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1. Introduction

In this paper we consider the transfer of the heat with a general diffusion term in an incompress-
ible flow in the porous medium. The equations are the following:

36
— 4+u-VO4+vA% =0, xeR? t>0,

ot

u=—k(Vp+gyd), xeR3? t>0, (11)
divu =0,
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Here v > 0 is the dissipative coefficient and k is the matrix medium permeability in the different
directions, respectively, divided by the viscosity, g is the acceleration due to gravity and the vector
y € R3 is the last canonical vector e3, 6 is the liquid temperature and u = —k(Vp + gy6) the liquid
discharge by the Darcy’s law, p is the pressure of the liquid. For more details see [13]. To simplify the
notation, we set k=g =1.

The operator A% = (—A)%/2 is defined by the Fourier transform

F(A%0)(&) = €1“FO (&), (12)

forO0<a<2.

The case o =1 is called the critical case, 1 < « < 2 is the sub-critical case and 0 < @ < 1 is the
super-critical case.

According to the Darcy’s law and the incompressibility condition, one has

820 820 9%0  9%0
Au = —curl(curlu) = ) ) 5 2 ]
0X1 3X3 0X2 8X3 8}(1 8X2

By Newton potential formula and integrating by parts one has

2 1 3
u_—§(0,0,9)+EP.V./K(X—y)@(t,y)dy, xeR’,
R3
=c(0)+P®), (1.3)
where

K 3x1X3 3Xax3 2X3 — X3 — X3
X) = i s
XI5 7 |x)? |x|3

is the kernel function of a singular integral P(6), for detail see [4].

When v =0 and space dimension n = 2, D. Cérdoba and F. Gancedo [6] obtained the local existence
and uniqueness by the particle trajectory method in Holder space C5 for 0 <s <1 and gave some
blow-up criteria of smooth solutions, for example, the blow-up criterion in BMO space similar to the
Euler equations and the geometric constraint conditions under which no singularities are possible. For
details see [6] and reference therein.

When v > 0, A. Castro, D. Cérdoba, F. Gancedo and R. Orive [4] constructed the global solutions
to (1.1) in the Sobolev space H® with s > 0 for the sub-critical diffusion case. In the super-critical
diffusion case the global well-posedness for small initial data in H® with s > n/2 + 1 and the local
well-posedness in the space HS with s > (n — «)/2 + 1 were obtained in [4]. In the critical diffusion
case the global well-posedness of smooth solutions can also be obtained for smooth initial data by
the method as in [3,9] for the critical dissipative quasi-geostrophic equations.

Before presenting our method and results, let us first clarify the notion of critical space
(super-critical and sub-critical spaces, respectively). If 6(t,x) is a solution to Eqs. (1.1), then 6, =
22=19(A%t, ax) is also a solution for A > 0. A translation invariant homogeneous Banach space
of distribution X is called a critical space, if its norm is invariant under the scaling transform
fr=22"1f0x), ie. |fallx = I fllx for any A > 0. Similarly, it is called a super-critical space (sub-
critical space), if log; ”HJ}AH”; <0 (> 0) for A > 0. Noting that the space H® for s > (n—«)/2+ 1 is a
sub-critical space for the super-critical or critical diffusion cases of the incompressible flow equations
in the porous medium, so the energy method and Sobolev estimates are available. But for the criti-
cal space Bi{ f (R3) it needs a different method. Indeed, the energy methods are not applicable. One
needs first establish the local existence, uniqueness and higher regularity based on a priori estimate
of the following transport-diffusion equation
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u+v-Vu+vA®u=f,
u(0, x) = ug.

That is
1 CzZ(T 1/r1—1
VTl geser < Ce2D (luollgy , + vV 7N fllpr gavarm ),
’ T 7p4q

where Z(T) = fOT ||VV(t)||Bn/p1 mLocdt' For details see Proposition 2.2.
p1,00

By virtue of the method of modulus of continuity [9], we prove the global existence and unique-
ness of solutions to Egs. (1.1) with o =1 in critical Besov space B p(R3) with 1 < p < oco. The key
point is to construct a new modulus of continuity, which control the blow-up of the smooth local
solutions to Egs. (1.1). Assume that 6 has a modulus w, Kiselev, Nazarov and Volberg in [9] proved
that the Riesz transform R;(6) had a modulus of continuity

sau)=A</@%2ds+x/f%9dﬁ (14)

0 X

where A is a constant. Noticing the relation (1.3) of u and 6 which is equivalent to double Riesz trans-
forms. We prove that the singular integral operator P(6) in (1.3) do not spoil modulus of continuity
of 6 too much. In fact, it has a modulus of continuity

X o]

Q(x):C</wlog( )ds-i—x/ a)s(zs) log(%) ds), (1.5)

0 X

where C > 0 is a constant. See Lemma 4.1.

