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Adult neural stem cells (NSCs) are involved in regulating mammalian behavior and are controlled by diverse
external stimuli. Improved understanding of the physical location of NSCs and the microenvironmental cues
that regulate their behavior, which combine to define the NSC ‘‘home,’’ or niche, may reveal how to control
their function.
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Although the idea that the adult nervous system contains stem

cells was viewed as a radical one in the not-so-distant past, we

now know that the adult brain contains NSCs that can and do

generate neurons and glial cells on an ongoing basis. These adult

NSCs, which are generated from the precursors that build the

nervous system during development (reviewed in Kokovay

et al., 2008), are maintained into adulthood in at least two niches,

the subventricular zone (SVZ) of the lateral ventricles and the sub-

granular zone (SGZ) in the hippocampus, although there is lively

discussion concerning the possibility that NSCs are more widely

scattered throughout the adult brain (see Gould, 2007). What are

the functions of adult NSCs? Though this topic has recently been

reviewed elsewhere (Zhao et al., 2008), their most important func-

tion is to generate neurons. NSCs in the SVZ generate neuro-

blasts that migrate a significant distance via the rostral migratory

stream (RMS) to the olfactory bulb, where they generate interneu-

rons essential for maintenance of the olfactory bulb. In contrast,

neurons produced in the hippocampal SGZ integrate into the

immediately adjacent granule cell layer, where they are important

for learning and memory. Adult NSCs are also involved in gliogen-

esis, with those in the SVZ generating oligodendrocytes (Jackson

et al., 2006) and those in the SGZ generating astrocytes (Suh

et al., 2007). Finally, although the brain is notoriously bad at

repairing itself, adult NSCs do respond to neural injury with an

attempt at repair, a finding that has led to therapeutic strategies

aimed at recruiting and improving this endogenous ability (Koko-

vay et al., 2008; Zhao et al., 2008).

So what instructions must be provided by the adult NSC niche to

support these functions? First, the niche must maintain adult NSCs

inaquiescent,undifferentiatedstate,particularlybecauseNSCsare

not immortal and can be depleted, for example, by aging. Second,

the niche must provide a neurogenic environment because we

know that NSCs transplanted into the brain outside of these niches

largely differentiate into glial cells. Third, the niche must be struc-

tured so that both the number and type of differentiated progeny

can be modulated in response to a diverse array of physiological

cues, some of which derive at a significant distance (Kokovay

et al., 2008; Zhao et al., 2008). Here, we will review recent progress

delineating how NSC niches accomplish these various functions.

The Adult NSC Niche: From Fractones to Pinwheels
Though the adult NSCs that reside within the SVZ and SGZ are

both primarily involved in generating neurons, these two popula-

tions occupy very different niches. In the SVZ, three populations
of precursors, including adult NSCs, lie adjacent to a layer of

