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Abstract

The aim of this work is to provide a complete characterization of a (m, n)-cube. The latter are the pieces of discrete planes
appearing in Theoretical Computer Science, Discrete Geometry and Combinatorics. This characterization in three dimensions is
the exact equivalent of the preimage for a discrete segment as it has been introduced by McIlroy. Further this characterization,
which avoids the redundancies, reduces the combinatorial problem of determining the cardinality of the (m, n)-cubes to a new
combinatorial problem consisting of determining the volumic regions formed by the crossing of planes. This work can find
applications in Imaging, Vision, and pattern recognition for instance.
c⃝ 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In [1] + [2], the following combinatorial result on the Farey vertices FV (m, n) has been suggested:

∃K > 0, such that ∀(m, n) ∈ N∗2
, |FV (m, n)| ≤ K m2n2(m + n) ln2(mn).

But, according to other experimentations, the optimal bound would be of order 6:

∃K > 0, such that ∀(m, n) ∈ N∗2
, |FV (m, n)| ≤ K m2n2(m + n)2.
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And consequently, at best, the cardinality of the pieces of discrete planes of order (m, n) satisfies the following
inequality:

∃K > 0, such that ∀(m, n) ∈ N∗2
,

Um,n

 ≤ K m3n3(m + n) ln2(mn).

For this purpose, the strategy is to directly focus on the Farey vertices [3] with some tools of Number Theory,
Combinatorics and Graph Theory.

In her thesis [4], Debled-Rennesson also studied this problem. Another step forward has been taken by Domenjoud,
Jamet, Vergnaud, and Vuillon in [5] where an exact formula (from combinatorial Number Theory) for the cardinality
of the (2, n)-cubes has been derived. In [3], it was found that the number of straight Farey lines is asymptotically
mn(m+n)

ζ(3)
when m and n go to infinity, and ζ denotes the well-known Riemann Zeta function defined by:

ζ(s) =

+∞
n=1

1
ns on the region {s ∈| ℜ(s) > 1}.

By this formula, it is established that it is impossible to improve the bound of the (m, n)-cubes by the study of Farey
lines only.

Our motivation is to obtain a more precise bound on the cardinality of the (m, n)-cubes by studying a combinatorial
problem.

In his Ph-D thesis, David Coeurjolly [6] introduced a characterization of the preimage of a piece of discrete plane.
He also worked on this subject in [7]. McIlroy, [8], has shown that the preimage of a discrete segment contains all
the necessary informations enabling to characterize a discrete segment. A. Daurat et al. talked about the structure of
polyhedron of this preimage in [9].

If we denote the set of discrete segments of length n, by Sn , we have the following combinatorial result: |Sn| is
exactly equal to the number of regions (the connected components) formed by the Farey rays of order n in the square
[0, 1] × [0, 1]. This is explained in [8]. And we also know [10] that

|Sn| = 1 +

n
i=1

(n − i + 1)ϕ(i)

where ϕ denotes the Euler’s totient function.
In order to extend the notion of preimage of a discrete segment of length n to the three dimensional case of the

pieces of discrete planes (of order (m, n)), our idea is to construct a bijection in order to establish a geometrical link
between a piece of discrete plane (or (m, n)-cube) and a region in three dimensions. The main idea is to incorporate
in a unique set the greatest possible amount of informations in order to avoid redundancies.

Indeed, if we talk about possible redundancies, it is because the case can occur where a given (m, n)-cube is
associated to several Farey vertices [1]. In fact, some experiments have shown that it is almost always the case.

Let [[−m, m]] denotes the set {−m, . . . ,−1, 0, 1, . . . , m} of consecutive integers between −m and m.

Definition 1 ([3]). A Farey line of order (m, n) is a line whose equation is uα + vβ + w = 0 with (u, v, w) ∈

[[−m, m]] × [[−n, n]] × Z, and which has at least 2 intersection points with the frontier of [0, 1]
2. (u, v, w) are the

coefficients. (α, β) are the variables. The set of Farey lines of order (m, n) is denoted by F L(m, n).

Definition 2 ([1]). A Farey vertex of order (m, n) is the intersection of two Farey lines. The set of Farey vertices of
order (m, n), obtained as intersection points of Farey lines of order (m, n), is denoted by FV (m, n).

