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a b s t r a c t

The present work deals with the propagation of interfacial surface waves in a composite consisting of
homogeneous, transversely isotropic, piezoelectric halfspace underlying a thin layer of non-piezoelectric
semiconductor material. The mathematical model of the problem is depicted by partial differential equa-
tions of motion for the structure and boundary conditions to be satisfied at the interface and free surface
of the composite. After obtaining formal wave solution of the model the secular equation that governs the
propagation of surface waves in the considered composite structure has been derived in compact form.
The numerical solution of secular equation is being carried out for the composites Si–CdSe, Ge–CdSe and
Ge–PZT by employing functional iteration method along with irreducible Cardano method using MATLAB
programming. The computer simulated results in respect of dispersion curves, attenuation coefficient and
specific loss factor of energy dissipation are presented graphically for Si–CdSe composite to illustrate the
analytical developments. We have extended our analysis to Ge–CdSe and Ge–PZT composites also. How-
ever, to avoid clustering of profiles and also to have clear understanding of the variations, the computer
simulated values of phase velocity and attenuation coefficient are presented in tabular form for all three
considered composite structures. This work may be useful for designing and construction of surface
acoustic wave (SAW) devices and electronics industry.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Curie and Curie (1880) discovered the electromechanical effect
in certain noncentro-symmetric crystalline materials. These mate-
rials become electrically polarized under the influence of an exter-
nal applied mechanical force. Chen (1971), Chizhikov et al. (1985)
and He (2001) further laid foundation to the various concepts and
applications of piezoelectric and electromagnetic solids. de Lorenzi
and Tierten (1975) and Maugin and Daher (1986) developed non-
linear theories for deformable semiconductors. Weinreich et al.
(1959) regarded acoustoelectric effect viz. the interaction between
traveling wave and mobile charges in a piezoelectric semiconduc-
tor, as wave particle drag. Hutson and White (1962) studied the
dispersion and acoustic losses in the crystals having semiconduct-
ing properties in addition to their piezoelectric character.

It is a well-known fact that the surface and bulk acoustic waves
can be generated in piezoelectric materials under the effect of elec-
tromechanical and thermal fields. White (1962) predicted that an
acoustic wave propagating in a piezoelectric semiconductor can
be amplified under the effect of a DC electric field. Collins et al.
(1968) observed strong interaction between the wave on the sur-
face of piezoelectric crystal and the wave on the drifting carriers
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in the nearby semiconductor. Dietz et al. (1988) explored the
acoustoelectric amplification of acoustic waves in the composite
of piezoelectric dielectric and non-piezoelectric semiconductor.
White (1967) discussed the phenomena surface elastic wave prop-
agation, transduction and amplification in a piezoelectric semicon-
ductor with special emphasis on the characteristics useful in
electronic devices. The acoustoelectric amplification in a piezoelec-
tric coated with semiconductor film was analyzed by the authors:
Fischler and Yando (1969), Fischler (1970), Kino and Reeder (1971).
Yang and Zhou (2004, 2005) found that the phenomenon of semi-
conduction leads to dispersion and acoustic losses in piezoelectric
surface waves generated in the piezoelectric semiconductors.
Sharma and Pal (2004) investigated the propagation of Lamb
waves in a homogeneous, transversely isotropic, piezothermoelas-
tic plate. Sharma et al. (2005) studied the propagation of thermo-
elastic Rayleigh waves in piezothermoelastic materials. Sharma
and Walia (2007) carried out further investigations on the propa-
gation of Rayleigh waves in a homogeneous, transversely isotropic,
piezothermoelastic semi-space.