ependymal cells lining the lateral ventricle wall (Figures 1A and

1B). The NSCs (called B cells) are relatively quiescent cells that

express markers reminiscent of embryonic radial precursors, as

well as the astrocyte protein GFAP. B cells give rise to transit-

amplifying cells (called C cells), a more rapidly dividing popula-

tion that is GFAP negative but positive for EGF receptor and

the transcription factor Dlx2. The third population is the neuro-

blasts (called A cells) that express markers of newborn neurons

such as doublecortin and PSA-NCAM. A cells migrate in glial

tubes to the olfactory bulb and generate neurons that integrate

into the neural circuitry. Though earlier studies established the

lineage and anatomical relationships among these populations

(Kokovay et al., 2008), a trio of recent papers has greatly

expanded our understanding of the structure of the adult SVZ

niche (Figure 1B) (Shen et al., 2008; Tavazoie et al., 2008; Mirza-

deh et al., 2008). The first important finding from these studies

was the elucidation of an extensive blood vessel network that

spans the entire SVZ just beneath the ependymal layer and is

closely associated with NSCs and their progeny. Second, these

studies showed that many GFAP-positive NSCs are intercalated

into the ependymal layer and have a short apical process

with a single primary cilium contacting the ventricular wall

and a second long basal process contacting a blood vessel, a

morphology reminiscent of their radial precursor parents

(Figure 1A). Intriguingly, at sites where neural precursors contact

blood vessels, astrocytic end feet are absent, thereby modifying

the blood brain barrier and exposing cells within the SVZ to

blood-born molecules. Finally, by looking at the ventricular wall,

Mirzadeh et al. (2008) showed a remarkable ‘‘pinwheel’’ organi-

zation, with the core of the pinwheel formed by apical processes

of the NSCs and the pinwheel itself composed of two anatomi-

cally distinct types of ependymal cells.

In contrast, the hippocampal SGZ niche has a more laminar

structure and is the home for two types of putative NSCs,

both of which express the precursor marker Sox2 (Figure 1C)

(Suh et al., 2007; Zhao et al., 2008). One of these populations

divides infrequently, expresses GFAP and Sox2, and has

a radial process that spans the adjacent granule cell layer

(radial NSCs or type 1 progenitors). The second population

divides much more frequently, expresses Sox2 but not GFAP,

and displays short processes (nonradial NSCs or type 2

progenitors). The lineage relationship between these two

precursors is not yet clear. These Sox2-positive precursors
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Figure 1. Different Neurogenic Niches in the Mammalian Brain
Schematics of coronal rodent brain sections depict (A) the VZ of the devel-
oping embryonic cortex, (B) the SVZ within adult cortex, and (C) the SGZ within
adult dentate gyrus (see upper-right of each panel for section orientation).
(A) During embryonic cortical neurogenesis, radial precursors contacting
the ventricular surface give rise to neurons directly or via an intermediate (basal
progenitor) and facilitate the migration of newly born neurons along long radial
processes.
(B) The adult SVZ niche is composed of three populations of lineage-related
precursors: the relatively quiescent NSCs (B cells), mitotically active transit-
amplifying cells (C cells), and neuroblasts (A cells) that lie immediately beneath
a monolayer of ependymal cells lining the lateral ventricle. NSCs are interca-
lated into the ependymal layer and are also closely associated with the vascu-
lature. NSCs within the SVZ are in contact with blood-born and CSF-born
factors, with local endothelial cells, microglia, and astrocytes, as well as local
or distal afferent-derived signals. The stem cells are also in contact with
vascular basal laminae-derived fractones that are rich in extracellular matrix
molecules.
(C) The adult SGZ niche is composed of three populations of precursors: the
radial NSCs (type 1 progenitors), nonradial NSCs (type 2 progenitors), and
neuroblasts. Neuroblasts migrate into the adjacent granule cell layer (GCL),
where they mature into neurons.
BV, blood vessel; CP, choroid plexus; CM, cortical mantle; VZ, ventricular
zone; LV, lateral ventricle; SEL, subependymal layer; EL, ependymal layer.
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give rise to neuroblasts that migrate into the adjacent granule

cell layer, where they mature as neurons and integrate into

the hippocampal circuitry. At least some of these Sox2-positive

precursors also self-renew and generate both astrocytes and

neurons in vivo, thereby fulfilling the criteria for stem cells

(Suh et al., 2007). Interestingly, many of the proliferating hippo-

campal precursors are closely associated with the vasculature

(Zhao et al., 2008). It is not known whether the vasculature is

‘‘leaky’’ at these points of interaction, as in the SVZ.

Collectively, these findings indicate that both neurogenic

niches, though distinct in many ways, are built so that NSCs

can receive, integrate, and respond to signals from the outside

world (Figure 1). In both cases, NSCs are (1) closely associated

with the vasculature, (2) adjacent to a variety of neighboring

cells, including their own neuronal progeny, resident mature

astrocytes and microglia, and blood vessel endothelial and

smooth muscle cells, and (3) in close contact with basal lamina

components. For example, SVZ precursors are closely associ-

ated with ‘‘fractones,’’ slender projections of the vascular basal

lamina that are rich in extracellular matrix components like lam-

inin and that might sequester and concentrate growth factors

(Kerever et al., 2007).

