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Abstract

Two perturbation estimates for maximal positive definite solutions of equations X+A∗X−1

A = Q and X − A∗X−1A = Q are considered. These estimates are proved in [Hasanov et al.,
Improved perturbation Estimates for the Matrix Equations X ± A∗X−1A = Q, Linear Algebra
Appl. 379 (2004) 113–135]. We derive new perturbation estimates under weaker restrictions
on coefficient matrices of the equations. The theoretical results are illustrated by numerical
examples.
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1. Introduction

We derive new perturbation estimates for the matrix equations
X + A∗X−1A = Q (1)
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and

X − A∗X−1A = Q, (2)

where A, Q are n × n complex matrices, Q is a Hermitian positive definite and A∗
is the conjugate transpose of a matrix A. Eqs. (1) and (2) are investigated for the
existence a positive definite solution by many authors [1–4].

Here we derive new perturbation estimates for the maximal solution to above
matrix equations. Our estimates are much less expensive for computing because they
use any invariant norm and very simple formulas. There are examples (Example 1)
where the sharper estimate of Sun and Xu [8] is not applicable.

In this paper we useHn×n to denote the set of n × n Hermitian matrices. A positive
definite (semidefinite) Hermitian matrix A will be denoted by A > 0 (A � 0). If
A − B > 0 (or A − B � 0) we write A > B (or A � B). A Hermitian solution Y we
call maximal one if Y � X for an arbitrary Hermitian solution X. The symbol ‖ · ‖
stands for any unitary invariant matrix norm, ‖ · ‖2 is the spectral norm and ‖ · ‖F is
the Frobenius norm.

It is proved in [1] that if Eq. (1) has a positive definite solution, then it has the max-
imal positive definite solution XL. Moreover, ρ(X−1

L A) � 1 [2], where ρ(·) denotes
the spectral radius. Eq. (2) has unique positive definite solution [3]. We denote this
positive definite solution with X. For this solution it is satisfied ρ(X−1A) < 1 [2].

We begin with the following theorem where a perturbation bound of the maximal
positive definite solution of (2) is proved.

Theorem 1.1 [5, Theorem 6]. Assume that A, Ã, Q, Q̃ ∈ Cn×n and that Q and Q̃

are positive definite. Let

b=1 − ‖X−1A‖2
2 + ‖X−1‖2‖�Q‖2 and

c=‖�Q‖2 + 2‖X−1A‖2‖�A‖2 + ‖X−1‖2‖�A‖2
2.

If

ε̃ = 1 − ‖A‖2‖Q̃−1‖2‖X−1A‖2 > 0, 1 − ‖X−1A‖2 > 0,

D = b2 − 4c‖X−1‖2 � 0 and ε̃err < min

{
1

‖X−1‖2
,

b + √
D

2‖X−1‖2

}
,

where

ε̃err = 1

ε̃

[
‖�Q‖2 + ‖�A‖2

(
2‖A‖2‖Q̃−1‖2 + ‖Q̃−1‖2‖�A‖2

)]
,

then any two positive definite solutions X and X̃ of the respective equations

X − A∗X−1A = Q and X̃ − Ã∗X̃−1Ã = Q̃
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satisfy

‖�X‖2 � b − √
D

2‖X−1‖2
≡ Serr. (3)

It is noted [5] that the same estimate (3) can be derived for the equation (1). In this
paper we improve the estimate (3) for Eqs. (1) and (2). We obtain the new estimates
under weaker restrictions on coefficients for equations. Besides, we derive the new
perturbation bounds using an arbitrary unitary invariant norm ‖ · ‖.

2. Perturbation estimate for the equation X + A∗X−1A = Q

The first perturbation bound for the maximal positive definite solution of (1) is
derived by Xu in [9]. Sun and Xu [8] have proposed a sharper perturbation bound for
the maximal positive definite solution of (1).

Here we consider the perturbed equation

X̃ + Ã∗X̃−1Ã = Q̃, (4)

where Ã and Q̃ (Q̃—positive definite) are small perturbations of A and Q in (1). We
assume that XL and X̃L are the positive definite solutions of (1) and (4), respectively.
Thus we have

XL + A∗X−1
L A = Q. (5)

We use �XL = X̃L − XL, �Q = Q̃ − Q, and �A = Ã − A.
We use both the unitary norm and the 2-norm in the following theorem.