We recall that ⌊⌋ denotes the integer part, and ⟨⟩ denotes the fractional part.
If a and b are two integers, a ∧ b denotes the greatest common divisor of a and b, and a ∨ b denotes the least

common multiple.

Card(A) or
A

 denotes the cardinality of the set A.

Definition 3 ([1]). The Farey diagram for the (m, n)-cubes of order (m, n) is the diagram defined by the passage of
Farey lines in [0, 1]

2 (see Fig. 1).
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Fig. 1. Farey lines of order (3, 3).

Definition 4 ([11]). The Farey sequence of order n is the set

Fn =


0
  

p

q
,

1 ≤ p ≤ q ≤ n, and p ∧ q = 1


.

We mention [11] as a forthcoming modern reference work on the Farey sequences.

Definition 5 ([1]). A Farey edge of order (m, n) is an edge of the Farey diagram of order (m, n). The set of Farey
edges is denoted by F E(m, n).

Definition 6 ([1]). The Farey graph of order (m, n) is the graph G F(m, n) = (FV (m, n), F E(m, n)).

Definition 7 ([1]). A Farey facet of order (m, n) is a facet of the Farey graph of order (m, n). We denote the set of
Farey facets of order (m, n) by F F(m, n).

Definition 8. A Farey plane of order (l, m, n) is a plane whose equation is uα + vβ + wγ + x = 0 with (u, v, w, x)

∈ [[0, l]] × [[0, m]] × [[0, n]] × Z, and which passes through the cube [0, 1]
3. (u, v, w, x) are the coefficients. (α, β, γ )

are the variables. We denote the set of Farey planes of order (l, m, n) by F P(l, m, n).

Definition 9. The 3D-Farey diagram of order (l, m, n) is the diagram in [0, 1]
3 defined by the Farey planes of order

(l, m, n). We denote the Farey diagram of order (l, m, n) by F D(l, m, n).

Definition 10. The K H -diagrams of order (m, n) is the 3D-Farey diagram of order (m, n, 1). It is denoted by
K H(m, n).

Definition 11. A Volumic Farey region of order (m, n) is a volumic connected component of the K H -diagram of
order (m, n). We denote the set of volumic Farey regions of order (m, n), by V F R(m, n).
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Fig. 2. Examples of two (4, 3)-cubes (red and green). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Let m and n be two positive integers. We let Fm,n denote the set = [[0, m − 1]] × [[0, n − 1]]. Let Um,n denote the set
of all (m, n)-cubes.

Definition 12 ([9]). Let m and n be two positive integers. A (m, n)-pattern is a map w : Fm,n −→ Z. m × n is called
the size of the (m, n)-pattern w. The set of (m, n)-patterns is denoted by Mm,n .

Definition 13 ([9]). Let (α, β, γ ) ∈ [0, 1]
2

× R. The (m, n)-cube wi, j (α, β, γ ) at the position (i, j) of a discrete
plane Pα,β,γ is the (m, n)-pattern w defined by:

w(i ′, j ′) = pα,β,γ (i + i ′, j + j ′) − pα,β,γ (i, j) for all (i ′, j ′) ∈ Fm,n

=

α(i + i ′) + β( j + j ′) + γ


− ⌊αi + β j + γ ⌋ for all (i ′, j ′) ∈ Fm,n

where pα,β,γ (i, j) = ⌊αi + β j + γ ⌋ and

(i, j, pα,β,γ (i, j)),

(i, j) ∈ Z2


defines the discrete plane Pα,β,γ (see

Fig. 2).

We can reduce to the case where γ ∈ [0, 1[, if we consider that γ = ⌊γ ⌋ + ⟨γ ⟩ in Definition 13.

Proposition 1 ([9]).

1. The (k, l)th point of the (m, n)-cube at the position (i, j) of the discrete plane Pα,β,γ can be computed by the
following formula:

wi, j (α, β, γ ) (k, l) =


⌊αk + βl⌋ if ⟨αi + β j + γ ⟩ < Cα,β

k,l
⌊αk + βl⌋ + 1 otherwise

where Cα,β
k,l = 1 − ⟨αk + βl⟩.
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2. The (m, n)-cube wi, j (α, β, γ ) depends only on the interval [Bα,β
h , Bα,β

h+1[ containing ⟨αi + β j + γ ⟩, where the

Bα,β
h are the numbers Cα,β

k,l ordered in ascending order.

