f1) = σ1 > 0, σ[p′,q′]( f2) = σ2 < ∞ and p′ − p < q′ − q, by Remark 1.3, we have σ[p′,q′]( f1) = ∞, then by
the similar proof of case (i), we have

lim
r→∞

T (r, f2)

T (r, f1)
= 0 (r ∈ E5).

(iii) Since p′ − p = q′ − q > 0 and σ[p′,q′]( f2 ) < 1, by Remark 1.3, we have σ[p,q]( f2) = 0, then by the similar proof of
case (i), we have

lim
r→∞

T (r, f2)

T (r, f1)
= 0 (r ∈ E5).

(iv) Since p′ − p = q′ − q < 0 and σ[p,q]( f1) < ∞, by Remark 1.3, we have σ[p′,q′]( f1) = ∞, then by the similar proof of
case (i), we have

lim
r→∞

T (r, f2)

T (r, f1)
= 0 (r ∈ E5). �

Lemma 3.12. Let F (z) 
≡ 0, A j(z) ( j = 0, . . . ,k − 1) be entire functions, let f (z) be a solution of (1.2) satisfying max{σ[p,q](A j),

σ[p,q](F ) | j = 0,1, . . . ,k − 1} < σ[p,q]( f ), then we have λ[p,q]( f ) = λ[p,q]( f ) = σ[p,q]( f ).

Proof. By (1.2) we get

1

f
= 1

F

(
f (k)

f
+ Ak−1

f (k−1)

f
+ · · · + A0

)
, (3.3)

it is easy to see that if f has a zero at z0 of order α (α > k), and A0, . . . , Ak−1 are analytic at z0, then F must have a zero
at z0 of order α − k, hence

n

(
r,

1

f

)
� kn

(
r,

1

f

)
+ n

(
r,

1

F

)
(3.4)

and

N

(
r,

1

f

)
� kN

(
r,

1

f

)
+ N

(
r,

1

F

)
. (3.5)

By the theorem on logarithmic derivative and (3.3), we have

m

(
r,

1

f

)
� m

(
r,

1

F

)
+

k−1∑
j=0

m(r, A j) + O
(
log T (r, f ) + log r

)
(r /∈ E6), (3.6)

where E6 is a set of r of finite linear measure. By (3.4)–(3.6), we get
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T (r, f ) = T

(
r,

1

f

)
+ O (1) � kN

(
r,

1

f

)
+ T (r, F ) +

k−1∑
j=0

T (r, A j) + O
{

log
(
rT (r, f )

)}
(r /∈ E6). (3.7)

Since max{σ[p,q](F ),σ[p,q](A j) | j = 0,1, . . . ,k − 1} < σ[p,q]( f ), by Lemma 3.11, there exists a set E5 having infinite logarith-
mic measure such that

max

{
T (r, F )

T (r, f )
,

T (r, A j)

T (r, f )

}
→ 0 (r ∈ E5, j = 0, . . . ,k − 1). (3.8)

Since f (z) is transcendental, we have

O
{

log rT (r, f )
} = o

{
T (r, f )

}
. (3.9)

By (3.6)–(3.9), for all |z| = r ∈ E5\E6, we have T (r, f ) � O {N(r, 1
f )}. Then we get σ[p,q]( f ) � λ[p,q]( f ). Therefore

λ[p,q]( f ) = λ[p,q]( f ) = σ[p,q]( f ). �
Lemma 3.13. Let f (z) be an entire function of [p,q]-order satisfying σ[p,q]( f ) = σ6 (0 < σ6 < ∞), let τ[p,q]( f ) = τ1 > 0, then for
any given β < τ1 , there exists a set E7 having infinite logarithmic measure such that for all r ∈ E7 , we have

logp M(r, f ) > β(logq−1 r)σ6 (r ∈ E7).

Proof. By Definition 1.9, we can choose a sequence {r j}∞j=1 tending to ∞ and satisfying

(
1 + 1

j

)
r j < r j+1, lim

j→∞
logp M(r j, f )

(logq−1 r j)
σ6

= τ1.