Comparing with (1.4), the formula (1.5) of modulus of continuity of a double Riesz transform has
an additional term log% or log ex—s which requires us to construct the modulus of continuity w of
temperature 6 to be slowly increased at infinite. In fact we construct the continuous function w(x) as
follows

x—x3/2, if 0<x<8,

w(x) = . (16)
{8 -8+ ¥ arctan% - %arctan%, if § <x,

which is an increasing bounded concave function when x — co. While the modulus of continuity of
6 in [9] has a double logarithm-type increase at infinite

x—x3/2 if0<x<s,

w1(x) = {8—53/2+710g(1+%10g§)’ if § <x.

To this end we present our main result in the following Theorem 1.1.

Theorem 1.1. Let 6y € B3/ P(R3) with 1 < p < oo, then the critical diffusion equations (1.1) of heat transfer of

incompressible fluid possess a unique global solution 6 € C(Rt; B3/p ®3)NLL (RT; B3/p+1 (R3)).

loc

To prove our main theorem, we need a local existence theorem as follows.
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Theorem 1.2. Let 6y € BB/p (R3) with 1 < p < oo, then there exists a time T > 0 such that Eqgs. (1.1) possess
a unique local solution 6 € C([0, T); BB/p) satlsfymg

6 (10, 1): B/P(R*) L' (0. T): BT (R?)). (1.7)
Furthermore, we also have tP9 € L°((0, T); B3/p+ﬂ (R?)) for B > 0.

For the initial data 6p which satisfies the condition ||| Bs/p < 00, global well-posedness cannot be

obtained. So we give a blow-up criterion of smooth solutlons in the following Theorem 1.3.

Theorem 1.3. Let T > 0 and 6 € Bi{f(ﬂ@) with 1 < p < oo. Assume that 6 € L°°([0, T); Bi{f R3) N
L1((0, T); B‘Z{f“ (R3)) is a smooth solution to Egs. (1.1), if 0 satisfies

T
f [VO®)] o dt < o0, (1.8)

then 0(t, x) can be continually extended to the interval (0, T') for some T’ > T.
Remark 1.1. Actually, we have more general blow-up criterion. But in our case, the L°° norm is

enough. Indeed, assume that 6 € C([0, T]; H*(R?)) with s > % + 1, if 6 satisfies

T
f [ve® |z _dt<oo, (1.9)
0

then 6(t, x) can be continually extended to the interval (0, T’) for some T’ > T.
The proof is standard. Energy method and the following logarithmic Sobolev inequality [10,16]

If s < C(1+ 11 l1gg,  log(e + 11 fllue))
for s > % immediately yield the result.
2. Preliminaries

We first introduce the Littlewood-Paley decomposition and definition of Besov spaces. Given
f € S(R™) the Schwartz class of rapidly decreasing function, define the Fourier transform as

F& = Ff@) = @m? / eI f(x) dx,
RTI
and its inverse Fourier transform:
foo=F1f) = @m) ™2 / e £ (£) d.
Rl‘l

Choose a nonnegative radial function x € Cg°(R") such that 0 < x(¢) <1 and
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1, for |&] <
0, for |§|>

X(S)={

3
41
4
3
and let @(§) = x (€/2) — x (&), Xj(&) = x(5) and @;(§) = @(5;) for j € Z. Write

hw=F"x®.  hj=2"h(2x),
@j(x) =2Yg(2)x).