3. For all h ∈ [[0, mn − 1]], if [Bα,β
h , Bα,β

h+1[ is non-empty, then there exists i, j such that ⟨αi + β j + γ ⟩ ∈

[Bα,β
h , Bα,β

h+1[. Hence the number of (m, n)-cubes in the discrete plane Pα,β,γ satisfiesCm,n,α,β

 = card


Cα,β
k,l

(k, l) ∈ Fm,n


≤ mn.

Corollary 1 ([9]).

1.

∀(α, β, γ ) ∈ [0, 1]
2
× [0, 1[, w0,0(α, β, γ ) = w0,0(α, β, ⟨γ ⟩).

2.

∀(α, β, γ ) ∈ [0, 1]
2
× [0, 1[, ∀(i, j) ∈ Z2, wi, j (α, β, γ ) = w0,0(α, β, αi + β j + γ )

= w0,0(α, β, ⟨αi + β j + γ ⟩).

3. The set of (m, n)-cubes of the discrete planes Pα,β,γ depends only on (α, β), and is denoted by Cm,n,α,β .

2. Main results

According to the axiom of choice, there is a choice function Ch:

Ch : Um,n −→ [0, 1]
2
× [0, 1[

w −→ (αw, βw, γw)

and Ch is an injection.

(αw, βw, γw) ∈


(α, β, γ ), w0,0(α, β, γ ) = w


By reducing the set of arrival values to the values taken by Ch, Ch is a bijection from Um,n to


(αw, βw, γw), w ∈

Um,n


.

Definition 14. Let (i, j) = (0, 0). The characteristic of a (m, n)-cube w = w0,0(α1, β1, γ1) is the set of (α, β, γ ) ∈

[0, 1]
2
× [0, 1[ such that:
w0,0 (α, β, γ ) = w0,0(α1, β1, γ1)

∀(k, l) ∈ Fm,n, γ < Cα,β
k,l ⇔ γ1 < Cα1,β1

k,l
∀(k, l) ∈ Fm,n, ⟨αk⟩ + ⟨βl⟩ < 1 ⇔ ⟨α1k⟩ + ⟨β1l⟩ < 1.

We denote it by χ(w, Ch(w)), with Ch(w) = (α1, β1, γ1):(α, β, γ ) ∈ [0, 1]
2
× [0, 1[,


w = w0,0(α, β, γ )

∀(k, l) ∈ Fm,n, γ < Cα,β
k,l ⇔ γ1 < Cα1,β1

k,l
∀(k, l) ∈ Fm,n, ⟨αk⟩ + ⟨βl⟩ < 1 ⇔ ⟨α1k⟩ + ⟨β1l⟩ < 1

where (α1, β1, γ1) = Ch(w)

 .

We denote by T (m, n)[i, j] = T (m, n)[0, 0] the set of the characteristics of the (m, n)-cubes.

Lemma 1.

∀w ∈ Um,n, χ(w, Ch(w)) ≠ ∅.
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Proof. For all w = w0,0(α1, β1, γ1) ∈ Um,n (with (α1, β1, γ1) = Ch(w)), we have:

(α1, β1, γ1) ∈


(α, β, γ ) ∈ [0, 1]

2
× [0, 1[, w0,0(α, β, γ ) = w


and 

∀(k, l) ∈ Fm,n, γ1 < Cα1,β1
k,l ⇔ γ1 < Cα1,β1

k,l
∀(k, l) ∈ Fm,n, ⟨α1k⟩ + ⟨β1l⟩ < 1 ⇔ ⟨α1k⟩ + ⟨β1l⟩ < 1.

So, (α1, β1, γ1) ∈ χ(w, Ch(w)). �

Proposition 2. Let (i, j) = (0, 0) ∈ Fm,n . Then,

f : T (m, n)[0, 0] −→ Um,n
χ(w, Ch(w)) −→ w0,0(Ch(w))

is a bijection.