Theorem 2.1. Let A, Ã, Q, Q̃ ∈ Cn×n be coefficient matrices for matrix equations
(1) and (4). Let

b+ =1 − ‖X−1
L A‖2

2 + ‖X−1
L ‖2‖�Q‖,

c+ =‖�Q‖ + 2‖X−1
L A‖2‖�A‖ + ‖X−1

L ‖2‖�A‖2,

where XL is the maximal positive definite solution of Eq. (1). If

‖X−1
L A‖2 < 1 and 2‖�A‖ + ‖�Q‖ �

(1 − ‖X−1
L A‖2)

2

‖X−1
L ‖2

, (6)

then D+ = b2+ − 4c+‖X−1
L ‖2 � 0, the perturbed matrix equation (4) has the maxi-

mal positive definite solution X̃L and

‖�XL‖ � b+ − √
D+

2‖X−1
L ‖2

≡ S+
err. (7)

Proof. Let X̃ be an arbitrary positive definite solution of Eq. (4). Subtracting Eq. (5)
from (4) we obtain
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�X − A∗X̃−1�XX−1
L A + A∗X̃−1�A + (�A)∗X̃−1Ã = �Q, (8)

where �X = X̃ − XL. The equality (8) is obtained in [5]. Using the equalities

X̃−1 = X−1
L

(
I + �XX−1

L

)−1 =
(
I + X−1

L �X
)−1

X−1
L

from (8), we receive

�X=�Q − (�A)∗
(
I + X−1

L �X
)−1

X−1
L (A + �A)

+A∗X−1
L

(
I + �XX−1

L

)−1 (
�XX−1

L A − �A
)

. (9)

Consider a map µ+ : Hn×n → Hn×n defined by the following way:

µ+(�X)=�Q − (�A)∗
(
I + X−1

L �X
)−1

X−1
L (A + �A)

+A∗X−1
L

(
I + �XX−1

L

)−1
(�XX−1

L A − �A).

From the second inequality in (6) we have

2‖X−1
L ‖2‖�A‖ + ‖X−1

L ‖2‖�Q‖ � 1 + ‖X−1
L A‖2

2 − 2‖X−1
L A‖2,

whence it follows

b+ � 2 − 2
(
‖X−1

L A‖2 + ‖X−1
L ‖2‖�A‖

)
. (10)

By definitions of D+, b+, c+ and by inequality (10) we obtain

D+ = b2+ − 4‖X−1
L ‖2c+

= b2+ − 4b+ + 4 − 4
(
‖X−1

L A‖2 + ‖X−1
L ‖2‖�A‖

)2
� 0.

Since D+ � 0 the quadratical equation

‖X−1
L ‖2S

2 − b+S + c+ = 0 (11)

has two positive real roots if D+ > 0. The smaller root is

S+
err = b+ − √

D+
2‖X−1

L ‖2

or S+
err = b+

2‖X−1
L ‖2

is a double root if D+ = 0.

We define

LS+
err

= {
�X ∈ Hn×n : ‖�X‖ � S+

err

}
. (12)

For each �X ∈ LS+
err

we have

‖X−1
L �X‖ � ‖X−1

L ‖2‖�X‖ � ‖X−1
L ‖2S

+
err � b+

2
< 1
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for an arbitrary unitary invariant norm [8]. Thus I + X−1
L �X is nonsingular matrix

and ∥∥∥∥(I + X−1
L �X

)−1
∥∥∥∥� 1

1 − ‖X−1
L �X‖ � 1

1 − ‖X−1
L ‖2‖�X‖

� 1

1 − ‖X−1
L ‖2S

+
err

.

According to definition for µ+(�X), for each �X ∈ LS+
err

we obtain

‖µ+(�X)‖≤‖�Q‖ + ‖�A‖
∥∥∥∥(I + X−1

L �X
)−1

X−1
L (A + �A)

∥∥∥∥
+
∥∥∥A∗X−1

L (I + �XX−1)−1(�XX−1
L A − �A)

∥∥∥
≤‖�Q‖ + ‖�A‖‖X−1

L A‖2 + ‖X−1
L ‖2‖�A‖

1 − ‖X−1
L ‖2S

+
err

+‖X−1
L A‖2

S+
err‖X−1

L A‖2 + ‖�A‖
1 − ‖X−1

L ‖2S
+
err

= (1 − b+)S+
err + c+

1 − ‖X−1
L ‖2S

+
err

= S+
err,

where the last inequality is due to the fact that S+
err is a solution of quadratical equation