One of the most striking aspects of this shared architecture

is that it allows NSCs to respond rapidly to signals that are

generated far away. For example, a pregnancy-induced increase

in olfactory bulb neurogenesis is necessary for appropriate

maternal olfaction (Shingo et al., 2003). In this case, increased

neurogenesis occurs in response to prolactin, a hormone that

is secreted from the anterior pituitary and that likely arrives in

the SVZ via the vasculature. Thus, an animal’s physiological

state, monitored and controlled in one neural location, can regu-

late behavior via a distant NSC intermediate.

Do these findings generalize to humans? Though adult human

NSCs exist and neurogenesis occurs in this species (see refer-

ences in Gould, 2007; Quinones-Hinojosa and Chaichana,

2007), the human niche structure differs from that of rodents.

In humans, the SVZ niche has four layers: an ependymal cell

layer adjacent to the lateral ventricle, a hypocellular gap, an

‘‘astrocyte ribbon’’ containing both astrocytes and adult NSCs,

and a layer demarcating the niche from the adjacent paren-

chyma (Quinones-Hinojosa and Chaichana, 2007). As in rodents,

the human NSCs within this niche live in close proximity to endo-

thelial cells, microglia, ependymal cells, and neuronal processes.

Moreover, human NSCs generate neuroblasts that migrate to

the olfactory bulb (Curtis et al., 2007), although this model is still

the subject of some debate. Thus, although differences exist

between rodents and humans, the niches are apparently suffi-

ciently similar to provide hope that lessons learned in rodents

will be relevant to human therapeutics.

Ependymal Cells and NSCs:
A Back-and-Forth Relationship
Within the forebrain SVZ, NSCs and ependymal cells share

a close anatomical relationship. In fact, earlier studies suggested

that ependymal cells were adult NSCs. However, though this

identification was apparently mistaken (Kokovay et al., 2008),

an intimate functional relationship between SVZ NSCs and epen-

dymal cells is evidenced by the highly organized niche pinwheels

comprised of these two cell types and by the finding that
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ependymal cells synthesize molecules such as pigment epithe-

lium-derived factor and noggin, which regulate the proliferation

and differentiation of adult SVZ NSCs (Kokovay et al., 2008;

Zhao et al., 2008). Recent work has revealed, in addition to this

close anatomical relationship, an unexpected lineage relation-

ship among the two cell types. During development, forebrain

radial precursors generate ependymal cells that line the lateral

ventricles, a capacity that is retained by adult NSCs (Luo et al.,

2008). The converse is also true; although ependymal cells are

normally quiescent, after an ischemic stroke, they move into

the SVZ, where they re-enter the cell cycle and produce olfactory

bulb neurons (Carlen et al., 2009). Thus, ependymal cells appar-

ently ‘‘become’’ neuronal precursors, raising the intriguing possi-

bility that they do so by being recruited into vacant neurogenic

stem cell niches that arise following injury.

Adult NSC Maintenance: A Lifetime Endeavor
Ultimately, the maintenance of any tissue stem cell population is

the result of a complex interplay between intrinsic mechanisms

and extrinsic cues derived from the stem cell niche. In this

regard, like other tissue stem cells, adult NSC maintenance

requires the actions of proteins such as Bmi-1, Tlx, and Sox2

(Kokovay et al., 2008; Zhao et al., 2008). However, emerging

evidence indicates that the adult NSC niche also provides an

environment that ensures maintenance of NSCs for the lifetime

of the animal. Though a thorough consideration of the relevant

growth factors and signaling systems has been published else-

where (Kokovay et al., 2008; Zhao et al., 2008), here we will

consider distinct aspects of two particularly intriguing examples.

