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Abstract

In this paper, new classes of generaliz&dd, p, d)-type | functions are introduced for differen-
tiable multiobjective programming. Based upon these generalized functions, first, we obtain several
sufficient optimality conditiondor feasible soltion to be an efficient or weak efficient solution.
Second, we prove weak and strong duality theorems for mixed type duality.
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1. Introduction

In recent years, there has beam increasing interest in geralizations of convexity
in connection with sufficiency and duality ioptimization problems. It has been found
that only a few properties of convex functions are needed for establishing sufficiency and
duality theorems. Using the properties needed as definitions of new classes of functions,
it is possible to generalize the notion of convexity and to extend the validity of theorems
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to larger classes of optimization problemsrSequently, several classes of generalized
convex functions are introduced in literature. More specifically, the concept of invexity
was introduced by Hanson [4]. Later, Kaul and Kaur [6] presented strictly pseudoinvex,
pseudoinvex and quasiinvex functions. In [5], Hanson and Mond defined two new classes
of functions called type | and type Il functions. Rueda and Hanson [11] have presented
pseudo-type | and quasi-type | functions. Other classes of generalized type | functions
have been introduced [2,7].

The concept of(F, p)-convexity was introduced by Preda [10] as extensionFef
convexity [4] andp-convexity [14]. In recent papsy Aghezzaf and Hachimi [1] has
derived some sufficient optimality conditis and mixed type duality results involving
generalized F, p)-convexity, they [2] has also derived some duality results involving gen-
eralized type | functions, and Liang et al. [8] defindd &, p, d)-convex functions, a new
class of functions that unifies several concepts of generalized convexity.

Consider the following nonlinear multiobjective programming problem:

(MOP)  minimizef (x) = (f1(x), ..., fp(x)),
subjectto xe A= {x eX|gx) < 0},

whereX is an open subset &”" and f : X — R”, g: X — RY are differentiable functions
atx € A.

In this paper, we introduce new generalized classes of type | functions, called
(F,a, p,d)-type |, by combining the concepts of («, p, d)-convexity [8] and general-
ized type | functions [2,4,7]. The sufficieaptimality conditions are obtained for problem
(MOP) involving generalizedH, «, p, d)-type |. Duality results are also obtained by asso-
ciating a mixed type dual problem [15] with the problem (MOP).

Notations. Throughout this paper we use the following notations. The indexPset
{1L,2,....,p}and Q ={1,2,...,q}. Forx € A, the index setE = {j | g;(x) =0} and
g denotes the vector for active constraintsxlfandy € R”, thenx < y & x; <y,
i=1....nx<ysx<yandx#y,x<y&xi<y,i=1,...,n, xy or x'y de-
note the inner product.

For the multiobjective programming problem (MOP), the solution is defined in terms of
a (weak) efficient solution in the following sense [13]:

Definition 1. We say thatc € A is an efficient solution for problem (MOP) if and only if
there exists na € A such thatf (x) < f(x).

Definition 2. We say thak € A is a weak efficient solution for problem (MOP) if and only
if there exists no € A such thatf (x) < f(x).

Weak efficient solutions are often usefulce they are completely characterized by
scalarization [12].
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2. Generalized (F, a, p, d)-typel functions

In this section we consider a general type of convex functions, nat#€ly, p, d)-
type | functions, an extension of generalized type | functions presented in [2] using
(F, a, p, d)-convexity presented in [8].

Definition 3. A functional F: X x X x R" — R is sublinear if for any, x € X,
F(x,x;a14+a2) S F(x,x;a1) + F(x,x;a2) Vai, a2 e R", (1a)
F(x,x;aa)=aF(x,X;a) VaeR, « 20, YaecR". (1b)

Let F be a sublinear functional and the functioffs= (f1,..., f,):X — R? and

h=(h,...,h;): X - R’ are differentiable ak € X. Let p = (o1, p?), wherep! =

(p1,...,pp) €RP, p% = (014p, -+ prp) €ER". Leta = (o}, @?) whereal: X x X —

Ry \ {0}, 0?: X x X — R, \ {0}, and letd(-,-): X x X — R.

For a vector-valued functioyi : X — R?”, the symbolF (x, x; V f(x)) denotes the vec-
tor of components (x, x; V f1(x)), ..., F(x, %; V f,(¥)).