(11).
Thus µ+ is a continuous mapping on LS+

err
. Moreover, µ+(�X) ∈ LS+

err
for every

�X ∈ LS+
err

, which means that µ+(LS+
err

) ⊂ LS+
err

. According to Schauder’s fixed
point theorem [6] there exists a �X+ ∈ LS+

err
such that µ+(�X+) = �X+. Hence

there exists a solution �X+ of Eq. (9) for which

‖�X+‖ � S+
err.

Let

X̃+ = XL + �X+. (13)

Since XL is a solution of (1) and �X+ is a solution of (9), then X̃+ is a Hermitian
solution of the perturbed equation (4).

First, we prove that X̃+ is a positive definite solution, and second we prove that
X̃+ ≡ X̃L, i.e, X̃L ≡ X̃+ = XL + �X+ is the maximal positive definite solution of
(4).

Since XL is a positive definite matrix then there exists a positive definite matrix
square root of X−1

L . From (13) we receive√
X−1

L X̃+
√

X−1
L = I +

√
X−1

L �X+
√

X−1
L .
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Since∥∥∥∥√X−1
L �X+

√
X−1

L

∥∥∥∥
2

= ‖X−1
L �X+‖2 � ‖X−1

L ‖2‖�X+‖ < 1,

then
√

X−1
L X̃+

√
X−1

L > 0. Thus X̃+ is a positive definite solution of (4). We have to

prove that X̃+ ≡ X̃L.
Consider ‖(XL − λA)−1(�X+ − λ�A)‖ for |λ| < 1. We have∥∥∥(XL − λA)−1(�X+ − λ�A)

∥∥∥
�
∥∥∥X−1

L

∥∥∥
2

∥∥∥(I − λX−1
L A)−1

∥∥∥
2
(‖�X+‖ + ‖�A‖)

<
‖X−1

L ‖2

1 − ‖X−1
L A‖2

(
b+

2‖X−1
L ‖2

+ ‖�A‖
)

.

The last inequality follows from ‖(I − λX−1
L A)−1‖2 < (1 − ‖X−1

L A‖2)
−1 for |λ| <

1 and b+ > 0.
Inequality (10) is equivalent to

‖X−1
L ‖2

1 − ‖X−1
L A‖2

(
b+

2‖X−1
L ‖2

+ ‖�A‖
)

� 1.

Hence∥∥∥(XL − λA)−1(�X+ − λ�A)

∥∥∥ < 1

for |λ| < 1. The matrix

X̃+ − λÃ = (XL − λA)
[
I + (XL − λA)−1(�X+ − λ�A)

]
is nonsingular for |λ| < 1. From Theorem 3.4 in [1] follows that X̃+ is the maximal
positive definite solution of (4), i.e., X̃+ ≡ X̃L and �X+ ≡ �XL.

The proof is completed. �

3. Perturbation estimate for the equation X − A∗X−1A = Q

In this section we derive a perturbation estimate similar to the estimate (3) under
weaker restrictions for an arbitrary unitary invariant norm. We use the similar approach
as for proving the theorem in the previous section.

We consider the perturbed equation

X̃ − Ã∗X̃−1Ã = Q̃, (14)

where Ã and Q̃ (Q̃—positive definite) are small perturbations of A and Q in (2).
Eq. (2) has always unique positive definite solution [3]. We assume that X and X̃
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are the positive definite solutions of (2) and (14), respectively. We again use �X =
X̃ − X, �Q = Q̃ − Q, and �A = Ã − A.