Then there exists a j0 ( j0 ∈ N) such that for j � j0 and for any given ε (0 < ε < τ1 − β), we get

logp M(r j, f ) > (τ1 − ε)(logq−1 r j)
σ6 . (3.10)

For any r ∈ [r j, (1 + 1
j )r j] ( j � j0), we have

lim
j→∞

logq−1 r j

logq−1 r
= 1,

since β < τ1 − ε, there exists a j1 (∈ N) such that for j � j1, we have(
logq−1 r j

logq−1 r

)σ6

>
β

τ1 − ε
, i.e., (τ1 − ε)(logq−1 r j)

σ6 > β(logq−1 r)σ6 . (3.11)

Set j2 = max{ j0, j1} and E7 = ⋃∞
j= j2

[r j, (1 + 1
j )r j], by (3.10)–(3.11), for all r ∈ E7, we have

logp M(r, f ) � logp M(r j, f ) > (τ1 − ε)(logq−1 r j)
σ6 > β(logq−1 r)σ6 ,

where

ml E7 =
∞∑

j= j2

(1+ 1
j )r j∫

r j

dr

r
=

∞∑
j= j2

log

(
1 + 1

j

)
= ∞.

Thus, we complete the proof of Lemma 3.13. �
4. Proofs of Theorems 2.1–2.8

Proof of Theorem 2.1. We divide the proof into two parts.
(i) First, we prove that every solution of (1.1) satisfies σp+1,q( f ) � σp,q(As). By (1.1), we get

∣∣∣∣ f (k)(z)

f (z)

∣∣∣∣ � |Ak−1|
∣∣∣∣ f (k−1)(z)

f (z)

∣∣∣∣ + · · · + |As|
∣∣∣∣ f (s)(z)

f (z)

∣∣∣∣ + · · · + |A0|. (4.1)

Set σ[p,q](As) = σ7, since max{σ[p,q](A j) | j = 1, . . . ,k − 1} � σ7, for sufficiently large r and for any given ε > 0, we have
∣∣A j(z)

∣∣ � expp+1
{
(σ7 + ε) logq r

}
( j = 0,1, . . . ,k − 1). (4.2)
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On the other hand, by Lemma 3.3, there exists a set E3 ⊂ (1,+∞) having finite logarithmic measure such that for all z
satisfying |z| = r /∈ [0,1] ∪ E3 and | f (z)| = M(r, f ), we have

∣∣∣∣ f ( j)(z)

f (z)

∣∣∣∣ =
(

ν f (r)

r

) j(
1 + o(1)

)
( j = 1, . . . ,k − 1). (4.3)

By (4.1)–(4.3), for all z satisfying |z| = r /∈ [0,1] ∪ E3 and | f (z)| = M(r, f ), we get

(
ν f (r)

r

)k∣∣1 + o(1)
∣∣ � k expp+1

{
(σ7 + ε) logq r

}(ν f (r)

r

)k−1∣∣1 + o(1)
∣∣, (4.4)

then

ν f (r) � kr expp+1
{
(σ7 + ε) logq r

}
.

By Lemma 3.1 and Lemma 3.7, we have σ[p+1,q]( f ) � σ[p,q](As).

(ii) Second, we prove that at least one solution of (1.1) satisfies σ[p+1,q]( f ) = σ[p,q](As). Assume that { f1, f2, . . . , fk} is a
solution base of (1.1), then by the elementary theory of the differential equations, we see that f j (1 � j � k) are entire. By
Lemma 3.4, we have

m(r, As) � M log
(

max
1�n�k

T (r, fn)
)
. (4.5)

By Lemma 3.10, there exists a set E4 ⊂ (0,∞) of infinite logarithmic measure such that

lim
r→∞

logp m(r, As)

logq r
= σ[p,q](As) (r ∈ E4).

