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SUMMARY

Polycomb group proteins are essential for early
development in metazoans, but their contribu-
tions to human development are not well under-
stood. We have mapped the Polycomb Repres-
sive Complex 2 (PRC2) subunit SUZ12 across
the entire nonrepeatportion of the genome in hu-
man embryonic stem (ES) cells. We found that
SUZ12 is distributed across large portions of
over two hundred genes encoding key develop-
mental regulators. These genes are occupied by
nucleosomes trimethylated athistoneH3K27,are
transcriptionally repressed, and contain some of
the most highly conserved noncoding elements
in the genome. We found that PRC2 target genes
are preferentially activated during ES cell differ-
entiation and that the ES cell regulators OCT4,
SOX2, and NANOG cooccupy a significant sub-
set of these genes. These results indicate that
PRC2 occupies a special set of developmental
genes in ES cells that must be repressed to
maintain pluripotency and that are poised for
activation during ES cell differentiation.

INTRODUCTION

Embryonic stem (ES) cells are a unique self-renewing cell

type that can give rise to the ectodermal, endodermal, and
mesodermal germ layers during embryogenesis. Human

ES cells, which can be propagated in culture in an undiffer-

entiated state but selectively induced to differentiate into

many specialized cell types, are thought to hold great

promise for regenerative medicine (Thomson et al., 1998;

Reubinoff et al., 2000; Mayhall et al., 2004; Pera and

Trounson, 2004). The gene expression program of ES cells

must allow these cells to maintain a pluripotent state but

also allow for differentiation into more specialized states

when signaled to do so. Learning how this is accomplished

may be key to realizing the therapeutic potential of ES cells

and further understanding early development.

Among regulators of development, the Polycomb group

proteins (PcG) are of special interest. These regulators

were first described in Drosophila, where they repress

the homeotic genes controlling segment identity in the de-

veloping embryo (Lewis, 1978; Denell and Frederick,

1983; Simon et al., 1992; Orlando and Paro, 1995; Pirrotta,

1998; Kennison, 2004). The initial repression of these

genes is carried out by DNA binding transcriptional re-

pressors, and PcG proteins modify chromatin to maintain

these genes in a repressed state (Duncan, 1986; Bender

et al., 1987; Strutt et al., 1997; Horard et al., 2000; Hodg-

son et al., 2001; Mulholland et al., 2003).

The PcG proteins form multiple Polycomb Repressive

Complexes (PRCs), the components of which are con-

served from Drosophila to humans (Franke et al., 1992;

Shao et al., 1999; Birve et al., 2001; Tie et al., 2001; Cao

et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002;

Levine et al., 2002). The PRCs are brought to the site of ini-

tial repression and act through epigenetic modification of

chromatin structure to promote gene silencing (Pirrotta,
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1998; Levine et al., 2004; Lund and van Lohuizen, 2004;

Ringrose and Paro, 2004). PRC2 catalyzes histone H3

lysine-27 (H3K27) methylation, and this enzymatic activity

is required for PRC2-mediated gene silencing (Cao et al.,

2002; Czermin et al., 2002; Kuzmichev et al., 2002; Muller

et al., 2002; Kirmizis et al., 2004). H3K27 methylation is

thought to provide a binding surface for PRC1, which facil-

itates oligomerization, condensation of chromatin struc-

ture, and inhibition of chromatin remodeling activity in

order to maintain silencing (Shao et al., 1999; Francis

et al., 2001; Cao et al., 2002; Czermin et al., 2002).

Components of PRC2 are essential for the earliest

stages of vertebrate development (Faust et al., 1998;

O’Carroll et al., 2001; Pasini et al., 2004). PRC2 and its re-

lated complexes, PRC3 and PRC4, contain the core com-

ponents EZH2, SUZ12, and EED (Kuzmichev et al., 2004;

Kuzmichev et al., 2005). EZH2 is a H3K27 methyltransfer-

ase, and SUZ12 (Suppressor of zeste 12) is required for

this activity (Cao and Zhang, 2004; Pasini et al., 2004).

ES cell lines cannot be established from Ezh2-deficient

blastocysts (O’Carroll et al., 2001), suggesting that PRC2

is involved in regulating pluripotency and self-renewal.

Although the PRCs are known to repress individual HOX

genes (van der Lugt et al., 1996; Akasaka et al., 2001;

Wang et al., 2002; Cao and Zhang, 2004), it is not clear

how these important PcG regulators contribute to early

development in vertebrates.