Theorem 3.1. Let A, Ã, Q, Q̃ ∈ Cn×n be coefficient matrices for matrix equations
(2) and (14). Let

b=1 − ‖X−1A‖2
2 + ‖X−1‖2‖�Q‖,

c=‖�Q‖ + 2‖X−1A‖2‖�A‖ + ‖X−1‖2‖�A‖2,

where X is a unique positive definite solution of Eq. (2). If

‖X−1A‖2 < 1 and 2‖�A‖ + ‖�Q‖ � (1 − ‖X−1A‖2)
2

‖X−1‖2
, (15)

then D = b2 − 4c‖X−1‖2 � 0 and the positive definite solutions X and X̃ of the
respective Eqs. (2) and (14) satisfy

‖�X‖ � b − √
D

2‖X−1‖2
≡ Serr. (16)

Proof. In the proof of Theorem 1.1 [5, Theorem 6] the equality

�X + A∗X̃−1�XX−1A − A∗X̃−1�A − (�A)∗X̃−1Ã = �Q (17)

is derived. Using the expression

X̃−1 = X−1(I + �XX−1)−1 = (I + X−1�X)−1X−1

equality (17) has the type:

�X=�Q + (�A)∗(I + X−1�X)−1X−1(A + �A)

−A∗X−1(I + �XX−1)−1(�XX−1A − �A). (18)

We denote the right-hand of (18) with µ(�X):

µ(�X)≡�Q + (�A)∗(I + X−1�X)−1X−1(A + �A)

−A∗X−1(I + �XX−1)−1(�XX−1A − �A).

Using the second inequality of (15) we have

2‖X−1‖2‖�A‖ + ‖X−1‖2‖�Q‖ � 1 + ‖X−1A‖2
2 − 2‖X−1A‖2,

b � 2 − 2
(
‖X−1A‖2 + ‖X−1‖2‖�A‖

)
. (19)

According to definitions of D, b, c and inequality (19) we obtain

D = b2 − 4‖X−1‖2c = b2 − 4b + 4 − 4
(
‖X−1A‖2 + ‖X−1‖2‖�A‖

)2
� 0.
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Since D � 0, the square equation

‖X−1‖2S
2 − bS + c = 0 (20)

has two positive solutions for D > 0. The smaller solution is

Serr = b − √
D

2‖X−1‖2

or Serr = b

2‖X−1‖2
is a solution if D = 0.

We define

LSerr = {
�X ∈ Hn×n : �X � Serr

}
. (21)

For every �X ∈ LSerr we have

‖X−1�X‖ � ‖X−1‖2‖�X‖ � b

2
< 1.

Thus I + X−1�X is nonsingular and µ(�X) is a continuous map and∥∥∥(I + X−1�X)−1
∥∥∥� 1

1 − ‖X−1�X‖ � 1

1 − ‖X−1‖2‖�X‖
� 1

1 − ‖X−1‖2Serr
.

According to definition for µ(�X) for every �X ∈ LSerr we receive

‖µ(�X)‖≤‖�Q‖ + ‖�A‖
∥∥∥(I + X−1�X)−1X−1(A + �A)

∥∥∥
+
∥∥∥A∗X−1(I + �XX−1)−1(�XX−1A − �A)

∥∥∥
�‖�Q‖ + ‖�A‖‖X−1A‖2 + ‖X−1‖2‖�A‖

1 − ‖X−1‖2Serr

+‖X−1A‖2
Serr‖X−1A‖2 + ‖�A‖

1 − ‖X−1‖2Serr

= (1 − b)Serr + c

1 − ‖X−1‖2Serr
= Serr,

in which the last equality is due to the fact that Serr is a solution to the quadratic equa-
tion (20). Thus µ(�X) ∈ LSerr for each �X ∈ LSerr . This means that µ(LSerr ) ⊂
LSerr . By the Schauder fixed point theorem, there exists a �X∗ ∈ LSerr , such that
µ(�X∗) = �X∗. Hence there exists a solution �X∗ to Eq. (18), such that

‖�X∗‖ � Serr.

Let

X̃ = X + �X∗, (22)

where X is a unique positive definite solution of matrix equation (2). Then X̃ is a
Hermitian solution of the perturbed solution (14). It is easy to prove that X̃ is positive
definite. �
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4. Numerical experiments

We experiment with our estimation formulas and the corresponding formulas pro-
posed by Sun and Xu [8] for the equation X + A∗X−1A = Q and Sun [7] for the
equation X − A∗X−1A = Q. We describe the known results of these authors.

Consider the equation X + A∗X−1A = Q. Let XL be a maximal positive definite
solution of this equation. Consider the perturbed equation

X̃ + Ã∗X̃−1Ã = Q̃ (23)

with the maximal positive definite solution X̃L.
In order to expose Sun and Xu’s [8] results we introduce some notations:

�X = X̃L − XL, �Q = Q̃ − Q, �A = Ã − A.