Maruszewski (1989) considered the interactions between elas-
tic, thermal and charge carrier’s field in semiconductors and found
the existence of two kinds of waves namely, elastic longitudinal
and transverse waves of Rayleigh type in addition to electron lon-
gitudinal waves. Sharma and Thakur (2006) studied the plane har-
monic elasto-thermodiffusive waves in semiconductors. It has
been noticed that the shear waves get decoupled from rest of the
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motion and are not affected by the other fields. According to the
frequency equation, four coupled longitudinal waves, namely qua-
si-thermoelastic (QTN), elastodiffusive (QEN/QEP), thermodiffusive
(QTN/QTP) and quasi-thermal (T-mode) can be propagated in an
infinite semiconductor. Sharma et al. (2007, 2009) also investi-
gated the elasto-thermodiffusive wave propagation on semicon-
ductor materials and observed that the life time of charge
carriers and thermal relaxation time affect the wave characteristics
significantly. It has been observed that at long wavelengths, the
material exhibit more internal friction with increasing life time
of charge carrier field. Sharma et al. (2008) investigated the prop-
agation of elasto-thermodiffusive surface waves under the effect of
thermal field in a semiconductor halfspace underlying a fluid. They
concluded that the phase velocity, attenuation coefficient of leaky
Rayleigh waves (LRWs) and non-leaky Rayleigh waves (NLRWs) are
significantly affected by the thickness and temperature of fluid
loading, relaxation and life times of carrier field.

Keeping in view the above work we in this paper have made
an attempt to study the effect of n-type semiconductor layer on
a homogeneous transversely isotropic, 6 mm class piezoelectric
halfspace on the wave characteristics such as phase velocity,
attenuation coefficient and specific loss factor of the energy dissi-
pation of waves at the interface of the structure. The effect of life
time of the carrier field on the wave propagation for different
modes of vibration has also been investigated to explore the
interaction between the surface waves and the carrier field. Some
special cases of wave propagation in a piezoelectric halfspace
subjected to charge free (open circuit) and electrically shorted
(closed circuit) boundary conditions have also been deduced
and studied.
2. Formulation of the problem

We consider a homogeneous transversely isotropic, piezoelec-
tric halfspace whose surface is coated with a thin layer of non-pie-
zoelectric elastic semiconductor of thickness ‘h’ as shown in Fig. 1.
We take the origin of coordinate system oxyz at any point on the
plane surface (interface) and z-axis pointing vertically downward
into the piezoelectric halfspace. Thus, the piezoelectric semi-space
is represented by z P 0 and the semiconductor layer occupies the
region 0 6 z 6 �h. We choose x-axis along the direction of wave
propagation in such a way that all particles on the line parallel to
y-axis are equally displaced. Therefore, all field quantities are inde-
pendent of y-coordinate.

Further, the disturbance is assumed to be confined in the neigh-
borhood of the interface z ¼ 0, and hence vanishes as z!1. The
basic governing equations of motion and electron diffusion for
the composite structure under study, in the absence of body forces
and electric sources, are given below:

(i) Homogeneous isotropic, n-type semiconductor elastic layer
(Sharma et al., 2007; Maruszewski, 1989):
P
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Fig. 1. Geometry of the problem.
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(ii) Transversely isotropic piezoelectric (6 mm class) medium
(Sharma and Pal, 2004):
c11up
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;xz ¼ qp€up

ð3Þ
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where the notationsr2 ¼ o2

ox2 þ o2

oz2 ; N ¼ n� n0; an
2 ¼ aQp

aQ ; kT ¼
ð3kþ 2lÞaT have been used. In the above equations, the
superposed dots on various quantities denote time differen-
tiation and comma notation is used for spatial derivatives.
Throughout this paper the superscripts p, s on the field quan-
tities and material parameters refers to piezoelectric and
semiconductor materials, respectively. Here k, l are Lamè’s
parameters; qs is the density; kn is the elastodiffusive con-
stants of electrons; Dn is the diffusion coefficient of electron;
tþn and tn are the life time and relaxation time of the carriers
fields; n0 and n are the equilibrium and non-equilibrium val-
ues of electrons concentration; aT is the coefficient of linear
thermal expansion of the semiconductor material. The quan-
tities aQp; aQ are flux-like constants and T0 is the uniform
temperature; ~us ¼ ðus; 0; wsÞ and ~up ¼ ðup;0;wpÞ are dis-
placement vectors for semiconductor and of piezoelectric
materials, respectively. The quantities /p; qp; cij and eij are
the electric potential, density, elastic parameters and piezo-
electric constants; e11 and e33 are the electric permittivities
perpendicular and along the axis of symmetry of piezoelec-
tric material, respectively.

The non-vanishing components of stresses, current density and
electric displacement in both the media are:
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for semiconductor medium and
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for piezoelectric material. Here ss
ij and sp

ij are the stress tensors. The
quantities Js

z and N;z, respectively, denote the current density and
carrier density gradient in semiconducting layer; Dp

z is the electric
displacement vector of piezoelectric material and e is the electronic
charge.