Because the nature of PRC2 target genes in ES cells

might reveal why PRC2 is essential for early embryonic

development, pluripotency, and self-renewal, we have

mapped the sites occupied by the SUZ12 subunit

throughout the genome in human ES cells. This ge-

nome-wide map reveals that PRC2 is associated with a re-

markable cadre of genes encoding key regulators of de-

velopmental processes that are repressed in ES cells.

The genes occupied by PRC2 contain nucleosomes that

are trimethylated at histone H3 lysine-27 (H3K27me3),

a modification catalyzed by PRC2 and associated with

the repressed chromatin state. Both PRC2 and nucleo-

somes with histone H3K27me3 occupy surprisingly large

genomic domains around these developmental regulators

and are frequently associated with highly conserved non-

coding sequence elements previously identified by com-

parative genomic methods. The transcription factors

OCT4, SOX2, and NANOG, which are also key regulators

of ES cell pluripotency and self-renewal, occupy a signifi-

cant subset of these genes. Thus, the model of epigenetic

regulation of homeotic genes extends to a large set of de-

velopmental regulators whose repression in ES cells ap-

pears to be key to pluripotency. We suggest that PRC2

functions in ES cells to repress developmental genes

that are preferentially activated during differentiation.

RESULTS AND DISCUSSION

Mapping Genome Occupancy in ES Cells

We mapped the location of both RNA polymerase II and

the SUZ12 subunit of PRC2 genome-wide in human ES
302 Cell 125, 301–313, April 21, 2006 ª2006 Elsevier Inc.
cells (Figure 1). The initiating form of RNA polymerase II

was mapped to test the accuracy of the method and pro-

vide a reference for comparison with sites occupied by

PRC2. The SUZ12 subunit of PRC2 is critical for the func-

tion of the complex and was selected for these genome-

wide experiments. Human ES cells (H9, NIH code WA09)

were analyzed by immunohistochemistry for characteris-

tic stem cell markers, tested for their ability to generate

cell types from all three germ layers upon differentiation

into embryoid bodies, and shown to form teratomas in

immunocompromised mice (Supplemental Data; Figures

S1–S3).

DNA sequences bound by RNA polymerase II were

identified in replicate chromatin-immunoprecipitation

(ChIP) experiments using DNA microarrays that contain

over 4.6 million unique 60-mer oligonucleotide probes

spanning the entire nonrepeat portion of the human ge-

nome (Figure 1 and Supplemental Data). To obtain a prob-

abilistic assessment of binding events, an algorithm was

implemented that incorporates information from multiple

probes representing contiguous regions of the genome,

and threshold criteria were established to identify a data-

set with minimal false positives and false negatives. RNA

polymerase II was associated with the promoters of

7,106 of the approximately 22,500 annotated human

genes, indicating that one-third of protein-coding genes

are prepared to be transcribed in ES cells. Three lines of

evidence suggest this dataset is of high quality. Most of

the RNA polymerase II sites (87%) occurred at promoters

of known or predicted genes. Transcripts were detected

for 88% of the genes bound by RNA polymerase II in pre-

vious expression experiments in ES cells. Finally, indepen-

dent analysis using gene-specific PCR (Supplemental

Data) indicated that the frequency of false positives was

approximately 4% and the frequency of false negatives

was approximately 30% in this dataset. A detailed analy-

sis of the RNA polymerase II dataset, including binding to

miRNA genes, can be found in Supplemental Data (Tables

S1–S6 and Figures S4 and S5).

The sites occupied by SUZ12 were then mapped

throughout the entire nonrepeat genome in H9 ES cells us-

ing the same approach described for RNA polymerase II

(Figure 1C). SUZ12 was associated with the promoters

of 1,893 of the approximately 22,500 annotated human

genes, indicating that �8% of protein-coding genes are

occupied by SUZ12 in ES cells (Supplemental Data;

Tables S7 and S8). Independent site-specific analysis in-

dicated that the frequency of false positives was approx-

imately 3% and the frequency of false negatives was

approximately 27% in this dataset.

Comparison of the genes occupied by SUZ12 with

those occupied by RNA polymerase II revealed that the

two sets were largely exclusive (Figure 1D; Supplemental

Data; Table S8). There were, however, genes where

SUZ12 and RNA polymerase II cooccupied promoters.