Let us define O(w, Ch(w)) as:

O(w, Ch(w)) =

(α, β, γ ) ∈ [0, 1]
2
× [0, 1[,


∀(k, l) ∈ Fm,n, ⌊αk⌋ + ⌊βl⌋ = ⌊α1k⌋ + ⌊β1l⌋
∀(k, l) ∈ Fm,n, γ < Cα,β

k,l ⇔ γ1 < Cα1,β1
k,l

∀(k, l) ∈ Fm,n, ⟨αk⟩ + ⟨βl⟩ < 1 ⇔ ⟨α1k⟩ + ⟨β1l⟩ < 1
where (α1, β1, γ1) = Ch(w)

 .

Proposition 3.

∀w ∈ Um,n, χ(w, Ch(w)) = O(w, Ch(w)).

Proof. If we fix a w = w0,0(Ch(w)) where (α1, β1, γ1) = Ch(w), we can study his characteristic:(α, β, γ ) ∈ [0, 1]
2
× [0, 1[,


w = w0,0(α, β, γ )

∀(k, l) ∈ Fm,n, γ < Cα,β
k,l ⇔ γ1 < Cα1,β1

k,l
∀(k, l) ∈ Fm,n, ⟨αk⟩ + ⟨βl⟩ < 1 ⇔ ⟨α1k⟩ + ⟨β1l⟩ < 1

where (α1, β1, γ1) = Ch(w)

 .

The membership conditions of (α, β, γ ) with this set can be rewritten:

∀l ∈ [[0, n − 1]]
∀k ∈ [[0, m − 1]], w0,0(α1, β1, γ1)(k, l) =


⌊αk + βl⌋ if γ < Cα,β

k,l
⌊αk + βl⌋ + 1 in other cases


.

So,

∀l ∈ [[0, n − 1]]
∀k ∈ [[0, m − 1]], ⌊αk + βl⌋ =


w0,0(α1, β1, γ1)(k, l) if γ < Cα,β

k,l
w0,0(α1, β1, γ1)(k, l) − 1 otherwise


.

Under the properties of the characteristics of the (m, n)-cube w0,0(α1, β1, γ1), we deduce that the system can be
rewritten:

∀l ∈ [[0, n − 1]]
∀k ∈ [[0, m − 1]], ⌊αk + βl⌋ =


w0,0(α1, β1, γ1)(k, l) if γ1 < Cα1,β1

k,l
w0,0(α1, β1, γ1)(k, l) − 1 otherwise


.

So, in both cases, because of Proposition 1, we derive:

∀l ∈ [[0, n − 1]], ∀k ∈ [[0, m − 1]], ⌊αk + βl⌋ = ⌊α1k + β1l⌋.

Then, with the last condition on χ(w, Ch(w)), it yields the claim. �
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For the first time, and by analogy with the works of McIlroy in [8], for the first time, we are able to give a formula
(which has to be precised) giving the cardinality of the (m, n)-cubes, as a combinatorial identity:

Proposition 4.Um,n
 =

O(w, Ch(w)), w ∈ Um,n

.
Proof. Follows from Propositions 2 and 3. �

2.0.1. Study of O(w, Ch(w))

I f ∈ Um,n , let us define O′(w, Ch(w)) as follows:

O′(w, Ch(w)) =


(α, β, γ ) ∈ [0, 1]

2
× [0, 1[,



∀k ∈ [[0, m − 1]], ⌊αk⌋ = ⌊α1k⌋

∀l ∈ [[0, n − 1]], ⌊βl⌋ = ⌊β1l⌋

∀(k, l) ∈ Fm,n,

αk + βl < 1 + ⌊αk⌋ + ⌊βl⌋
⇔

α1k + β1l < 1 + ⌊α1k⌋ + ⌊β1l⌋

∀(k, l) ∈ Fm,n,

γ < 1 − αk − βl + ⌊αk + βl⌋
⇔

γ1 < 1 − α1k − β1l + ⌊α1k + β1l⌋
where (α1, β1, γ1) = Ch(w)


.

Proposition 5. Let w ∈ Um,n . Then,

O′(w, Ch(w)) = O(w, Ch(w)).