Set Hn = {r: r ∈ E4, m(r, As) � M log T (r, fn)} (n = 1, . . . ,k), by Lemma 3.4, we have
⋃k

n=1 Hn = E4. It is easy to see that
there exists at least one Hn , say H1 ⊂ E4 that has infinite logarithmic measure and satisfies

m(r, As) � M log T (r, f1), lim
r→∞

logp m(r, As)

logq r
= σ[p,q](As) (r ∈ H1). (4.6)

From (4.6), we have

σ[p+1,q]( f1) � σ[p,q](As).

On the other hand, by part (i), we have

σ[p+1,q]( f1) � σ[p,q](As).

Therefore we have that at least one solution f1 satisfies σ[p+1,q]( f1) = σ[p,q](As). �
Proof of Theorem 2.2. (1.1) can be written

−A0 = f (k)(z)

f (z)
+ · · · + A j

f ( j)(z)

f (z)
+ · · · + A1

f ′(z)

f (z)
. (4.7)

By (4.7), we get

m(r, A0) �
k−1∑
i=1

m(r, A j) +
k∑

j=1

m

(
r,

f (k)

f

)
. (4.8)

Since max{σ[p,q](A j) | j 
= 0} < σ[p,q](A0) and by Lemma 3.11, there exists a set E5 ⊂ (1,∞) with infinite logarithmic mea-
sure such that for all z satisfying |z| = r ∈ E5, we have

lim
r→∞

logp m(r, A0)

logq r
= σ[p,q](A0),

m(r, A j)

m(r, A0)
→ 0 (r ∈ E5, j = 1, . . . ,k − 1). (4.9)

By the theorem on logarithmic derivative, we have

m

(
r,

f ( j)

f

)
= O

{
log rT (r, f )

}
(r /∈ E6). (4.10)

By (4.8)–(4.10), for all sufficiently large r ∈ E5 \ E6, we have
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1

2
m(r, A0) � O

{
log rT (r, f )

}
.

Hence

σ[p+1,q]( f ) � σ[p,q](A0).

On the other hand, by Theorem 2.1, we have

σ[p+1,q]( f ) � σ[p,q](A0).

Therefore every nontrivial solution f (z) of (1.1) satisfies σ[p+1,q]( f ) = σ[p,q](A0). �
Proof of Theorem 2.3. Set σ[p,q](A0) = σ8 > 0, τ[p,q](A0) = τ2. If A j(z) ( j = 0, . . . ,k − 1) satisfy max{σ[p,q](A j), j = 1, . . . ,

k − 1} < σ[p,q](A0), then by Theorem 2.2, it is easy to see that Theorem 2.3 holds. Thus we assume that at least one of A j(z)
( j = 1, . . . ,k − 1) satisfies σ[p,q](A j) = σ[p,q](A0).

Assume f 
≡ 0 is an entire solution of (1.1), from (1.1), we get

|A0| �
∣∣∣∣ f (k)

f

∣∣∣∣ + |Ak−1|
∣∣∣∣ f (k−1)

f

∣∣∣∣ + · · · + |A1|
∣∣∣∣ f ′

f

∣∣∣∣. (4.11)

By Lemma 3.2, there exists a set E2 ⊂ (1,∞) of finite logarithmic measure, for |z| = r /∈ [0,1] ∪ E2, we get∣∣∣∣ f ( j)(z)

f (z)

∣∣∣∣ � B
[
rM · T (2r, f )

]2k
( j = 1, . . . ,k), (4.12)

where B(> 0) is a constant. We choose β1, β2 satisfying max{τ[p,q](A j) | σ[p,q](A j) = σ[p,q](A0)} < β1 < β2 < τ2. By Defini-
tion 1.7 and Definition 1.9, for sufficiently large r, we have

M(r, A j) < expp

{
β1(logq−1 r)σ8

}
. (4.13)

By Lemma 3.13, there exists a set E7 of infinite logarithmic measure such that for |z| = r ∈ E7, we have

M(r, A0) > expp

{
β2(logq−1 r)σ8

}
. (4.14)

By (4.11)–(4.14), for all z satisfying |A0(z)| = M(r, A0) and |z| = r ∈ E7 \ E2, we have

expp
{
β2(logq−1 r)σ8

}
� k · expp

{
β1(logq−1 r)σ8

} · B
[
rM · T (2r, f )

]2k
. (4.15)

By (4.15) and Lemma 3.1, we get

lim
r→∞

logp+1 T (r, f )

logq r
� σ8.