2.1. Boundary conditions

The requirement of continuity of stresses, displacements, elec-
tric fields and current density at the interface ðz ¼ 0Þ of two media
leads to the following interfacial boundary conditions:

sp
zz ¼ ss

zz; sp
xz ¼ ss

xz; up ¼ us; wp ¼ ws; /p ¼ N; Dp
z ¼ Js

z

ð8Þ
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Also the surface ðz ¼ �hÞ of the semiconductor is assumed to be
stress free and impermeable which leads to the conditions

ss
zz ¼ 0; ss

xz ¼ 0; N;z ¼ 0 ð9Þ

In order to simplify the above model, we define following
quantities:
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where x� is the characteristic frequency, and v l; v t are, respec-
tively, the longitudinal and shear wave velocities.

On substituting the quantities (10) in Eqs. (1)–(7), we obtain
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We introduce the scalar and vector point potential functions
/s and ws through the relations

us ¼ o/s
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oz
; ws ¼ o/s

oz
� ows

ox
ð18Þ

to facilitate the solutions in semiconductor layer
Using relations (18) in Eqs. (11) and (12), we obtain

r2/s � N � €/s ¼ 0 ð19Þ
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Eq. (20) corresponds to purely transverse waves in the semiconduc-
tor which get decoupled from rest of the motion and are not af-
fected by the charge carrier fields.

3. Formal solution of the problem

We assume the harmonic wave solution of the form

ws;/s;N;up;wp;/pð Þ ¼ �ws; �/s; �N; �up; �wp; �/p
� �

expfikðx� ctÞg ð22Þ

where c ¼ x
k is the phase velocity, k, x are, respectively, the wave

number and angular frequency.
Upon using solution (22) in Eqs. 13, 14, 15 and 19, 20, 21, the

straightforward algebraic simplifications leads to the following for-
mal solutions satisfying the radiation condition in both the media:

(i) Semiconductor (n-type) layer 0 6 z 6 �h:
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(ii) Piezoelectric (6 mm class) halfspace ðz P 0Þ:
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Substituting the solutions (23) and (24) in Eqs. (16) and (18), we
obtain the normal stress, shear stress, current density and dis-
placements for the semiconductor material as:
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where p ¼ ðk2 þ b2Þ; q ¼ 2ik and As
i ; B

s
i ð1;2Þ are the unknowns to be

determine.
Similarly we obtain expressions for normal stress, shear stress

and electric displacement for piezoelectric halfspace by using
Eqs. (25) in (17) as:

sp
zz; s

p
xz;D

p
z

� �
¼
X3

i¼1

ðyi;di; biÞAp
i exp �mizþ ikðx� ctÞf g ð36Þ
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d2d2
1

fikðc3 � c2Þ � ðc1Mi þ PiÞmig;
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n o
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and Ap
i ; i ¼ 1;2;3 are the unknowns.

4. Secular equation

Considering the formal solution for various field quantities
obtained in the previous section and employing the boundary condi-
tions (8) and (9) we obtain a system of nine homogeneous algebraic
equations having nine unknowns As

i ; Bp
i and Ap

i ði ¼ 1;2;3Þ and
these have a non-trivial solution if the determinant of the coefficient
of As

i ; Bs
i ; Ap

i ; ði ¼ 1;2;3Þ vanishes. After a lengthy algebraic reduc-
tions and simplifications we get the secular equation for the propa-
gation of guided waves in the considered composite structure as:

detðaijÞ ¼ 0; ði; j ¼ 1;2;3; . . . ;7Þ ð38Þ

where the non-zero elements aij are given as

a12 ¼ ðiky3 � pÞg2 þ y32pd3; a13 ¼ �py32;

a15 ¼ �qy32d
2; a16 ¼ �b pþ q2
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� �� �
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a33 ¼ �pP23; a35 ¼ �qP23d
2; a36 ¼ �qbS2;
a37 ¼ P13g2 � P23g1; a42 ¼ ðb3g2 þ d3j32Þp;
a43 ¼ �pj32; a44 ¼ a31; a45 ¼ S2g2 � qj32d