Define the Littlewood-Paley operators S; and Aj, respectively, as

A_qu(x) =h*xu(x),
Aju(x) =@j*ux) = Sju) — Sju(x), for j>0,
Aju(x) =0, for j< -2,

Sju) = (1 - ZAk)u(x), for jeZ.

k= j

Formally A; is a frequency projection to the annulus |£| ~ 24, while Sj is a frequency projection to
the ball |£] <2/ for j e Z. For any u(x) € L>(R") we have the Littlewood-Paley decomposition

u(x) =h=xu(x)+ Z @j*u(x) (inhomogeneous decomposition),
j=0
o0
u(x) = Z @j*u(x) (homogeneous decomposition). (2.1)

j=—o0

Here homogeneous decomposition (2.1) holds in the sense of modulus of polynomial function.

Clearly, supp x (§) N supp@;(§) =@, for j > 1, supp@;(§) Nsupp@; (&) =4, for |j — j'| > 2, and
Aj(Sg—quAgu) =0 for |j —k| > 5.

Next, we recall the definition of Besov spaces. Let s € R and 1 < p, q¢ < 400, the Besov space
B;YQ(R”) abbreviated as B;,q is defined by

B o ={f () €S'(R"); IIfllgs, <+oo},
where

I fllp + (5502 lgj * FIHM9, for g < +oo,

I fllgs, = .
e I fllp 4 supjzo 2 llgj * fllp, for g =+o0

is the Besov norm. The homogeneous Besov space Bz,q is defined by the dyadic decomposition as

By g ={f(®0 € Z'(R"); [Ifllgy, <+oo},
where

(52 o 27y * FlIp)TA, for g < +oo,

s 2.2)
supjez 2 l@j * fllp. for g = +oo

£ lgs, =
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is the homogeneous Besov norm, and Z'(R") denotes the dual space of Z(R") = {f(x) € S(R");
DY f(0) =0, for any o € N® multi-index} and can be identified by the quotient space S’/P with the
polynomial functional set P. For details see [11] and [14].

Remark 2.1. The above definition does not depend on the choice of the radial function x, and

Bj, (R is a Banach space if s < pors=randg=1

For the convenience, we recall the definition of Bony’s para-product formula which gives the de-
composition of the product fg of two distributions f and g. For details see [2].

Definition 2.1. The para-product of two distributions f and g is defined by

Tef = Z A[gAjf:ZSj—1gAjf~

i<j-2 jez

The remainder of the para-product is defined by

R(f,8)= )Y AighAjf.

li—jlI<1
Then Bony’s para-product formula reads
fe=Tgf+Trg+R(f. 2. (23)
Next we define two kinds of space-time Besov spaces that will be used in our studies.

Definition 2.2. (1) Let T >0, se R and 1< p,q,r <00, u(t,x) € S'(R*). We call u(t,x) €
L(0, T; B}, ,(R?)) if and only if

lully gy, 2

. 1/q
<XPMMW%)
L

Jj€Z

< 00. (2.4)
T

(2)Let T, s, p, q, r and u(t, x) be as in (1), we call u(t,x) € L' (0, T; B;.q(IR@)) if and only if

) 1/q
Whmé(Z”W%WhJ <o0. (2.5)
JjezZ

Obviously, by the Minkowski inequality, we have the relations between the above two kinds of
mixed space-time Besov spaces:

lullprgs, < lullppy . ifr<a, (26)
and
lullgg, < lullggy o ifa<r. 2.7)

We now recall some properties of the Besov spaces, for details see [11] or [14].



B. Yuan, J. Yuan /J. Differential Equations 246 (2009) 4405-4422 4411

Proposition 2.1. The following properties of the Besov spaces hold:

(1) Let o € R, then the operator A% is an isomorphism from B;’q to B;"q“.

. (5 —5)

(2) If p1 < p2 and q1 < g2, then B}, q‘_>szqu1 ”

3) If1<p,q<00,5>0, oz>0and/3>0 and 1< pl,q,\oo(i:1,2,3,4)sothat

1 1 1 1 1

p p1 P2 P3P

1 1 1 1 1
—=—t—=— 4+, (2.8)
q 41 42 43 Qa4

then there exists a constant C such that f1 - f, € Bi,yq(]R") and

I1f1falls, (Hf1||Bs+a If2llge, +||f1||B 5 ||f2|| 1 ) (2.9)

forany fi € B;f”él al B;f%, fre B;j’?m N sz‘”qz Ifo=0,pr=qy=00and B =0, p3 =q3 = 00, then
we also have

1f1 fallgs , < C(flls 12l + 1 il Nl fallgs  )- (2.10)

Using the para-product decomposition (2.3) one can easily prove the equality (2.9)-(2.10). For the
proof of equality (2.9) see [17].
In the following Lemma 2.1 we recall the Bernstein inequality which will be frequently used.