Definition 4. (f, k) is said F, «, p, d)-type | atx, if for all x € A we have
f@) = f@) 2 F(x, % o' (x, DV (@) + pld?(x, %), (2a)
—h(X) 2 F(x, %; o®(x, $)VA(X)) + p2d?(x, X). (2b)
Definition 5. (f, k) is said pseudoquask( «, p, d)-type | atx, if for all x € A we have
f)<fx) = F(x, o atx, )‘C)Vf()?)) + pldz(x, x) <0, (3a)
~h(@) S0 =  F(x,%a?(x,X)VhE)) + p2d?(x, %) £0. (3b)
If in the above definition, inequality (3a) is satisfied as
fOSfE = F(x, 5o, HVFE)+ ptd?(x, %) <0, (3c)
then we say thatf, &) is strictly pseudoquask «, p, d)-type | atx.

Definition 6. (f, k) is said weak strictly-pseudoquadi,(«, p, d)-type | atx, if for all
x € A we have

fOSfE = F(x, 5o, HVFE) + ptd?(x, %) <0, (4a)
~h(@) S0 = F(x,%a?(x,X)VhE)) + p2d?(x, %) £0. (4b)

Definition 7. (f, h) is said strong pseudoquadi,(, p, d)-type | atx, if for all x € A we
have

fOSFE = Fx ol HVIE)+pld?(x, %) <0, (5a)
~h(®)£0 = F(x,%a?(x,)Vh(E)) + p2d?(x, %) < 0. (5b)

If in the above definition, inequality (5a) is satisfied as
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fO <f@ = F(oial(, HVFE)+pld?(x. %) <0, (5¢)
then we say thatf, h) is weak pseudoquask( «, p, d)-type | atx.
Remark 8. Note that for the scalar objective functions the class of pseudoquasi p, d)-

type |1, the class of weak strictly-pseudoquasi ¢, p, d)-type |, and the class of strong
pseudoquasiK, «, p, d)-type | functions coincide.

Definition 9. (f, h) is said sub-strictly-pseudoquasi,(«, p, d)-type | atx, if forall x € A
we have

fOSFE) = F(x 5ol (s DVFE) + pld?(x, ©) <0, (6a)
~h() <0 = F(x,%a?(x,X)Vh(E)) + p2d?(x, %) < 0. (6b)

Definition 10. (f, k) is said weak quasistrictly-pseudd (o, o, d)-type | atx, if for all
x € A we have

fOSFE = FloGalx, HVFE) +pld?(x, 5 20, (7a)
~h(®) S0 = F(x,%o?(x,X)VhE)) + p?d?(x, %) <0. (7b)

Definition 11. (f, k) is said weak quasisemi-pseuda ¢, o, d)-type | atx, ifforall x € A
we have

fOSf@® = Flx,%ar(, HVE)+p'd?(x, ) 20, (8a)
—h(® S0 =  F(x,%a?(x, HVAE) + p2d?(x, %) <. (8b)

Definition 12. (f, k) is said weak strictly-pseudd(«a, p, d)-type | atx, if for all x € A
we have

fOSfE = F(x, 5o, HVFE) + ptd?(x, %) <0, (9a)
—h(® S0 =  F(x,%a?(x, HVAE) + p2d?(x, %) <O. (9b)

3. Sufficient optimality conditions

In [1], Aghezzaf and Hachimi considerechamber of sufficient optimality conditions
which depend on generalizéfl, p)-convexity. We adapt these results to the classes of gen-
eralized ¢, «, p, d)-type | functions. Moreover, we present a special sufficient optimality
conditions for a feasible point to be weak efficient.

Theorem 13. Suppose that there exists a feasible solutidor (MOP)and vectors: € R™
andv € R? such that
iV f(x)+1Vg(x) =0, (10a)
vg(¥) =0, (10b)
i>0, v20. (10c)
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If (f,gE) is strong pseudoquasiF, o, p, d)-type | atx with iplal(-, %)™t + vgp? x
a?(-,¥)~1 >0, thenx is an efficient solution fofMOP).