Define operators L : Hn×n → Hn×n and P : Cn×n → Hn×n in the following way:

LW = W − B∗WB, B = X−1
L A, W ∈ Hn×n; (24)

PZ = L−1 (B∗Z + Z∗B
)
, Z ∈ Cn×n.

We define the operator norm ‖ · ‖U induced by an unitary invariant matrix norm ‖ · ‖:

‖L−1‖U = max
W∈Hn×n

‖W‖=1

‖L−1W‖, ‖P‖U = max
Z∈Cn×n

‖Z‖=1

‖PZ‖.

Denote
l = ‖L−1‖−1

U , p = ‖P‖U ,

α = ‖A‖2, β = ‖B‖2, ζ = ‖X−1
L ‖2,

ε = 1
l
‖�Q‖ + p‖�A‖ + ζ

l
‖�A‖2,

δ = ζ
l
[(α + ‖�A‖)ζ + β]‖�A‖.

 (25)

Sun and Xu have proved the following theorem:

Theorem 4.1 [8, Theorem 2.1]. If

δ < min

{
1,

(1 − β)(αζ + β)

l

}
and

ε < min

{
l(1 − δ)2

ζ
[
l + 2β2 + lδ + 2

√
(lδ + β2)(l + β2)

] ,
(1 − δ) [(1 − β)(αζ + β) − lδ]

ζ [(1 + β)(αζ + β) + lδ]

}
,

then the perturbed equation (23) has the maximal solution X̃L, and moreover

‖X̃L − XL‖� 2lε

l(1 + ζε − δ) +√
l2(1 + ζε − δ)2 − 4ζ lε(l + β2)

≡ξ∗. (26)
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We introduce the perturbation estimate for the unique positive definite solution X

of X − A∗X−1A = Q. Sun [7] has considered the equation X=Q+AH (X̂−C)
−1

A

and he has derived a perturbation bound for the unique positive definite solution X

of this equation. When C = 0 and X̂ = X a perturbation estimate for the equation
X = Q + A∗X−1A is obtained. We describe this perturbation estimate.

We define the following operators L+ : Hn×n →Hn×n and P+ : Cn×n →Hn×n

in the following way

L+W = W + B∗WB, B = X−1A, W ∈ Hn×n;
(27)

P+Z = L−1+ (B∗Z + Z∗B), Z ∈ Cn×n.

Let


 = ‖L−1+ ‖−1
U , p+ = ‖P+‖U .

The operator norm ‖ · ‖U is induced by the Frobenius norm ‖ · ‖F. Let B̃ = X−1Ã

and

β = ‖B‖2 , β̃ = ‖B̃‖2, γ = ‖X−1‖2,

ε1 = p+‖�A‖F + 1



‖�Q‖F, ε2 = γ



‖�A‖2‖�A‖F,

ε = ε1 + ε2, δ1 = γ (β + β̃)‖�A‖F, τ = β̃2γ.

The next theorem follows from the Sun’s theorem 2.1 [7] (m = 1).

Theorem 4.2. Let X+ be the unique positive definite solution to the matrix equation
X = Q + A∗X−1A. Let Ã = A + �A and Q̃ = Q + �Q be the coefficient matrices
of the perturbed matrix equation X̃ = Q̃ + Ã∗X̃−1Ã. If

Q̃ > 0, 
 − δ1 > 0

and

ε � (
 − δ1)
2



[
2τ + (
 − δ1)γ + 2

√
τ(τ + (
 − δ1)γ )

] ,
then the perturbed matrix equation has the unique positive definite solution X̃+ and∥∥X̃+ − X+

∥∥
F � 2
ε


−δ1+
γ ε+√[
 − δ1 + 
γ ε]2 − 4
ε[τ + (
 − δ1)γ ] ≡x∗.

Example 1. Consider Eq. (1) where

A =
(

2α α

α α/10

)
,

and it has a solution X = diag[1, 0.99] and right hand Q := X − ATX−1A. We take
α = 0.41 and assume that perturbations on matrices A and Q are
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�A =
(

10 6
2 4

)
× 10−8, �Q =

(
4 7
7 4

)
× 10−8.