Lemma 2.1. Let f € LP(R") with 1 < p < q < +oo and 0 <1 < R. Then there exist constants C > 0 and
Cy > 0 such that for any k € N and A > 0, one has

sup |97 £, < CAMFMPUD £ if supp | < (g 18] < ar); (211)
|Bl=k

CEl)\k||f||p<|;1|1Pk||3ﬁfH <CXIfllp, if supp f < {&: Ar < |E] <AR). (2.12)

The following lemmas will be useful in our discussions.

Lemma 2.2. (See [8,15].) Let v be a smooth function supported on the shell {x € R>: Ry < |x| < Rz, 0 <
R1 < Ry}. Then there exist two positive constants 4 and C depending only on  so that forall 1 < p < oo
o >0,t>0andA > 0, one has

[v (- D)e  u]lp < ce g (17T D)ul .

Lemma 2.3. (See [7].) Let v be a smooth vector field, and ¢ a solution to the ordinary differential equation

dot,x) _
dt
¢(0,x) =x.

v(t, o(t.x)),

Then for all 0 < t < oo, the flow ¢ (t, x) is a diffeomorphism over R® and the following estimates hold:
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[V, <e¥®,
[Vo®)* —1d . <V ® —1,

t
V260 <O [ 72000 | e’ O s,
0

where V (t) = [ [VV(s)l|r ds.
The next lemma shows an estimate of exchange between A° and the flow ¢;.

Lemma 2.4. (See [5].) Let v be a given vector field belonging to L} (R Lip), uj =S Aju, and ¢; denote the

_ “loc
flow of the regularized vector field S jv for j € Z. Then, foru € BS, . with0 <s <2 and 1 < p < oo, it holds:
J p.o©

s

[ A%uj0 ) = (A%uj) 0 6] < €275V OVIE ) ujllo,
where V (t) = fot IVv(T)||1c dT and the constant C = C(s, p) depends only on s and p.

For the proofs of Lemmas 2.2, 2.3 and 2.4, see [5,7,8,15], respectively.
Before we present the local existence of solutions to Egs. (1.1), we recall an optimal a priori esti-
mate for the following transport-diffusion equations in R":

ou
— 4+ v-Vu—-vA®u=f,
o ! (213)

u(0,x) =uop(x),

where v is a fixed vector field which does not need to be divergence free, ug is the initial data, f is
a given external force term, and v > 0 is a dissipative coefficient for 0 <« < 2.

Proposition 2.2. et 1 <r{ <r<oo, 1 <p<p1 <ooand 1 < q < oo. Assume s € R satisfies the following
conditions:

n n .
s<14+— (orsgl—i——,lfq:l),
D1 D1

. (n n . (n n P
s>—m1n(—,—/) <0r5>—1—mm<—,—,), 1fd1vv=0>.
p1 p p1 p

There exists a constant C > 0 depending only on n, «, s, p, p1 and q, such that for any smooth solution u of
Eq. (2.13), the following a priori estimate holds:

(2.14)

1/r . < CZ(T) . 1/r1—1 .
V!l goserr < CEPD (uollgg 17 S go-asarn ). (215)

where Z(T) = [ IVVOLll gy o0 dE-
p1,00

Moreover, if u = v, then for all s > 0 (s > —1 if divv = 0), the estimate (2.15) holds with Z(T) =
T
Jo IVV(© 1~ dt.
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Remark 2.2. Danchin proved Proposition 2.2 in [7] for « = 2 in the inhomogeneous Besov spaces case.
Miao and Wu proved Proposition 2.2 in [12] for general 0 < « < 2. The proof of Proposition 2.2 is not
difficult, essentially, is based on an estimate of the following term

Rj 2 (Sj—1v-V)Aju— Aj((v-Vu), (2.16)
we give it in the following Lemma 2.5.