The first example highlights the importance of the interaction

between NSCs and the vasculature. As discussed for prolactin-

mediated regulation of neurogenesis during pregnancy, access

to the blood itself provides a means by which systemic signals

can regulate NSC biology. However, the cells that comprise

the vasculature are also in a position to play a regulatory role.

Evidence in support of this model comes from a study by Shen

et al. (2004), who showed that endothelial cells secrete factors

that promote renewal of SVZ NSCs. At the same time, these

endothelial factors biased NSCs to generate more neurons, as

would be predicted if they were to play a role within a neurogenic

niche. Though the relevant factors are not yet defined, it will be

interesting to determine whether they are present only on the

vasculature or whether they are perhaps captured and presented

on vasculature-derived fractones within the niche (Kerever et al.,

2007).

The second example involves sonic hedgehog (Shh). Previous

studies have shown that Shh serves to establish and maintain the

adult NSC pool in both the SVZ and SGZ (reviewed in Kokovay

et al., 2008; Zhao et al., 2008). More recently, Han et al. (2008)

demonstrated that the primary cilium, the site of a Shh-signaling

complex in nonneural cells, was necessary for hedgehog

signaling within the SGZ. This finding is particularly intriguing in

light of the potential sources of Shh within these neurogenic

niches. In particular, in the SVZ, the primary cilia of many

GFAP-positive NSCs project into the ventricular space (Mirza-

deh et al., 2008) (Figure 1B), raising the possibility that the CSF

is one relevant source of Shh. Recent evidence supports this

idea; Shh is indeed present within the adult CSF (Angot et al.,

2008), and the beating of ependymal cilia in the lateral ventricle
moves CSF in a manner that can generate molecular concentra-

tion gradients within the SVZ (Sawamoto et al., 2006). Thus, both

vasculature-derived and CSF-derived signals might play a key

role in regulating adult NSC maintenance and self-renewal.

‘‘Real’’ Astrocytes Direct Differentiation
of Their Astrocyte-like Stem Cell Neighbors
The aforementioned examples demonstrate how different players

within the NSC niche regulate stem cell maintenance. But the

niche must also allow or even instruct appropriate differentiation.

How does this happen? Rather than providing a review of poten-

tial mechanisms (see Kokovay et al., 2008; Zhao et al., 2008), we

will instead focus and expand upon how one niche cell type, the

astrocyte, locally regulates NSC differentiation.

Perhaps the best-characterized example of astrocytes regu-

lating NSC differentiation is found in the SGZ. Within the hippo-

campus, the cell bodies of NSCs are immediately adjacent to the

granule cell layer, and, for the radial NSCs, their processes

extend throughout the entirety of the layer, meaning that these

stem cells make direct contact with both mature granule neurons

and local astrocytes (Figure 1C). The importance of these inter-

actions was shown in an elegant series of papers from the

Gage laboratory (Lie et al., 2005 and references therein);

Wnt3a expressed by mature hippocampal astrocytes directly

instructed SGZ NSCs to generate neurons, and inhibition of

Wnt signaling in vivo decreased hippocampal neurogenesis by

almost 8-fold. Thus, local astrocytes generate one of the key pro-

neurogenic signals in the adult SGZ niche.

Somewhat paradoxically, astrocytes within the SVZ niche

may also promote oligodendrocyte differentiation. In particular,

Jackson et al. (2006) recently showed that SVZ NSCs (B cells)

express PDGFRa and that these NSCs generate both neurons

and oligodendrocytes. Interestingly, genesis of oligodendro-

cytes, but not neurons, was dependent upon PDGF within the

niche. Given that other studies have shown that PDGFA is

produced by astrocytes, these findings suggest that niche

astrocytes might promote neurogenesis via one ligand,

Wnt3a, and oligodendrogenesis via another, PDGFA. There-

fore, this model raises a central question in stem cell biology:

if a stem cell is exposed to different extrinsic cues within the

niche environment and each cue leads to a different outcome,

then how does the cell ‘‘sort them out’’ to enact the appropriate

biological response? Answering this key question will require

more delineation of the complex interactions present within

any stem cell niche.