The solution of the perturbed equation (4) is computed with the Matlab’s function

dare. The relative perturbation error and the corresponding estimate S+
err‖X‖F

are

‖X̃ − X‖F

‖X‖F
= 2.1878 × 10−5,

S+
err

‖X‖F
= 5.4505 × 10−5.

Note that the estimate of the perturbed error, derived in this paper could be com-
puted easy using any unitary invariant norm ‖ · ‖, while the estimate (26) depends
on many parameters (25), which is very difficult for computing in generally. The
estimates S+

err (16) and (26) are computed by Frobenius norm ‖ · ‖F, since numbers l

and p from (25) could be computed exactly and whence the remain parameters in (25)
could be computed. For this example (α = 0.41) the second condition of Theorem
4.1 is not satisfied and thus the perturbation estimate (26) does not give a result.

Usually, when our conditions (Theorem 2.1) and conditions of Theorem 4.1 are
satisfied, then the estimate (26) is sharper than our estimate S+

err. But in cases where
the matrices AQ−1A∗ and A∗Q−1A are closed or ‖X−1A‖2 is significant less than
1, then both estimates are close (see Table 1). So, for different values of α of this
example we have AQ−1A∗ = A∗Q−1A. The results are given in Table 1.

Example 2. Consider Eq. (2) with

A = 1

3

(
1 2

−2 1

)
, and solution X =

(
2 1
1 7

)
and right-hand Q := X − ATX−1A. Assume that the perturbations on A and Q are

�A =
(

1 2
3 4

)
× 10−5, �Q =

(
1 5
5 4

)
× 10−10.

We compute a unique positive definite solution to perturbed equation (14)
with Matlab’s function dare. For this we use the relation between perturbed
equation (14) and the corresponding discrete algebraic Riccati equation [5]. The
relative perturbation error and corresponding estimate Serr‖X‖F

are

Table 1
Results for Example 1 with different values of α: AQ−1A∗ = A∗Q−1A

α
‖X̃−X‖F‖X‖F

S+
err‖X‖F

ξ∗
‖X‖F

0.2 4.1752e−8 2.1936e−7 2.1936e−7
0.3 1.3018e−7 4.5080e−7 4.5080e−7
0.35 2.9276e−7 8.4507e−7 8.4504e−7
0.39 9.7195e−7 2.5065e−6 2.5061e−6
0.4 1.9113e−6 4.8105e−6 4.8090e−6
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‖X̃ − X‖F

‖X‖F
= 1.9803 × 10−6,

Serr

‖X‖F
= 7.3402 × 10−6,

x∗

‖X‖F
= 5.9109 × 10−6,

where x∗ is the estimate derived in Theorem 4.2. Advantages and defects of this Sun’s
estimate are the same as the previous estimate (26).

References

[1] J.C. Engwerda, A.C.M. Ran, A.L. Rijkeboer, Necessary and sufficient conditions for the existence
of a positive definite solution of the matrix equation X + A∗X−1A = Q, Linear Algebra Appl. 186
(1993) 255–275.

[2] C.-H. Guo, P. Lancaster, Iterative solution of two matrix equations, Math. Comput. 68 (1999) 1589–
1603.

[3] A. Ferrante, B. Levy, Hermitian solutions of the equation X = Q + NX−1N∗, Linear Algebra Appl.
247 (1996) 359–373.

[4] I.G. Ivanov, V.I. Hasanov, F. Uhlig, Improved methods and starting values to solve the matrix equations
X±A∗X−1A = I iteratively, Math. Comput. 74 (2005) 263–278.

[5] V.I. Hasanov, I.G. Ivanov, F. Uhlig, Improved perturbation estimates for the matrix equations
X±A∗X−1A = Q, Linear Algebra Appl. 379 (2004) 113–135.

[6] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Aca-
demic Press, New York, 1970 (in Russian 1975).

[7] J.-G. Sun, Perturbation analysis of the matrix equation X = Q + AH (X̂ − C)−1A, Linear Algebra
Appl. 362 (2003) 211–228.

[8] J.-G. Sun, S.-F. Xu, Perturbation analysis of the maximal solution of the matrix equation
X + A∗X−1A = P . II, Linear Algebra Appl. 362 (2003) 211–228.

[9] S.-F. Xu, Perturbation analysis of the maximal solution of the matrix equation X + A∗X−1A = P ,
Linear Algebra Appl. 336 (2001) 61–70.