Lemma 2.5. We rewrite Rj as Rj = (Sj_1v — v) - VAju — [Aj, v - V]u. Under the condition (2.14), there
exists a sequence c;j € 19(Z) satisfying ||cjlla = 1, such that

ISR .
22 IR e < CIVV gy o Il

forany j € Z, where C =C(n,q, s, p, p1) is a constant depending only onn, q, s, p, p1.

R. Danchin in [7] proved Lemma 2.5 in the inhomogeneous Besov space case. Similarly, using
Bony’s para-product decomposition and Bernstein inequality, it is not difficult to prove Lemma 2.5.

3. Local well-posedness and some blow-up criteria

In this section we prove Theorems 1.2 and 1.3, which are the local well-posedness and the blow-up
criteria of smooth solutions.

Step 1. Linear approximate equations.
We construct sequence of approximate solutions by the following linear equations:

aek+1

o +uk . vokl L vAekt =0, xeR3, t>0,
uk=c(6*) +P(6%), xeR? t>o0, (3.1)
divukt! =0,

%10, x) = Hp(x), xeR>.
We set 90 £ e—V4¢,, obviously, 6° € L1(Rt; Bi{f“ (R3)). By Proposition 2.2, we thus have
ok e Io(RY: BY/P(RY) n L' (RT: B2V (R?), (32)

for any k > 1.

Step 2. Uniform estimates.

We also need to obtain a uniform bound of 9¥(t, x) in L®(R*; B‘Z{f([o, H)NLL((0, T); Bi{f“(ﬂ@))
for some a T > 0 independent on k.

By the standard local existence method it is not difficult to prove that there exists some time T
dependent on the profile of 6y such that

T

f [ENG) gy de < Co, (3.3)
p.

0

for k > 1. For details refer to [1,12].
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In Proposition 2.2, we take r =1 and r = oo, respectively. Noting the Sobolev embedding relation
Bz{ f (R3) < L[°°(R3) and the boundedness of singular integral operator P on homogeneous Besov

space B;{f(R%, it yields
T
ok ey T (G “L‘Tisf;/f“ < Cexp {C/ [uk)| oo dr } IIGOIIB?)/f < CIIQOIIB;/{:. (3.4)
0

Consequently, the sequence {6%}, k € N is uniformly bounded in L[®°(R';B 3‘/’J([O T)) N
LY. T): BY/P T (R3)).

Step 3. Strong convergence.

We prove that {6¥}, k € N is a Cauchy sequence in L®(Rt; B 3/p([O T))) N L1((0, T); B3/p+1(}R3)),
thus having a strong convergence.

Letn,meN, and n > m. Set ™™ £ 9" —9™ and y™™ £ y" =c(O"—0™) +PB"—0™). A simple
deduction yields

at9n+l,m+l L. V9n+1,m+l 4 UA9n+1,m+1 — —ym. V0m+], t>0, xe R3,
divu™ =divu™ =0, (3.5)
emrmtlo x) =0, xeR3.

According to Proposition 2.2, noting the Sobolev embedding relation B3/p(R3) s [®(R?), one has
o™ 3 < Cexpl C [ Ju ()| goperdT ¢ [ [Ju™™ - VO™ (2)] 3/ dT. (3.6)
LT Bp,l Bp,l Bp,l
0 0

By (2.10) in Proposition 2.1 and the Sobolev embedding relation B3/p(R3) <> [%°(RR3), it can be de-
duced

”un,m . V0m+l(d‘r) || B;(lp < C||u",m ” B;{f ”9m+1 ” B;{f’“'

3/p (R3

By the boundedness of singular integral operator P on homogeneous Besov space B ), we have

Ju™™] B < clle™™| gy and Uu"(r)nbz/fﬂ <Clonm| B (3.7)

Substituting (3.7) into (3.6), and choosing T small enough if necessary, we arrive at
n+1,m+1 n,m |‘9n||’_%_33/]p+1 m+1
l6 T AN G [ A O A Pt

< 8||9n’m||z;ogi{f’

with ¢ < 1. Arguments by induction yield

1 1
egye €O g < CE™ 00 53 (38)
T “p.1 p.1
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Arguing similarly as the above by Proposition 2.2 it can be derived that

H9n+1.m+l HLlTB;/]p“ < 8m+1 Hen—m,OHi?OBi/f < C8m+1 ”90”32/{]. (3.9)

Estimates (3.8)-(3.9) imply that {6} is a Cauchy sequence in L°°([0, T); B3/p(R3)) N L0, T);
BYPYI(R?)) for k=0,1,.... Thus there exists a 0 € L([0, T); B/P(R*)) n Ll((o T): B)/7 M (®?)
such that 6% converges strongly to 6.