Proof. Suppose that is not an efficient solution for (MOP). Then, there exist A such
that £ (x) < f(x), ge(x) < gp(x). From the hypotheses dif, gz), we have

F(x, %0t (x, OV £(D) + ptd?(x, ¥) <0, (11a)

F(x, % o?(x, $)Vge(®)) + p%d?(x, %) £ 0. (11b)
So,

at(x, ) F (x, ¥; V(%)) < —pd?(x, %), (12a)

@?(x, %) F (x, ¥; Vg (X)) £ —p2d?(x, ). (12b)

Multiplying (12a) and (12b) withieX(x, %)~ andize?(x, ¥) 1, respectively, we get
iF(x,% V(X)) < —iplatx, 5)1d%(x, %), (13)
DEF(x, % Vgp(%)) £ —gpe(x, ¥)1d?(x, ¥). (14)

By the sublinearity off', we summarize to get
F(x, x;uVf(x)+ ﬁVg()E)) < ﬁF(x, X Vf(i)) + EEF(x, X; VgE()E))

< —[aptat(x, )™t + vppPeP(x, ©) " ]d%(x, ¥).

Sinceiiplal(x, ¥) 1+ vg p2?(x, ¥)~1 = 0, the above inequalities give

F(x,x;aVf(x)+0Vg(x)) <0,

we obtain a contradiction to (10a) becaudg, x; 0) = 0. Hencex is an efficient solution
for (MOP). O

An interesting case not covered by Theorem 13 above is the case whate) is a
solution of (10) but the requirement that> 0 is not made. This is given by the follow-
ing two theorems, where instead of requiring that 0, we enforce other the convexity
conditions on(f, gg).

Theorem 14. Suppose that there exists a feasible solutidor (MOP)and vectors: € R™
andv € R? such that

iV f(¥) 4+ 1Vg(X) =0, (15a)
5g(%) =0, (15b)
i>0, ©2=0. (15c)

If (f,gr) is weak strictly-pseudoquasi, o, p, d)-type | atx with iplal(, %)t +
vE p2a?(-,¥)~1 > 0, thenx is an efficient solution fofMOP).
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Proof. Assume that is not an efficient solution for (MOP). Then, there exists A such
that f(x) < f(x). Sincegg(x) =0 and(f, gr) is weak strictly-pseudoquask(«, p, d)-
type | atx, we have

F(x, % o*(x, ©)VF(®)) + prd?(x, %) <0,
F(x, % o?(x, $)Vge(®)) + p%d?(x, %) £ 0,

and now the proof is similar to that of Theorem 131

Theorem 15. Suppose that there exists a feasible solutidar (MOP)and vectors: € R™
andv € R? such that

iV f (%) + Vg (x) =0, (16a)
bg(x) =0, (16b)
@@,7) =0,  g>0. (16¢)

If (f,gr) is weak quasistrictly-pseud@F, o, p, d)-type | atx with iplal(, %)t +
vEp20?(-, %)~ > 0, theni is an efficient solution fofMOP).

Proof. Assume that is not an efficient solution for (MOP). Then, there exists A such
that f(x) < f(x). Sincegg(x) =0 and(f, gr) is weak quasistrictly-pseudd(«, p, d)-
type | atx, we have

F(x, % a'(r, )V f () + p'd?(x, %) 20,
F(x, % 0?(x, ©)VgEe (X)) + p2d*(x, %) <0,
and now the proof is similar to that of Theorem 133

Remark 16. Similarly, we can prove more results like Theorems 13-15 by varying the
convexity condition or( f, gg) and by changing the sign afandv.

Itis obvious that the Theorems 13 and 14 hold for weak efficient solutions too. However,
it is important to know that the convexity assumptions of Theorems 13 and 14 can be
weakened for weak efficient solutions.

Theorem 17. Suppose that there exists a feasible solufidar (MOP) and vectors: € R”
andv € RY such that the tripletx, i, v) satisfies systetf10) of Theoreml3. If (f, gg) is
weak pseudoquaéF, «, p, d)-type | atx with iiplal(-, %)L + g p2a?(-,¥)~1 >0, then
X is a weak efficient solution fgMOP).

Proof. Assume thak is not a weak efficient solution for (MOP). Then, there exists A
such thatf(x) < f(x). Sincegg(x) = 0 and(f, gg) is weak pseudoquasF(«, p, d)-
type | atx, we have

F(x, % a'(r, )V f () + p'd?(x, %) <O,
F(x, % 0?(x, ©)Vgp(®) + p2d%(x, %) <0,
and now the proof is similar to that of Theorem 131
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Theorem 18. Let x be a feasible solution fofMOP). If there existz € R?, v € R? such
that the triplet(x, i, v) satisfies syster{i5) of Theoreml4 and (f, gg) is pseudoquasi
(F,a, p,d)-type | atx with iiplal(-, ©) 1+ 0 p%e?(-, ¥)~1 2 0, theni is a weak efficient
solution for(MOP).