2;

a47 ¼ j31g2 � j32g1; a51 ¼ pfcoshðn1hÞ � coshðn2hÞg;
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� �
� sinhðn1hÞ

n1

� �
 �
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a56 ¼ qpbfcoshðbhÞ � coshðn2hÞg;
a61 ¼ qn2 sinhðn2hÞ � qn1 sinhðn1hÞ;
a62 ¼ �y3qn2g2 sinhðn2hÞ; a63 ¼ pg2 coshðbhÞ;
a64 ¼ qfcoshðn1hÞ � coshðn2hÞg; a65 ¼ qg2d

2 coshðn2hÞ;
a66 ¼ p2 sinhðbhÞ � q2bn2 sinhðn2hÞ;
a71 ¼ S2n2 sinhðn2hÞ � S1n1 sinhðn1hÞ;
a72 ¼ �S2n2y3g2 sinhðn2hÞ; a74 ¼ S1 coshðn1hÞ � S2 coshðn2hÞ;
a75 ¼ g2S2 coshðn2hÞ; a76 ¼ qbS2n2 coshðn2hÞ;
y31 ¼ y3 � y1; y32 ¼ y3 � y2; g1 ¼ d1y3 � d3y1;

g2 ¼ d2y3 � d3y2; M23 ¼ M2y3 �M3y2; M13 ¼ M1y3 �M3y1;

P23 ¼ P2y3 � P3y2;

P13 ¼ P1y3 � P3y1; j32 ¼ b3y2 � b2y3; j31 ¼ b3y1 � b1y3 ð39Þ

Upon expanding the determinant, after lengthy but straightforward
algebraic reductions and simplifications, the secular equation (38)
can be rewritten as

sinhðbhÞ ¼ c12ðc21c33� c31c23Þ� c11ðc22c33� c32c23Þþ c13ðc21c32� c31c22Þ
c�ðc21c32� c31c22Þ

ð40Þ

where elements cij are given by

ci1 ¼ b24ðbj1b15 � b11bj5Þ þ b11b25bj4; j ¼ 3;4;5; i ¼ j� 2
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i ¼ j� 2
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ci3 ¼ b24ðbj3b15 � bj5b13Þ � bj4ðb23b15 � b25b13Þ; j ¼ 4;5;

i ¼ j� 2
c� ¼ b24b33b45

ð41Þ

The quantities bij are defined as

b11 ¼ a31; b12 ¼ a27a16f5 þ f1f4; b13 ¼ a27a16f6 þ f2f4;

b15 ¼ a27a16f7 þ f3f4; b22 ¼ a27f8 � a47f1; b23 ¼ a27f9 � a47f2;

b24 ¼
a44

a16
; b25 ¼ a27f10 � a47f3

bi1 ¼ aj1; bi2 ¼ a16a17a27aj2 þ a17aj6f1; j ¼ 5;6;7; i ¼ j� 2;

b33 ¼ a16a17a27a53 þ
a17a56

sinhðbhÞ

� �
f2; b43 ¼ a16a17a27a63 þ a17a66f2;

b53 ¼ a17a76f2

bi4 ¼ aj4; bi5 ¼ a16a17a27aj5 þ a17aj6f3; j ¼ 5;6;7; i ¼ j� 2

ð42Þ

where

f1 ¼ a22a17 � a27a12; f 2 ¼ a23a17 � a27a13;

f3 ¼ a25a17 � a27a15; f 4 ¼ a36a17 � a16a37;

f5 ¼ a32a17 � a12a37; f 6 ¼ a33a17 � a13a37;

f7 ¼ a35a17 � a15a37; f 8 ¼ a42a17 � a12a47;

f9 ¼ a43a17 � a13a47; f 10 ¼ a45a17 � a15a47

The complex transcendental secular equation (40) contains
complete information about the phase velocity, wave number,
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attenuation coefficient and specific loss factor of the waves travel-
ing at the interface which are also known as interfacial guided
waves.
Table 1
Physical data of 6 mm class cadmium selenide (CdSe) and lead zirconate titanate
(PZT-4) piezoelectric materials (Sharma and Pal, 2004; Wang and Quek, 2002).