Step 4. Uniqueness.

Suppose 6; and 6, are two solutions of Egs. (1.1) with the same initial data 6y € B 3/p

p.1°
61,6, € L°([0, T); B3/p(R3)) NLY([0, T); B3/p+1 (R3)). Introducing notations 61, = 6; — 6, and uy, £
Uy — Uy =c(0 —6) + P(61) — P(62), one has by a simple deduction

and

9012 +u1-VO1 2+ VA0 2 =—U12- Vb,
divuq =divuy =0, (3.10)
61,2(0,x) =0

Similar arguments as (3.6) yield

clél 183 pH
161,210 370 < Ce ||91 2“,_0033/17 16211 3/p+ dr. (3.11)
p,

Gronwall’s inequality implies that 61 (t) = 6,(t) for any 0 <t < T.

Step 5. Smoothing effect.
We shall prove the following regularity estimate

P CBION 4 3/p+
.. )1 [
”t HHL;OB;{IPH? < C(Be % 1 ||L<;OB;{ID, (312)

for B > 0, where tP9 obviously satisfies the following equation

¥ (tPO) + (u-V)(tP0) +va(tPo) = —ptPl0, t>0, xeR3,
divu =0, (3.13)
(t6)(0,x) =0, xeR’.

We prove the estimate (3.12) by induction. When 8 =1, Proposition 2.2 implies

Cliol ; 43/p+1
160 gper <Ce TP 1] 100 300 (3.14)
T “p.1 T “p.1

Here Sobolev embedding relation B3/p (R3) < L*°(R3) and the boundedness of singular integral op-

erator P on homogeneous Besov space B3/p+l(]R3) have been used.

Assume the estimate (3.12) is true for B =k, then Proposition 2.2 and induction implies, for
B =k+1, that

ClIoll 4 .3/p+1
k+1 . LBy k .
Ht HHL?OB:{;MH < Ce P ”t GHLL;QB%:H
U161y 43p41
<Ck+ e TP 10500 53/p - (3.15)
ir8)t
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. . . = =3
For general 8 > 0, noting [B] < B < [B] + 1, by interpolation between L‘;OBp{fHﬂ](H@) and
foo p3/P+BI+1 1p3
L%"BP’1 R>),

18] (316)

Too p3/P+HIBI+1 s
L%OBp,l

|70 ETTTS C|e#le| [if;j;%/?fw e+

we immediately prove the estimate (3.12) for any g > 0.

Proof of Theorem 1.3. In the proof of uniform estimate of the approximation solution sequence 6",
we have obtained that if

3 (1 e CT02) 2 A j(r) | < g0 (317)
Jjez

for some a constant &g, then the solution 6 is uniformly bounded

Oll+2 s3/m+12 + 10151 537041 < 280, 3.18
1613 7112 + 161, g1 < 260 (318)

the solution 6 thus can be extended beyond T. For details see [1,12].
Let [0, T*) be the maximal existence interval, if T* < oo, then

L CC(T—1)20\1/2
llmrgl_l;* ) Z(1 _eC(T r)21) 12;6(0)] % > 0. (3.19)
je

otherwise, it can be extended beyond T*. Noticing [|A ;6| 1~ < C||f|l =, by the Bernstein inequality
(2.12) we have

go <lim_inf <Z(1 — e ST =02 2 A g+ 3 (1 - e—C<T*—f>2j)l/2||Aj0||po>

T—>T*
J<N =N
. . 1/2 P2 _i
\lmrl_rg;*<(T 7) 6ol D 272+ VOl Y2 )
J<N j=N

<lim inf (1"~ )20 l112N/2 + VO 1 27).