At these genes, PRC complexes may fail to block assem-

bly of the preinitiation complex (Dellino et al., 2004), con-

sistent with the observation that Polycomb group proteins



Figure 1. Genome-Wide ChIP-Chip in Human Embryonic Stem Cells

(A) DNA segments bound by the initiation form of RNA polymerase II or SUZ12 were isolated using chromatin-immunoprecipitation (ChIP) and iden-

tified with DNA microarrays containing over 4.6 million unique 60-mer oligonucleotide probes spanning the entire nonrepeat portion of the human

genome. ES cell growth and quality control, the antibodies, ChIP protocol, DNA microarray probe design, and data analysis methods are described

in detail in Supplemental Data.

(B) Examples of RNA polymerase II ChIP signals from genome-wide ChIP-Chip. The plots show unprocessed enrichment ratios (blue) for all probes

within a genomic region (ChIP versus whole genomic DNA). Chromosomal positions are from NCBI build 35 of the human genome. Genes are shown

to scale below plots (exons are represented by vertical bars). The start and direction of transcription are noted by arrows.

(C) Examples of SUZ12 ChIP signals from genome-wide ChIP-Chip. The plots show unprocessed enrichment ratios (green) for all probes within a

genomic region (ChIP versus whole genomic DNA). Chromosomal positions, genes, and notations are as described in (B).

(D) Chart showing percentage of all annotated genes bound by RNA polymerase II (blue), SUZ12 (green), both (yellow), or neither (gray).

(E) Distribution of the distance between bound probes and the closest transcription start sites from RefSeq, Ensembl, MGC, UCSC Known Genes and

H-Inv databases for SUZ12 (green line), and RNA polymerase II (blue line). The number of bound probes is given as the percentage of total probes and

is calculated for 400 bp intervals from the start site. The null-distribution of the distance between all probes and the closest transcription are shown as

a black line.
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Figure 2. SUZ12 Is Associated with EED,

histone H3K27me3 Modification, and

Transcriptional Repression in ES Cells

(A) Venn diagram showing the overlap of

genes bound by SUZ12 at high-confidence,

genes bound by EED at high-confidence,

and genes trimethylated at H3K27 at high-

confidence. The data are from promoter micro-

arrays that contain probes tiling �8 kb and

+2 kb around transcription start. 72% of the

genes bound by SUZ12 at high-confidence are

also bound by EED at high-confidence; others

are bound by EED at lower confidence

(Figure S6).

(B) SUZ12 (top), EED (middle), and H3K27me3

(bottom) occupancy at NEUROD1. The plots

show unprocessed enrichment ratios for all

probes within this genomic region (SUZ12 ChIP

versus whole genomic DNA, EED ChIP versus

whole genomic DNA, and H3K27me3 ChIP

versus total H3 ChIP). Chromosomal positions

are from NCBI build 35 of the human genome.

NEUROD1 is shown to scale below plots (exons

are represented by vertical bars). The start and

direction of transcription are noted by arrows.

(C) Relative expression levels of 604 genes oc-

cupied by PRC2 and trimethylated at H3K27 in

ES cells. Comparisons were made across four

ES cell lines and 79 differentiated cell types.

Each row corresponds to a single gene that is

bound by SUZ12, associated with EED and

H3K27me3, and for which Affymetrix expres-

sion data are available. Each column corre-

sponds to a single expression microarray. ES

cells are in the following order: H1, H9, HSF6,

HSF1. For each gene, expression is shown relative to the average expression level of that gene across all samples, with shades of red indicating

higher than average expression and green lower than average expression according to the scale on the right. Cell types are grouped by tissue or organ

function, and genes are ranked according the significance of their relative level of gene expression in ES cells.
can associate with components of the general transcrip-

tion apparatus (Breiling et al., 2001; Saurin et al., 2001).

The vast majority of SUZ12 bound sites were found at

gene promoters (Figure 1E). Ninety-five percent of the

SUZ12 bound regions were found within 1 kb of known or

predicted transcription start sites (Supplemental Data and

Table S7). This suggests that SUZ12 functions in human

ES cells primarily at promoters rather than at distal regula-

tory elements. It is interesting that 40% of all SUZ12 bound

regions are within 1 Kb of CpG islands (Table S7), given the

recent discovery of a mechanistic link between PcG pro-

teins and DNA methyltransferoses (Vire et al., 2006).