Proof. Suppose that is not a weak efficient solution for (MOP). Then, there existsA
such thatf(x) < f(x). Sincegg(x) = 0 and(f, gg) is pseudoquasiK, «, p, d)-type |
atx, we have

F(x, %0t (x, OV F(D) + ptd?(x, %) <0,
F(x, % a®(x, H)Vge (%)) + p°d?(x, %) 20,

and now the proof is similar to that of Theorem 143

Remark 19. The importance of Theorems 17 and 18 lies in the fact that a similar result
does not necessarily hold for efficient solutions.

4. Mixed type duality

Let J1 be asubset of andJ> = Q/J1, and lete be the vector oR” whose components
are all ones.

We consider the following mixed type dual of (MOP) defined in Xu [15]:
(XMOP)  maximizef (y) + vy, 87, (e,

subjectto uVf(y)+vVg(y) =0, (17a)
v,84,(y) =0, (17b)
V>0, (17¢)
uz0, ue=1. (17d)

As pointed out by Xu [15], we get a Mond—Weir dual fér = ¢ and a Wolfe dual for
Jo =@ in (XMOP), respectively, while in (GMOP) in Section 4 of [2] a Wolfe dual cannot
be obtained by specifyingy there. Besides, the dual there has more constraints, in general.

Theorem 20 (Weak duality).Assume that for all feasible for (MOP) and all feasible
(y, u, v) for (XMOP), any of the following holds

(@) u>0,and(f(-) +vsg5 (e, v1,815(-) is strong pseudoquatF, o, p, d)-type | aty
with upe(-, y) =t + p%a?(, y)71 2 0;

(b) u>0,and(uf(-) +vyngs (), v5,85 () is pseudoquadiF, o, p, d)-type | aty with
prat(, ) ~t+ pPa?(, )7tz 0.

Then the following cannot hald

<) +vngnye. (18)
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Proof. Suppose contrary to the result of the theorem that (18) holds. Simedeasible
for (MOP) andv = 0, (18) implies that

f(X) + vjlgjl(x)e < f(y) + Ujlgjl(y)e (19&)
hold. Since(y, u, v) is feasible for (XMOP), it follows that

_Ulzg.fz(y) é 0. (19b)
By hypothesis (a) and (19), we have

F(x, y; o0, N[VFO) + v Ver ()e]) + prd?(x, y) <0, (202)

F(x, y; a%(x, y)Vs,g5() + p%d%(x, y) £ 0. (20b)
Sinceal(x, y) > 0,a?(x, y) > 0 andu > 0, the inequalities (20) give

F(x,y;uV ) +v,Ven(y) < —at(x,y) uptd®(x, ), (21a)

F(x,y;v5,Vg,(0)) < —a?(x, y)1p2d?(x, y). (21b)

By sublinearity ofF’, we obtain
F(x,y:uVf() +vVg(y) < —[uptet(x, y) "t + p?a®(x, y) Hd?(x, ).
Sinceuplal(x, y) 1+ p22(x, y)~1 > 0, we have

F(x,y;uVf() +vVg() <0 (22)

which contradicts the duality constraint (17a) becakige, x; 0) = 0. Hence, (18) cannot
hold.
On the other hand, multiplying (19a) with> 0, we get

uf (x) +vpgn(x) <uf(y)+vngny). (23)
When hypothesis (b) holds, igealities (19b) ad (23) imply

F(x,y; o0t G, »[uV £() + v, Ven()]) + prd?x, y) <0, (24a)

F(x,y: 02(x, y)Vvy,85,(y)) + p?d?(x, y) £ 0. (24b)
Sinceal(x, y) > 0 ande?(x, y) > 0, the inequalities (24) give

F(x.y:uV () +v,Ven () < —atx, y) 7 pld?(x. ). (25a)

F(x,y;v,V85(0) £ —a?(x, y) L p2d?(x, y). (25b)

By sublinearity ofF’, we obtain

F(x,y;uV f(y) +vVeW) < —[plat(r, ™+ p%a?(x, )" d?(x, ).
So we also have (22) which contradicts the duality constraint (17a).
We need the conditiom > 0 in Theorem 20. In order to get the results without the con-

dition u > 0, other convexity assumption should be enforced, which leads to the following
theorem.
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Theorem 21 (Weak duality).Assume that for all feasible for (MOP) and all feasible
(y, u, v) for (XMOP), any of the following holds