T—

If we choose appropriate N, it follows

lim_inf (T*—7) Vo), = €0 (3.20)
Therefore, if
T
/ [VO®)] o0 < o0, (3.21)
0

there exists some a T’ > T such that § can be continually extended to [0, T'). O
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4. Global well-posedness

In this section, by virtue of the method of modulus of continuity [9], we prove the global well-
posedness of Theorem 1.1. In this case the difficulty is to construct a special modulus of continuity
which the solution 6 has. First we define a modulus of continuity.

Definition 4.1. Let w(x): [0, +00) — [0, +00) be an increasing continuous concave function satisfying
w(0) = 0. We call a function f from R" to R™ has modulus of continuity w, if

|feo — f]<o(x—yl), foranyx, yeR".

We recall that Kiselev, Nazarov and Volberg in [9] proved a lemma that said the Riesz transform
did not violate the modulus of continuity too much as:

Proposition 4.1. If the function 6 has a modulus of continuity w, then u = (—R26, R10) has modulus of

continuity
91<s)=A< f @) 4s 1 ¢ f “6) 4 ) (41)

with a universal constant A > 0, where R is the jth Riesz transform.
We also need to prove that the singular integral operators (1.3) which are equivalent to double
Riesz transforms or their combinations do not spoil modulus of continuity too much, although they

do not preserve a modulus of continuity, see the following Lemma 4.1.

Lemma 4.1. If the function 6 has a modulus of continuity w, then v = (R1R36, R2R36, —R%@ — R%Q) has

modulus of continuity
&
.Q(g):C(f@ (e.g:)d +§/ @l | (es>ds>, (42)

0
where C > 0 is a constant.

The proof is very simple, it only need a direct computation. Indeed, Let £21(¢§) = A(fg @ds +

sf;o % ds), then

¢ o0
Q Q
.Q(g):C(/—]n(m dn+.§f—:](2'7) dn>.
0 §

By Fubini theorem, exchanging the order of the two integrals can yield the result (4.2) easily.

According to the blow-up criterion in Theorem 1.3, we need to give a bound of |V6|| . For this
purpose, we choose the modulus of continuity w satisfying @’(0) < oo and limg_, g+ 0" (§) = —o0.
Thus by the definition of modulus of continuity, it is not difficult to prove that

VOl < ' (0). (4.3)
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Let T* be the maximal existence time of the solutions 6 e L°([0, T*);B?f(ﬂ@)) n

10, T*); B3P (R3)) to (1.1). By Theorem 1.2, there exists a To > 0 such that

Lloc p,1

VO (Lo < C||90||l;3/1p, for any t €0, To.
p,

Let A >0 and Ty € (0, Tg), we define

I={T €[Ty,T*): Vt [Ty, T],

0(t,x) — 0(t, y)| < wp(lx— yl), for any x y}, (4.4)

where w; (£) £ w(rE).
-1 N
By appropriately choosing A, for instance, set A = %WIIVG(TDIIM, we can prove that

Tq € I, for detail see [12]. Thus I is an interval of the form [Ty, T.), where T, is the maximal of T € I.
We discuss the relations between T, and T* in three cases, respectively.

Case 1: If T, = T*, then in light of the inequality (4.3) and the blow-up criterion (1.8) in Theo-
rem 1.3 we have T* = oc.

Case 2: If T, € I, it is not difficult to prove that there exists a positive 7 such that T, +n € I, which
is a contradiction to the fact that T, is the maximal of T € I. For detail see [12].

Case 3: If T, ¢ I, the continuity of 6 in time implies that there exist x # y such that
O(T,x) — 0(Tx, ¥) = i (8), (4.5)

where &€ = |x — y|.

We shall prove that it is not possible. Let f(t) £ 6(t,y) — 0(t,x) for the above fixed x, y. Clearly,
f@) < f(T,) for any t € [0, T,] by the definition of I. On the other hand, we shall prove that
f'(T,) <0, which is a contradiction.

The idea of proof is from [9], of which the difficulty is to construct a modulus of continuity. For
convenience of reading we give a sketch of the proof.