S. No. Quantity Unit CdSe PZT-4

1 qp kg m�3 5.504 � 103 7.5 � 103

2 c11 GPa 74.41 132.0
3 c13 GPa 39.30 73.0
4 c33 GPa 83.60 115.0
5 c44 GPa 13.20 26.0
6 e31 C m�2 �0.160 �4.1
7 e33 C m�2 0.347 14.1
8 e15 C m�2 �0.138 10.5
9 e11 e0 9.329 801.90

10 e33 e0 10.198 655.10
11 e0 farads/m 8.854 � 10�12 8.854 � 10�12

Table 2
Physical data of n-type silicon (Si) and germanium (Ge) semiconductors (Sharma and
Thakur, 2006; Maruszewski, 1989).

S. No. Quantity Unit Si Ge

1 qs kg m�3 2.3 � 103 5.3 � 103

2 k GPa 64.0 48.0
3 l GPa 65.0 53.0
4 Dn m2 s�1 0.35 � 10�2 1 � 10�2

5 n0 m�3 1020 1020

6 aT K�1 2.6 � 10�6 5.8 � 10�6

Table 3
Phase velocity for first mode at two different life times in semiconductor–piezoelec-
tric composites.

Wave
number

Si–CdSe Ge–CdSe Ge–PZT

Rh 1 ps 0.1 ps 1 ps 0.1 ps 1 ps 0.1 ps

0.01 234.65 210.08 234.28 212.62 231.13 207.46
0.05 46.93 42.007 46.66 42.54 46.23 41.49
0.1 23.35 20.989 23.33 21.24 23.13 20.74
1.0 2.387 2.103 2.374 2.099 2.376 2.097
2.0 1.257 1.127 1.253 1.071 1.254 1.128
3.0 0.915 0.813 0.873 0.776 0.916 0.837
4.0 0.772 0.676 0.778 0.676 0.779 0.714
5.0 0.708 0.617 0.722 0.631 0.726 0.661
6.0 0.678 0.617 0.663 0.630 0.663 0.589
7.0 0.648 0.617 0.632 0.603 0.649 0.562
8.0 0.633 0.607 0.618 0.595 0.588 0.513
9.0 0.633 0.583 0.594 0.562 0.570 0.513

10.0 0.619 0.582 0.590 0.550 0.567 0.501
5. Solution of secular equation

In general, wave number and hence the phase velocities of the
waves are complex quantities, therefore the waves are attenuated
in space. In order to solve the secular equation (40), we take

c�1 ¼ V�1 þ ix�1Q ð43Þ

where k ¼ Rþ iQ ; R ¼ x
V , and R, Q are real numbers. Here, it may be

noted that V and Q, respectively, represent the phase velocity and
attenuation coefficient of the waves. Using representation (43) in
various relevant relations, the complex roots m2

i ði ¼ 1;2;3Þ can be
computed from Eq. (28) with the help of Cardano method. The roots
m2

i are further used to solve secular equation (40) to obtain phase
velocity (V) and attenuation coefficient (Q) of the surface waves by
using function iteration numerical technique outlined below:

In general the secular equation (40) is of the form c ¼ /ðcÞ
which on using representation (43) leads to a system of two real
equations f ðV ;QÞ ¼ 0 and gðV ;QÞ ¼ 0. In order to apply functional
iteration method we write V ¼ f �ðV ;QÞ and, Q ¼ g�ðV ;QÞ where
the functions f � and g�are selected in such a way that they satisfy
the conditions

of �

oV

����
����þ of �

oQ

����
���� < 1;

og�

oV

����
����þ og�

oQ

����
���� < 1 ð44Þ

for all V, Q in the neighborhood of the root. If ðV0;Q0Þ be an initial
approximation to root, then we can construct the successive
approximations according to the formulae

V1 ¼ f �ðV0;Q 0Þ; Q1 ¼ g�ðV1;Q0Þ
V2 ¼ f �ðV1;Q 1Þ; Q2 ¼ g�ðV2;Q1Þ

..

. ..
.