All Wired Up in the Stem Cell Niche
A common regulatory strategy utilized to maintain tissue homeo-

stasis while also avoiding stem cell depletion is to establish

a negative feedback loop from differentiated progeny back to

the stem cells. In the case of adult NSCs, the primary progeny

are neurons, and so one might predict that a feedback loop

would engage neural circuitry. Recent evidence indicates that

this model is in effect in the brain and that a number of mecha-

nisms have evolved to transmit the negative feedback.

The first of these mechanisms is based upon the remarkable

finding that adult neural precursors express receptors for neuro-

transmitters and that they are ‘‘innervated’’ in that they are in

close contact with the transmitter-containing axons of mature
Cell Stem Cell 4, June 5, 2009 ª2009 Elsevier Inc. 509
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neurons and/or with neuronal/neuroblast cell bodies (Figure 1).

Perhaps the best-characterized example of this model involves

the neurotransmitter GABA. NSCs in both the SVZ and SGZ

express GABA receptors, and GABA has been shown to depo-

larize both NSC populations and thereby inhibit their prolifera-

tion (reviewed in Zhao et al., 2008). The relevant source of

GABA in the SVZ is newly born neuroblasts (type A cells), which

likely secrete GABA spontaneously, thereby providing a direct,

local negative feedback loop from differentiated progeny to their

stem cell parents. In contrast, in the SGZ, the primary source of

GABA is the mature granule cells, and GABA release in this case

would be a direct reflection of neural circuit activity. In a second

example, the axons of midbrain neurons provide dopaminergic

input to the EGFR-positive transit-amplifying cells (C cells) in

the SVZ. Dopamine promotes C cell proliferation, and lesioning

the dopaminergic input decreases precursor proliferation in both

the SVZ and the SGZ (Höglinger et al., 2004). In this case, the

normal physiological rationale is somewhat unclear, but the

disease implications are obvious; the same study shows

a reduction in the number of proliferating precursors in the brain

of Parkinson’s disease patients.

By contrast, a very recent report describes a second way that

neural circuit activity can regulate adult NSC biology. Specifi-

cally, Ma et al. (2009) showed that activity-dependent stimuli,

such as physical exercise, enhance hippocampal neurogenesis

via a mechanism involving induction of Gadd45b expression in

mature hippocampal neurons. Gadd45b then caused demethy-

lation of a number of genes, including the gene encoding BDNF,

a growth factor that regulates hippocampal neurogenesis. Thus,

neural activity epigenetically regulates the biology of neurons in

the vicinity of the niche, and these neurons then regulate NSC-

mediated neurogenesis. This finding has clear implications for

NSCs in the SGZ, but its importance for those in the SVZ is

less clear because their mature neuronal progeny are far

away, within the olfactory bulb. Nonetheless, these findings

uncover a completely distinct way by which neural activity can

regulate NSC biology, reinforcing the concept that there are

multiple, parallel mechanisms at work (reviewed in Zhao et al.,

2008). Whether or not there are additional activity-dependent

mechanisms that allow neural circuitry to control neurogenesis

is a key remaining question.

Conclusions
The idea that the adult nervous system contains NSCs that

generate all of the major neural cell types is a relatively recent

one. Nonetheless, research has now produced an intriguing

view of the locations where these stem cells reside, and how

cues encountered within these sites regulate stem cell behavior

and thus have defined functional NSC niches. Together, these

studies have described how the environment regulates NSCs

and have shown that one way experiences modify behavior is

via NSC-mediated neurogenesis. Hopefully the results will also

ultimately lay the foundation for successful therapeutic strate-

gies that recruit and direct endogenous NSCs.
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