On the other hand, by Theorem 2.1, we have that σ[p+1,q]( f ) � σ8 holds for all solutions of (1.1), then we have that every
nontrivial solution f (z) of (1.1) satisfies σ[p+1,q]( f ) = σ[p,q](A0). �
Proof of Theorem 2.4. We divide the proof into two parts.

(i) Set σ[p,q](As) = σ7, if s = 0, by Theorem 2.2, it is easy to see that Theorem 2.4 holds.
If 1 � s � k − 1, we need to prove that (1.1) possesses at most s linearly independent solutions f (z) satisfy-

ing σ[p+1,q]( f ) < σ7, we assume to the contrary of the assertion that (1.1) has s + 1 linearly independent solutions
f0,1, . . . , f0,s+1 such that σ[p+1,q]( f0, j) < σ7 ( j = 1, . . . , s + 1). We now apply the standard order reduction procedure,
see [17, p. 393] or [18, p. 61], so we have that f0,1, . . . , f0,s+1 are linearly independent solutions of

y(k) + A0,k−1(z)y(k−1) + · · · + A0,0(z)y = 0,

where we use A0,0, . . . , A0,k−1 instead of A0, . . . , Ak−1. For 1 � m � s, set

fm, j =
(

fm−1, j+1

fm−1,1

)′
( j = 1, . . . , s + 1 − m),

by the standard order reduction procedure, after m reduction steps, we know that fm,1, fm,2, . . . , fm,s+1−m are linearly
independent meromorphic solutions of

y(k−m) + Am,k−m−1(z)y(k−m−1) + · · · + Am,0(z)y = 0,

where
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Am, j(z) =
k−m+1∑
n= j+1

(
n

j + 1

)
Am−1,n(z)

f (n− j−1)
m−1,1

fm−1,1(z)
( j = 0, . . . ,k − 1), (4.16)

An,k−n ≡ 1 for all n = 0,1, . . . ,m. We choose β3, β4 such that

max
{
σ[p,q](A0, j)

∣∣ j = s + 1, . . . ,k − 1, σ[p+1,q]( f0,1), . . . , σ[p+1,q]( f0,s+1)
}

< β3 < β4 < σ7.

By the theorem on logarithmic derivative and (4.16), for each 0 � n � s, we obtain

m(r, An,l) � expp{β3 logq r} (r /∈ E6, l = s + 1 − n, . . . ,k − n − 1). (4.17)

By Lemma 3.10, there exists a set E4 ⊂ (1,∞) with infinite logarithmic measure such that for all r ∈ E4, we have

m(r, A0,s) � expp{β4 logq r}. (4.18)

By (4.16) and (4.18), for all sufficiently large r ∈ E4, we have

m(r, An,s−n) � 1

2
expp{β4 logq r} > O

{
expp{β3 logq r}} (n = 1, . . . , s). (4.19)

Set m = s, after s reduction steps, we have that f s,1 is a meromorphic solution of

y(k−s) + As,k−s−1(z)y(k−s−1) + · · · + As,0(z)y = 0,

and satisfies σ[p+1,q]( f s,1) < σ7, so we have

As,0(z) = − f (k−s)
s,1

f s,1
− As,k−s−1

f (k−s−1)
s,1

f s,1
− · · · − As,1

f ′
s,1

f s,1
. (4.20)

By (4.17) and (4.20), we have

m(r, As,0) � M expp{β3 logq r} (r /∈ E6),

this is a contradiction with (4.19) for n = s. Therefore (1.1) possesses at most s linearly independent solutions f (z) satisfying
σ[p+1,q]( f ) < σ[p,q](As).