@) (fO)+vyen()e, vig,(-) is weak strictly-pseudoqua@, «, p, d)-type | aty with
uptat(, y) "t + p?a?(, )7t 2 0;

(b) (uf() + vygn(),vr8s(-) is strictly pseudoquasiF,«, p, d)-type | aty with
prat(, )t + Pyt 20,

Then the following cannot hold
)< ) +vngnye. (26)

Proof. Suppose contrary to the result of the theorem that (26) holds. Sineéeasible
for (MOP) andv = 0, (26) implies that

F) +vpgne< f(y)+vngn(ye (27a)
hold. Since(y, u, v) is feasible for (XMOP), it follows that

—v5,85,(Y) <0 (27b)
By hypothesis (a) and (27), we have

F(x,y; 0, [VFO) + v, Vene]) + prd*(x,y) <0, (28a)

F(x,y; 02(x, y)Vs,g5 () + p?d?(x, y) £ 0. (28b)
Sinceal(x, y) > 0,a?(x, y) > 0 andu > 0, the inequalities (28) give

F(x, y;uV f(3) +v,Ven () < —a'(x, y) uptd?(x, ), (29a)

F(x,y;v5,Vg,(0)) £ —a?(x, y) Lp%d?(x, ). (29b)

By sublinearity ofF’, we obtain
F(x,y;uV f(3) +vVg()) < —[upret(x, y) ™ + p??(x, y) Hd?(x, y).
Sinceuplal(x, y)~1 + p2?(x, y)~1 = 0, we have

F(x,y;uVf(y)+vVg(y) <0 (30)

which contradicts the duality constraint (17a) becakige, x; 0) = 0. Hence, (26) cannot
hold.
On the other hand, multiplying (27a) with we get

uf(x) + U.flgfl(x) § Mf(y) + Uflgfl(y)~ (31)
When hypothesis (b) holds, igaalities (31) ad (27b) imply

F(x,yi ot [uV f(0) + v, Ver()]) + prd?x, y) <0, (32a)

F(x,y; 0?(x, y)Vvs,85,() + pd?(x, y) £ 0. (32b)

Sinceal(x, y) > 0 ande®(x, y) > 0, the inequalities (32) give



M. Hachimi, B. Aghezzaf / J. Math. Anal. Appl. 296 (2004) 382—-392 391

F(x,y;:uV f(y) + v, Ven ) < —at(x, y) pld?(x, y), (332)
F(x,y;v5,Vg,(0)) < —a?(x, y)1p2d?(x, y). (33b)
By sublinearity ofF’, we obtain
F(x,y;:uV f(y) +vVe) < —[plet (e, )7+ p%a?(x, y) " Hd%(x, ).
So we also have (30) which contradicts the duality constraint (17a).
Corollary 22. Let (3, iz, v) be feasible solution fofXMOP) such thatv;, g5, (¥) = 0 and
assume thayp is feasible for(MOP). If weak duality(any of Theoren20 or 21) holds

betweenMOP) and (XMOP), theny is efficient for(MOP) and (3, i, v) is efficient for
(XMOP).

Proof. The proofis similar to these of Egudo [3, Corollaries 1, 2

Before proceeding to establish strong duality results, we first state below the generalized
constraint qualification [9].
Let x be any feasible point to problem (MOP). Following Maeda [9], we let

O ={xeR"|gx) S0, fi(x) < fi(X), k=1,2,..., pandk #i},
0={xeR"|gx) S0, f(x) < f(D)}

Further, we letl' (Q’, x) be the tangent cone t@ atx and L(Q, x) be the linearizing
cone toQ atix.

Definition 23. We say thaf satisfies a generalized constraint qualification if
p .
L(Q, %) =[T(Q", %.
i=1

Theorem 24 (Strong duality) Let x be an efficient solution faftMOP) and assume that
satisfies a generalized constraint qualificat[®h Then there exist € R” andv € R? such
that (x, iz, v) is feasible fo XMOP) and v, g, (x) = 0. If also weak dualitfTheoren0
or 21) holds betweefMOP) and (XMOP) then(x, iz, v) is efficient for( XMOP).

Proof. This follows on the lines of Egudo [3, Theorem 3]0
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