By the regularity of solutions the equations can be defined in the classical mean,

fi(T) =u(Te, ) - VO(Ts, X) —u(Ts, ¥) - VO(T, ) + VAO (T4, X) — VAO(Ty, y). (4.6)
A direct computation by derivative immediately yields (see [9])
U(Ts, X) - VO(Ts, X) = u(Ts, y) - VO(Ts, ) < C(w3(§) + 2:.(5))w; (§). (4.7)
Noting that the dissipative term A6 (x,t) can be written as %PS * 0]5—0, Where

s
Ps(x) = T2(XP2 + 5232

is the three-dimensional Poisson kernel in R3. By a detail deduction (use of the symmetry and mono-
tonicity of the Poisson kernel and some integral techniques, see [9]) we have
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£

2
VAB(Ts. %) — VAO(Ty. y) < %/CUA(E'FZS)"‘O)AS(ZS—25)_20)A($)d

s2

v ]Om(s +25) — (6 =29 —20,6)
A
%

£20J08),
where

S

/w(e‘? +25) — o —25) — 20()

52

J& ==

52

v 7w<§ +29) - 0 —25) ~20©)
M4

&

2

Thus we only need to prove
fI(T) < CA[(@ + )0’ + J](1€) < 0.
For this purpose we choose the modulus of continuity w as follows

x—x3/2, if0<x<8,

w(x) = 1+1og X .
{8—83/2+%arctan$—%arctan%, if § < x.

Its derivative is

if § <x.

1— %, ifo<x<s,
o' (x) =

Y
X[9+(1+log §)2]°

4419

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(413)

Here § > y > 0 are two small enough constants that will be determined later. Obviously w is concave

and satisfies
@' (0)<oo and lim " (x) =—o0.
x—0t

In the following we prove the inequality (4.11) in two cases.
Case1: 0 <& <4.
Since w(s) < s for all 0 < s <48, we have

& &
/&1 —éds /1 g%dngé,

N
0 0

s
w(s) es 1 es _1 é é
s/—log—dsgsgfgloggds_2§10g5(2+10g$>,

(4.14)

(4.15)
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and

é/“’(s) Cas<s?? s/(w(s) =+ ?)ds

<§log— —|— 5)/ log — +E _a)/(s) ds
& S s
s
ed y
<€<] log ?) (1 * 28) (416)
Collecting (4.14)-(4.16), we get
5\ 2
o) +2(5) < 3¢ +$(2+logg) . (417)

Next, we estimate the negative part J, using only of the first integral in (4.9) is enough. The
concavity of w, Taylor formula and monotonicity of @” on [0, £] imply that

£

v /2 W(E +25) + w(& — 25) — 2w(E)
T

§2

ds < %sw”@) = —i—;ss”/z. (4.18)
0

Obviously, if & € (0, 48] and § > 0 is small enough, one has

s\ 3v 1
(0@ + Q)" + J¢&) <§[3+ <2+logg> - éﬁ} <0. (4.19)

Case2: £ > 4.
In this case we have w(s) <s for 0 <s <8 and w(s) < w(€) for § < s < &. Therefore,

8

& &
/&loggds:</+ )wloggd
s s s s

0 0 8

) &
/log—éds—}-/ fl —gds
0

8

< 8(2 + log %) + w(&)(log %) (1 + log %)

2
< w(&)[l + (1 +log %) ] (4.20)

where we use the fact § < w(d) < w(§).



B. Yuan, J. Yuan /J. Differential Equations 246 (2009) 4405-4422 4421

Arguing similarly to above it can be derived that

S/&loge—dS—w(S)-l—é/%(w(s)log ) ds
§

<20@ +ey [ SogTasre [ 2
s 3
& 3
<2w() + 3y <5w(8). (4.21)
Combining the estimates (4.20)-(4.21) with «’(¢) of (4.13) we get
2
(w(f;‘) + Q(E))w'(é:) < Cw(&)[7 + (1 + log S) ]+
E[9+ (1+log $)2]
<Cy ? (4.22)

To complete the proof, we only need to estimate the second integral in J. In case § < &, we have
028) < wE) + o' (NE <o) + g fw(é) (4.23)

The concavity of w(x) implies w(2s + &) — w(2s — &) < w(2§) for all & 3 <s, thus it reaches

L [os o —olsm0 20, 0ol 42
T s 9 &
%
It follows that
16
(&) + 2 + 16) < “’f) ( y - 9—;> <0, (4.25)

if we take y < mm{gﬂc,é}. The proof of Theorem 1.1 is thus completed.
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