(ii) By Theorem 2.1, it is easy to see that all solutions of (1.1) satisfy σ[p+1,q]( f ) � σ4 if σ[p,q](A j) � σ4 for j = 0,1, . . . ,

k − 1. On the other hand, we suppose that all solutions of (1.1) satisfy σ[p+1,q]( f ) � σ4 and that there is at least one
coefficient A j(z) of (1.1) such that σ[p,q](A j) > σ4. Now, if s ∈ {0, . . . ,k − 1} is the largest index such that

σ[p,q](As) = max
0� j�k−1

{
σ[p,q](A j)

}
,

then by part (i) of the present proof, (1.1) has at least k − s � 1 linearly independent solutions f such that σ[p+1,q]( f ) > σ4.
This is a contradiction, therefore σ[p,q](A j) � σ4 for all j = 0,1, . . . ,k − 1. �
Proof of Theorem 2.5. We assume that f is a solution of (1.2). By the elementary theory of differential equations, all the
solutions of (1.2) are entire functions and have the form

f = f ∗ + C1 f1 + C2 f2 + · · · + Ck fk,

where C1, . . . , Ck are complex constants, f1, . . . , fk is a solution base of (1.1), f ∗ is a solution of (1.2) and has the form

f ∗ = D1 f1 + D2 f2 + · · · + Dk fk, (4.21)

where D1, . . . , Dk are certain entire functions satisfying

D ′
j = F · G j( f1, . . . , fk) · W ( f1, . . . , fk)

−1 ( j = 1, . . . ,k), (4.22)

where G j( f1, . . . , fk) are differential polynomials in f1, . . . , fk and their derivative with constant coefficients, and
W ( f1, . . . , fk) is the Wronskian of f1, . . . , fk . By Theorem 2.2, we have σ[p+1,q]( f j) = σ[p,q](A0) ( j = 1,2, . . . ,k), then
by (4.21) and (4.22), we get

σ[p+1,q]( f ) � max
{
σ[p+1,q]( f j),σ[p+1,q](F )

∣∣ j = 1, . . . ,k
}

� σ[p,q](A0).

We affirm that (1.2) can only possess at most one exceptional solution f0 satisfying σ[p+1,q]( f0) < σ[p,q](A0). In fact, if f∗
is another solution satisfying σ[p+1,q]( f∗) < σ[p,q](A0), then σ[p+1,q]( f0 − f∗) < σ[p,q](A0). But f0 − f∗ is a solution of (1.1),
this contradicts Theorem 2.2. Then σ[p+1,q]( f ) = σ[p,q](A0) holds for all solutions of (1.2) with at most one exceptional
solution f0 satisfying σ[p+1,q]( f0) < σ[p,q](A0). By Lemma 3.12, we get that
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λ[p+1,q]( f ) = λ[p+1,q]( f ) = σ[p+1,q]( f )

holds for all solutions satisfying σ[p+1,q]( f ) = σ[p,q](A0) with at most one exceptional solution f0 satisfying σ[p+1,q]( f0) <

σ[p,q](A0). �
Proof of Theorem 2.6. We divide the proof into two parts. Suppose that f (z) is a solution of (1.2) and that { f1, f2, . . . , fk}
is a solution base of (1.1).

(i) By the similar proof in (4.21)–(4.22), we get

σ[p+1,q]( f ) � max
{
σ[p+1,q]( f j),σ[p+1,q](F )

∣∣ j = 1, . . . ,k
}

� max
{
σ[p,q](A j),σ[p+1,q](F )

∣∣ j = 1, . . . ,k − 1
}
.

Then by the hypotheses, we get

σ[p+1,q]( f ) � σ[p+1,q](F ). (4.23)

On the other hand, by a simple order comparison from (1.2), we have

σ[p+1,q](F ) � max
{
σ[p+1,q](A j),σ[p+1,q]( f )

∣∣ j = 1, . . . ,k − 1
}
.