Vnþ1 ¼ f �ðVn;Q nÞ; Qnþ1 ¼ g�ðVnþ1;Q nÞ

ð45Þ

The sequence ðVn;QnÞ of approximations to the root will converge
to the actual root provided ðV0;Q0Þ lies in the neighborhood of
the actual root. For initial value of c ¼ c0 ¼ ðV0;Q0Þ, the roots
mi ði ¼ 1;2;3Þ are computed from Eq. (28) by using Cardano meth-
od for each value of the non-dimensional wave number (R) for as-
signed frequency. The values of mi so obtained are then used in
secular equation (40) to obtain the current values of V and Q each
time which are further used to generate the sequence (45). The pro-
cess is terminated as and when the condition jVnþ1 � Vnj < e, e
being arbitrarily small number to be selected at random to achieve
the accuracy level, is satisfied. The procedure is continuously re-
peated for different values of non-dimensional wave number (R)
to obtain corresponding values of the phase velocity (V) and atten-
uation coefficient (Q). Thus, the real phase velocity and attenuation
coefficient during the propagation of Rayleigh type waves in the
composite structure under study can be computed from dispersion
relation (40).

5.1. Specific loss

According to Kolsky (1963), in case of sinusoidal plane wave of
small amplitude, the specific loss DW

W equals to 4p times the ratio of
absolute value of the imaginary part of k to the real part of k, i.e.
DW
W ¼ 4p ImðkÞ

ReðkÞ

��� ���, where k is a complex number such that ImðkÞ > 0.
Here

DW
W
¼ 4p

ImðkÞ
ReðkÞ

����
���� ¼ 4p

Q
R

����
���� ¼ 4p

VQ
x

����
���� ð46Þ
6. Special cases of wave solution

In case the semiconductor layer is absent ðh ¼ 0Þ, then the com-
posite structure reduces to a piezoelectric halfspace subject to
stress free, open circuit/closed circuit boundary conditions. The
secular equation (40) and hence (38) in this case reduces to follow-
ing two equations:
y1ðd2b3 � d3b2Þ � y2ðd1b3 � d3b1Þ þ y3ðd1b2 � d2b1Þ ¼ 0 ð47Þ
y1ðd2P3 � d3P2Þ � y2ðd1P3 � d3P1Þ þ y3ðd1P2 � d2P1Þ ¼ 0 ð48Þ
where yi; di; bi and Pi ði ¼ 1;2;3Þ are defined in Eqs. (37) and (30).
Eq. (47) corresponds to the secular equation which governs the

surface wave motion in case of stress free and open circuit (OC)
boundary conditions prevailing at the surface of piezoelectric half-
space, and Eq. (48) refers to the secular equation for stress free and
closed circuit (CC) surface of the piezoelectric halfspace.
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7. Numerical results and discussion

To illustrate the analytical developments in the previous sec-
tion, we now perform some numerical simulations. In order to ex-
plore the effect of different interacting fields and life times of
carriers on the phase velocity, attenuation coefficient and specific
loss of the waves, the secular equation (40) pertaining to the ana-
lytical model under consideration is solved numerically for three
composite strictures namely: (i) Si–CdSe composite, (ii) Ge–CdSe
composite, and (iii) Ge–PZT composite.

The physical data for piezoelectric halfspace and semiconductor
layer is given in Tables 1 and 2, respectively. The numerical com-
putations have been performed by employing the procedure out-
lined in Section 5 with the help of MATLAB programming. Due to
the closeness of results and hence in order to avoid clustering of
profiles in the graphs, the computer simulated values of phase
velocity and attenuation coefficient of first mode of wave propaga-
tion corresponding to two life times tþn ¼ 0:1 ps and tþn ¼ 1 ps are
given in Tables 3 and 4 for comparison purpose, respectively.

In the following discussion, Rh denotes non-dimensional wave
number of the waves traveling at the interface of layer and half-
Table 4
Attenuation coefficient for first mode at two different life times in semiconductor–piezoe

Wave number Si–CdSe Ge–C

Rh 1 ps 0.1 ps 1 ps

0.01 0.000185 0.000149 0.000
0.05 0.000952 0.000640 0.000
0.1 0.002069 0.001530 0.001
1.0 0.049385 0.029900 0.051
2.0 0.043587 0.016900 0.038
3.0 0.005894 0.001837 0.020
4.0 0.029587 0.017100 0.041
5.0 0.028494 0.001849 0.055
6.0 0.007678 0.003390 0.008
7.0 0.263372 0.210434 0.061
8.0 1.362632 0.997555 1.002
9.0 2.154704 1.432021 2.203

10.0 3.123673 1.760425 3.687
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Fig. 2. Variation of phase velocity vers
space while R represents the wave number of Rayleigh surface
waves at free surface of piezoelectric halfspace.