Global Transcriptional Repression by PRC2

PRC2 is composed of three core subunits, SUZ12, EED,

and EZH2, and has been shown to mediate histone

H3K27 methylation at specific genes in vivo. To confirm

that SUZ12 is associated with active PRC2 at target

genes, we used chromatin immunoprecipitation with anti-

bodies against EED and the histone H3K27me3 mark and

analyzed the results with promoter microarrays. We found

that EED and the histone H3K27me3 mark cooccurred

with SUZ12 at most genes using a high-confidence bind-
304 Cell 125, 301–313, April 21, 2006 ª2006 Elsevier Inc.
ing threshold (Figure 2). The false negative rates of thresh-

olded data can lead to an underestimate of the similarity

between different datasets. Plotting raw enrichment ratios

for genes associated with SUZ12, EED, or H3K27me3

demonstrates that SUZ12 binding represents PRC2 bind-

ing at almost all target genes (Figure S6).

Genetic and biochemical studies at selected genes indi-

cate that PRC2-mediated H3K27 methylation represses

gene expression, but it has not been established if it

acts as a repressor genome-wide. If genes occupied by

SUZ12 are repressed by PRC2, then transcripts from

these genes should generally be present at lower levels

in ES cells than in differentiated cell types. To test this pre-

diction, we compared the expression levels of PRC2-oc-

cupied genes in four different ES cell lines with the expres-

sion level of these genes in 79 differentiated human cell

and tissue types (Sato et al., 2003; Abeyta et al., 2004;

Su et al., 2004). We found that PRC2 occupied genes

were generally underexpressed in ES cells relative to other

cell types (Figure 2C). A small fraction of the genes occu-

pied by PRC2 were relatively overexpressed in ES cells

(Figure 2C); these tended to show less extensive SUZ12

occupancy and were more likely to be cooccupied by



Figure 3. Cellular Functions of Genes

Occupied by SUZ12

(A) Genes bound by SUZ12 or RNA polymerase

II were compared to biological process gene

ontology categories; highly represented cate-

gories are shown. Ontology terms are shown

on the y axis; p-values for the significance of

enrichment are graphed along the x axis

(SUZ12 in green, RNA polymerase II in blue).

(B) Selected examples of developmental tran-

scription factor families bound by SUZ12.

SUZ12 is represented by the green oval; indi-

vidual transcription factors are represented by

circles and grouped by family as indicated. Ex-

amples of transcription factors with defined

roles in development are labeled. Transcription

factor families include homeobox protein

(HOX), basic helix-loop-helix domain contain-

ing, class B (BHLHB), HOX cofactors (MEIS/

EVX), distal-less homeobox (DLX), Forkhead

box (FOX), NEUROD, GATA binding protein

(GATA), runt related transcription factor

(RUNX), paired box and paired-like (PAX), LIM

homeobox (LHX), sine oculis homeobox homo-

log (SIX), NK transcription factor related (NKX),

SRY box (SOX), POU domain containing, clas-

ses 3 and 4 (POU), early B-cell factor (EBF),

atonal homolog (ATOH), hairy and enhancer of

split protein (HES), myogenic basic domain

(MYO), T-box (TBX), caudal type homeobox

(CDX), and iroquois homeobox protein (IRX).
RNA polymerase II (Supplemental Data). These results are

consistent with the model that PRC2-mediated histone

H3K27 methylation promotes gene silencing at the major-

ity of its target genes throughout the genome in ES cells.

Key Developmental Regulators Are Targets of PRC2

Examination of the targets of SUZ12 revealed that they

were remarkably enriched for genes that control develop-

ment and transcription (Figure 3) and that SUZ12 tended

to occupy large domains at these genes (Figure 4). Al-

though only 8% of all annotated genes were occupied

by SUZ12, �50% of those encoding transcription factors

associated with developmental processes were occupied

by SUZ12. By comparison, RNA polymerase II preferen-

tially occupied genes involved in a broad spectrum of

cell proliferation functions such as nucleic acid metabo-

lism, protein synthesis, and cell cycle (Figure 3A and

examples in Figure 1B; Supplemental Data; Table S10).

It was striking that SUZ12 occupied many families of

genes that control development and transcription (Figures

3B and S7 and Table S11). These included 39 of 40 of the

homeotic genes found in the HOX clusters and the major-

ity of homeodomain genes. SUZ12 bound homeodomain
genes included almost all members of the DLX, IRX,

LHX, and PAX gene families, which regulate early devel-

opmental steps in neurogenesis, hematopoiesis, axial

patterning, tissue patterning, organogenesis, and cell-

fate specification. SUZ12 also occupied promoters for

large subsets of the FOX, SOX, and TBX gene families.