Since σ[p,q](A j) < σ[p+1,q](F ), we have

σ[p+1,q](F ) � σ[p+1,q]( f ). (4.24)

By (4.23)–(4.24), we get σ[p+1,q]( f ) = σ[p+1,q](F ).
(ii) We denote σ[p+1,q](F ) = σ10 > 0. Let f0 be a solution of (1.2) satisfying λ[p+1,q]( f0) < σ10 and f be a solution of (1.2)

such that f 
= f0. Let us assume λ[p+1,q]( f ) < σ10, by the similar method in [17, Lemma 1.8, p. 390], f0 can be represented
by the form

f0(z) = U (z)eV (z),

where U and V are entire functions satisfying λ[p+1,q](U ) = σ[p+1,q](U ) < σ10 and σ[p+1,q](eV ) = σ10.
Set g = f − f0, we see that g is a solution of (1.1). By Theorem 2.1, we get σ[p+1,q](g) � max{σ[p,q](A j) | j =

0, . . . ,k − 1} < σ[p+1,q](F ) = σ10. We now apply the second fundamental theorem of Nevanlinna for the function

U (z)

g(z)
eV (z),

and obtain

(
1 + o(1)

)
T

(
r,

U

g
eV

)
� N

(
r,

U

g
eV

)
+ N

(
r,0,

U

g
eV

)
+ N

(
r,−1,

U

g
eV

)

� N(r,0, g) + N(r,0, U ) + N(r,0, f ), (4.25)

outside of a possible exceptional set E8 of finite linear measure.
Let us denote γ = max{λ[p+1,q]( f ),σ[p+1,q](U )}, then γ < σ10, from (4.25), for any ε > 0, and for sufficiently large r /∈ E8,

we have

T

(
r,

U

g
eV

)
� expp+1

{
(γ + ε) logq r

}
(r /∈ E8).

Using Lemma 3.1, we get

σ[p+1,q]
(

U

g
eV

)
� γ .

Since σ[p+1,q](U ) < σ10, σ[p+1,q](g) < σ10, σ[p+1,q](eV ) = σ10, then we have σ10 � γ , this is a contradiction with γ < σ10,
therefore, we must have λ[p+1,q]( f ) = σ10. �
Proof of Theorem 2.7. Let H1 = {r = |z|: z ∈ H}, since dens{|z|: z ∈ H} > 0, then H1 is a set of r of infinite logarithmic mea-
sure. By the hypotheses that σ[p,q](A0) � α1 and |A0| � expp+1{(α1 − ε) logq r} (z ∈ H), it is easy to obtain σ[p,q](A0) = α1.
By the similar proof in (4.11)–(4.12), for sufficiently large |z| = r ∈ H1 \ E2 and for any ε(0 < ε < α1 − α2), we have

expp+1
{
(α1 − ε) logq r

}
� B · [rM · T (2r, f )

]2k · k · expp+1{α2 logq r}. (4.26)

By (4.26), we get

σ[p+1,q]( f ) � α1. (4.27)
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On the other hand, by Theorem 2.4, we have σ[p+1,q]( f ) � α1 if σ[p,q](A j) � α1 for j = 0,1, . . . ,k − 1. Therefore by (4.26)
and (4.27), we have that every nontrivial solution f (z) of (1.1) satisfies σ[p+1,q]( f ) = α1. �
Proof of Theorem 2.8. (i) It is easy to obtain that all solutions of (1.2) satisfy σ[p+1,q]( f ) � σ[p+1,q](F ) by a simple order
comparison. On the other hand, by the similar proof in (4.21)–(4.22), we can obtain that all solutions of (1.2) satisfy

σ[p+1,q]( f ) � σ[p+1,q](F )

if σ[p+1,q](F ) � α1. Therefore all solutions of (1.2) satisfy σ[p+1,q]( f ) = σ[p+1,q](F ).
(ii) Since σ[p+1,q](F ) < α1 = σ[p,q](A0), by the similar proof in Theorem 2.5, we have that all solutions of (1.2) satisfy

λ[p+1,q]( f ) = λ[p+1,q]( f ) = σ[p+1,q]( f ) = α1

with at most one exceptional solution f0 satisfying σ[p+1,q]( f0) < α1. �
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