The close inspection of various values of phase velocity and
attenuation coefficient in Tables 3 and 4 reveals that the computer
simulated results for the considered choices of patch and core
materials in the composites are in close agreement at different
wavelengths and life times of the charge carriers in semiconductor
materials. It is clear from the tabulated values that both phase
velocity and attenuation coefficient increase with increasing life
time of the carriers in Si–CdSe, Ge–CdSe and Ge–PZT composites.
However, the magnitude of attenuation coefficient is quite small
in case of Ge–CdSe and Ge–PZT composites at long wavelengths
as compared to that in Si–CdSe composite. This means that the
wave signals travel longer distances in composites having patch
of germanium (Ge) semiconductor than those with silicon (Si)
patch. The trends of physical parameters at short wavelengths
Rh P 1 are comparable in magnitude for all the composites. The
profiles of phase velocity (V), attenuation coefficient (Q) and spe-
cific loss factor (SL) of first three modes of wave propagation in
Si–CdSe composite are plotted with respect to the non-dimen-
sional wave number at tþn ¼ 1 ps in Figs. 2–4 for illustration and
lectric composites.

dSe Ge–PZT

0.1 ps 1 ps 0.1 ps

067 0.000051 0.000099 0.000061
380 0.000221 0.000520 0.002401
031 0.000530 0.001194 0.000550
022 0.022120 0.036233 0.017810
999 0.010227 0.029173 0.007010
481 0.006376 0.015954 0.004750
770 0.021810 0.028880 0.012205
814 0.024100 0.024969 0.001310
349 0.004010 0.004922 0.001424
387 0.512832 0.818264 0.250809
845 0.921977 1.916598 0.885914
237 1.583276 3.275625 1.093255
035 2.150000 3.943320 1.196117

4 5 6 7
Rh

First mode

Second mode

Third mode

us Rh in composite for tþn ¼ 1 ps.
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discussion purpose. The phase velocity versus wave number is
plotted on linear-log scales in Figs. 2, 5 and 8. The effect of different
types of boundary conditions prevailing at the surface of a piezo-
electric halfspace is shown in Figs. 5–7. The variation of phase
velocity and attenuation coefficient in composite structure with
wave number at two values of life time of carriers is presented in
Figs. 8, 9. The results in the physical domain can be obtained with
the help of quantities defined in Eq. (10) from the instant non-
dimensional one.

Fig. 2 shows the variations of phase velocity for the first three
modes of wave propagation with the non-dimensional wave num-
ber (Rh) on linear-log scales in the Si–CdSe composite. It is found
that the phase velocity profiles are clearly dispersive in character
and attenuating in space. The magnitudes of the phase velocity
of all the three modes decreases sharply with increasing wave
number (Rh) in the range 0 6 Rh 6 1 and moderately in the inter-
val 1 6 Rh 6 4 before these become almost steady and uniform for
Rh P 4. Initially the phase velocity has large value for the higher
modes of wave propagation as compared to that of lower modes.