The forkhead family of FOX genes is involved in axial pat-

terning and tissue development from all three germ layers

(Lehmann et al., 2003). Mutations in members of the SOX

gene family alter cell-fate specification and differentiation

and are linked to several developmental diseases

(Schepers et al., 2002). The TBX family of genes regulates

a wide variety of developmental processes such as gas-

trulation, early pattern formation, organogenesis, and

limb formation (Showell et al., 2004). Thus, the genes pref-

erentially bound by SUZ12 have functions that, when ex-

pressed, promote differentiation. This is likely to explain,

at least in part, why PRC2 is essential for early develop-

ment and ES cell pluripotency.

A remarkable feature of PRC2 binding at most genes

encoding developmental regulators was the extensive

span over which the regulator occupied the locus (Figures

4, S8, and S9). For the majority (72%) of bound sites
Cell 125, 301–313, April 21, 2006 ª2006 Elsevier Inc. 305



Figure 4. SUZ12 Occupies Large Por-

tions of Genes Encoding Transcription

Factors with Roles in Development

(A) The fraction of SUZ12 target genes associ-

ated with different sizes of binding domains.

Genes are grouped into four categories ac-

cording to their function: Signaling, Adhesion/

migration, Transcription, and Other.

(B) Examples of SUZ12 (green) and RNA poly-

merase II (blue) binding at the genes encoding

developmental regulators TBX5 and PAX6.

The plots show unprocessed enrichment ratios

for all probes within a genomic region (ChIP

versus whole genomic DNA). Genes are shown

to scale below plots (exons are represented by

vertical bars). The start and direction of tran-

scription are noted by arrows.

(C) Binding profiles of SUZ12 (green) and RNA

polymerase II (blue) across �500 kb regions

encompassing HOX clusters A–D. Unpro-

cessed enrichment ratios for all probes within

a genomic region are shown (ChIP versus

whole genomic DNA). Approximate HOX clus-

ter region sizes are indicated within black bars.
across the genome, SUZ12 occupied a small region of the

promoter similar in size to regions bound by RNA polymer-

ase II (Figure 1). For the remaining bound regions, SUZ12

occupancy encompassed large domains spanning 2–35

kb and extending from the promoter into the gene. A large

portion of genes encoding developmental regulators

(72%) exhibited these extended regions of SUZ12 bind-

ing. In some cases, binding encompassed multiple contig-

uous genes. For instance, SUZ12 binding extended �100

kb across the entire HOXA, HOXB, HOXC, and HOXD

clusters but did not bind to adjacent genomic sequences,

yielding a highly defined spatial pattern (Figure 4B). In con-

trast, clusters of unrelated genes, such as the interleukin

1-b cluster, were not similarly bound by SUZ12. Thus,

genes encoding developmental regulators showed an un-
306 Cell 125, 301–313, April 21, 2006 ª2006 Elsevier Inc.
usual tendency to be occupied by PRC2 over much or all

of their transcribed regions.

PRC2 and Highly Conserved Elements

Previous studies have noted that many highly conserved

noncoding elements of vertebrate genomes are associ-

ated with genes encoding developmental regulators (Be-

jerano et al., 2004; Siepel et al., 2005; Woolfe et al., 2005).

Given SUZ12’s strong association with this class of genes,

we investigated the possibility that SUZ12 bound regions

are associated with these highly conserved elements. In-

spection of individual genes suggested that SUZ12 occu-

pancy was associated with regions of sequence conser-

vation (Figure 5A). Eight percent of the approximately

1,400 highly conserved noncoding DNA elements



Figure 5. SUZ12 Binding Is Associated

with Highly Conserved Regions

(A) SUZ12 occupancy (green) and conserved

elements are shown at NKX2-2 and adjacent

genomic regions. The plots show unprocessed

enrichment ratios for all probes within this ge-

nomic region (SUZ12 ChIP versus whole geno-

mic DNA). Conserved elements (red) with LoD

scores > 160 derived from the PhastCons pro-

gram (Siepel et al., 2005) are shown to scale

above the plot. Genes are shown to scale below

plots (exons are represented by vertical bars).

A higher resolution view is also shown below.