Proof. The equation

∀(k, l) ∈ Fm,n, ⌊αk⌋ + ⌊βl⌋ = ⌊α1k⌋ + ⌊β1l⌋

gives, in particular, that

∀k ∈ [[0, m − 1]], ⌊αk⌋ = ⌊α1k⌋

and,

∀l ∈ [[0, n − 1]], ⌊βl⌋ = ⌊β1l⌋ .

Reciprocally, if
∀k ∈ [[0, m − 1]], ⌊αk⌋ = ⌊α1k⌋

∀l ∈ [[0, n − 1]], ⌊βl⌋ = ⌊β1l⌋

then

∀(k, l) ∈ Fm,n, we have ⌊αk⌋ + ⌊βl⌋ = ⌊α1k⌋ + ⌊β1l⌋ .

The remaining of the assertion lies on the fact that:

Cα,β
k,l = 1 − ⟨αk + βl⟩

= 1 − αk − βl + ⌊αk + βl⌋ . �

Corollary 2.

h :


O′(w, Ch(w)), w ∈ Um,n


−→ Um,n

O′(w, Ch(w)) −→ w

is a bijection.
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Corollary 3.O′(w, Ch(w)), w ∈ Um,n

 =

Um,n

.
Lemma 2.

(α, β, γ ) ∈ O′(w, Ch(w)) ⇒ ∀(k, l) ∈ Fm,n, ⌊αk + βl⌋ = ⌊α1k + β1l⌋ .

Proof.

∀(k, l) ∈ Fm,n, we have: ⌊αk + βl⌋ =


⌊αk⌋ + ⌊βl⌋ if ⟨αk⟩ + ⟨βl⟩ < 1
⌊αk⌋ + ⌊βl⌋ + 1 if ⟨αk⟩ + ⟨βl⟩ ≥ 1

=


⌊α1k⌋ + ⌊β1l⌋ if ⟨α1k⟩ + ⟨β1l⟩ < 1
⌊α1k⌋ + ⌊β1l⌋ + 1 if ⟨α1k⟩ + ⟨β1l⟩ ≥ 1

= ⌊α1k + β1l⌋ . �

Now, we can express the fact differently:

O′(w, Ch(w))

=



(α, β, γ ) ∈ [0, 1]
2
× [0, 1[,



∀k ∈ [[0, m − 1]], ⌊αk⌋ = ⌊α1k⌋

∀l ∈ [[0, n − 1]], ⌊βl⌋ = ⌊β1l⌋

∀(k, l) ∈ Fm,n,

αk + βl + 0γ < 1 + ⌊α1k⌋ + ⌊β1l⌋
⇔

α1k + β1l + 0γ1 < 1 + ⌊α1k⌋ + ⌊β1l⌋

∀(k, l) ∈ Fm,n,

αk + βl + γ < 1 + ⌊α1k + β1l⌋
⇔

α1k + β1l + γ1 < 1 + ⌊α1k + β1l⌋
where (α1, β1, γ1) = Ch(w)


.

Remark 1. We notice that this last expression of the characteristics for a (m, n)-cube is interesting as the right
members of the inequalities defining the characteristics are independent of (α, β).

So, by Corollary 3, and by using the fact that the number of sets of the form O′(w, Ch(w)) is lower than
V F R(m, n)

,
we derive the main theorem:

Theorem 1.

∀(m, n) ∈ N∗2
,

Um,n

 ≤

V F R(m, n)

.
3. Conclusion and scope

In this paper, we have shown that it is possible to completely characterize a (m, n)-cube by a unique set. By
adding other conditions in our definition of geometrical characterization, we have more informations to characterize
the (m, n)-cube, and the obtained set remains enough general, because it is again defined by Farey planes of order
(m, n, 1).

If we consider the derived sets, of the type O′(w, Ch(w)), they are formed by some Farey planes of order (m, n, 1).
This shows that the upper bound for the cardinality of the (m, n)-cubes, can be in particular bounded by the number
of volumic connected components formed in the K H -diagram of order (m, n). Hence,

∀(m, n) ∈ N∗2
,

Um,n

 ≤

V F R(m, n)

.
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