It is worth noting that all the modes start with the higher phase
velocity at long wave lengths and hence shows the cut off frequen-
cies for their appearance/existence. Moreover, the dispersion at
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long wavelengths has been observed, which is useful for device
applications, where long wavelengths (wavelength� layer thick-
ness) are preferred. Figs. 3 and 4 present the variations of attenu-
ation coefficient and specific loss factor as a function of wave
number (Rh). The variations of attenuation as well as specific loss
factor of energy dissipation are nearly oscillatory in the range
0 6 Rh 6 6 which increase sharply for Rh P 6 for all modes. It is
clearly evident from Figs. 3 and 4 that lower modes of interfacial
wave have large value of attenuation coefficient as well as specific
loss factor as compared to that of higher modes.
Fig. 5 represents the variations of non-dimensional phase veloc-
ity versus non-dimensional wave number (R) on linear-log scales
in piezoelectric halfspace under open circuit (OC) and closed circuit
(CC) surface conditions, in the absence of semiconductor layer
ðh! 0Þ. It is observed that the magnitude of the phase velocity de-
creases sharply with wave number in the range 0 6 R 6 1 and
moderately for range 1 6 R 6 5, before it becomes steady and uni-
form at R P 5. It is also found that the phase velocity ðVCCÞ for
closed circuit boundary condition is slightly higher in magnitude
than that for open circuit ðVOCÞ one.
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Fig. 6 shows the variations of attenuation coefficient with wave
number (R) in case of OC and CC boundary of the halfspace when
h! 0. The profiles of attenuation coefficient increase monotoni-
cally in a steady manner for 0 6 R 6 8:5. However, these profiles
are sharply increased for R P 8:5 in both boundary conditions.
Moreover, the attenuation Q OC in case of open circuit is slightly less
than that of closed circuit Q CC for 0 6 R 6 3 and this trend is re-
versed for R P 3. Fig. 7 shows the variation of specific loss factor
of energy dissipation as a function of wave number (R) for OC
and CC boundaries of the piezoelectric halfspace in the absence
of semiconductor layer ðh! 0Þ. It is evident that the specific loss
SLCC for closed circuit boundary possesses almost uniform behavior
whereas specific loss SLOC in case of open circuit increases moder-
ately with increasing wave number and it interlace according to
SLOC < SLCC for 0 6 R 6 3:0 and this trend get reversed beyond
R P 3. The profiles of this physical quantity corresponding to OC
and CC boundary conditions experience sharp increase in their
magnitude for R P 8:5.

Fig. 8 shows the variations of phase velocity with wave number
for first mode of wave propagation in the Si–CdSe composite at car-
rier life time tþn ¼ 1 ps and tþn ¼ 0:1 ps. Here also it is evident that
the magnitude of phase velocity is slightly higher for life time
tþn ¼ 1 ps than that at tþn ¼ 0:1 ps, though the basic behavior of
the phase velocity profiles remains the same. Fig. 9 shows the vari-
ations of attenuation coefficient for first mode of wave propagation
with the non-dimensional wave number in Si–CdSe structure at
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tþn ¼ 1 ps and tþn ¼ 0:1 ps. It is observed that the attenuation is
higher for tþn ¼ 1 ps than that at tþn ¼ 0:1 ps, though the profiles
are similar.

From Figs. 2–9 it can be concluded that the characteristics of
interfacial waves in the Si–CdSe composite are greatly influenced
by life times of carriers and thickness of the semiconductor patch ap-
plied on the piezoelectric (CdSe) core material. Similar type of con-
clusion can be drawn in cases of Ge–CdSe and Ge–PZT composites
which is also evident from simulation data reported in Tables 3
and 4. It is worth reporting here that the replacement of core
material CdSe with PZT under germanium (Ge) patch results in
reduction of phase velocity, however, it slightly increases the atten-
uation of waves propagating at the interface of the composites.
8. Conclusions

In the present study, the functional iteration numerical tech-
nique along with Cardano method has been successfully employed
to solve complex secular equations in order to obtain the phase
velocities, attenuation coefficients and specific loss factors of en-
ergy dissipation. The propagating waves in the considered compos-
ite structure are dispersive in nature. Phase velocity in Si–CdSe,
Ge–CdSe and Ge–PZT composites has been noticed to decrease
sharply at long wavelengths and possess almost uniform and sta-
ble behavior at short wavelengths as in case of piezoelectric half-
space. The oscillatory nature of attenuation coefficient and
specific loss factor for these composites has been observed at large
wavelengths and after a specific value of the wave number these
physical parameters are sharply increased. However, in case of pie-
zoelectric halfspace at small values of wave number, the specific
loss factor first assumes almost uniform behavior and then it in-
creases with the wave number for both open and closed circuit
boundary conditions. In contrast the profiles of attenuation coeffi-
cient show monotonically increasing trend. Moreover, with
increasing degree of harmonics the attenuation and specific loss
factor decreases and reverse trend follows for the phase velocity
in these composite structures. The phase velocity and attenuation
coefficient also increases with life time of carriers for all three
structures. From the comparative analysis presented in tabular
form for all three composites, we conclude that the interfacial
wave signals can travel longer distances in composites having
patch of germanium (Ge) semiconductor in comparison to those
with silicon (Si) patch. Significant modifications of the wave char-
acteristics have been noticed due to the application of semiconduc-
tor patches at the surface of the piezoelectric halfspace in contrast
to free conditions prevailing on it. The study may find applications
in SAW devices and electronics industry.
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