(B) Enrichment of conserved noncoding ele-

ments within SUZ12 (green) and RNA polymer-

ase II (blue) bound regions. The maximum non-

exonic PhastCons conservation score was

determined for each bound region. For compar-

ison, the same parameter was determined us-

ing a randomized set of genomic regions with

the same size distribution. The graph displays

the ratio of the number of bound regions with

that score versus the number of randomized

genomic regions with that score.
described by Woolfe and colleagues (Woolfe et al., 2005)

were found to be associated with the SUZ12 bound devel-

opmental regulators (p-value 10�14). Using entries from

the PhastCons database of conserved elements (Siepel

et al., 2005), we found that SUZ12 occupancy of highly

conserved elements was highly significant (using highly

conserved elements with a LoD conservation score of

100 or better, the p-value for significances was less than

10�85). Since PRC2 has not been shown to directly bind

DNA sequences, we expect that specific DNA binding

proteins occupy the highly conserved DNA sequences

and may associate with PRC2, which spreads and oc-

cupies adjacent chromatin. Thus, the peaks of SUZ12

occupancy might not be expected to precisely colocate

with the highly conserved elements, even if these ele-

ments are associated with PRC2 recruitment.
Remarkably, the degree of the association between

SUZ12 binding and conserved sequences increases when

considering sequences with an increasing degree of con-

servation (Figure 5B). By comparison, RNA polymerase II

showed no such enrichment. These results suggest that

the subset of highly conserved noncoding elements at

genes encoding developmental regulators may be associ-

ated with PcG-mediated silencing of these regulators.

Signaling Genes Are among PRC2 Targets

The targets of SUZ12 were also enriched for genes that

encode components of signaling pathways (Figure 3A

and Table S12). There is evidence that transforming

growth factor-b (TGFb), bone morphogenic protein (BMP),

wingless-type MMTV integration site (Wnt), and fibro-

blast growth factor (FGF) signaling pathways, which
Cell 125, 301–313, April 21, 2006 ª2006 Elsevier Inc. 307



Figure 6. Preferential Activation of PRC2 Target Genes during ES Cell Differentiation

(A) Fold enrichment in the number of genes induced or repressed during ES cell differentiation. The change in gene expression is given as the log(2)

transformed ratio of the signals in differentiated H1 cells versus pluripotent H1 cells and is binned into six groups. The upper limit of each bin is in-

dicated on the x axis. The two lines show genes transcriptionally inactive in ES cells (absence of RNA polymerase II) and bound by SUZ12 (green) and

genes transcriptionally inactive in ES cells and repressed by other means (blue). In both cases, fold enrichment is calculated against the total pop-

ulation of genes and normalized for the number of genes present in each group.

(B) Expression changes of genes encoding developmental regulators during ES cell differentiation. Expression ratio (differentiated/pluripotent) is rep-

resented by color, with shades of red indicating upregulation and shades of green downregulation according to the scale shown above. Genes are

ordered according to change in gene expression, with genes exhibiting higher expression in pluripotent ES cells to the left and genes exhibiting higher

expression in differentiated cells to the right. Genes bound by SUZ12 in undifferentiated ES cells are indicated by blue lines in the lower panel.

(C) Fold enrichment in the number of genes induced or repressed in SUZ12-deficient mouse cells. The change in gene expression is given as the log(2)

transformed ratio of the signals in Suz12-deficient cells versus wild-type ES cells. The two lines show genes transcriptionally inactive in human ES

cells (absence of RNA polymerase II) and bound by SUZ12 (green) and genes transcriptionally inactive in human ES cells and repressed by other

means (blue). In both cases, fold enrichment is calculated against the total population of genes.

(D) Gene expression ratios (log base 2) of Suz12 target genes in differentiated human H1 ES cells relative to pluripotent H1 ES cells (x axis) and in

Suz12-deficient mouse cells relative to wild-type mouse ES cells (y axis). Upper right quadrant: genes upregulated during human ES cell differenti-

ation and in Suz12-deficient mouse cells; lower right: genes upregulated during ES cell differentiation and downregulated in Suz12-deficient cells;

lower left: genes downregulated during ES cell differentiation and in Suz12-deficient cells; upper left: genes downregulated during ES cell differen-

tiation and upregulated in Suz12-deficient cells.

(E) SUZ12 binding profiles across the gene encoding muscle regulator MYOD1 in H9 human ES cells (green) and primary human skeletal myotubes

(gray). The plots show unprocessed enrichment ratios for all probes within a genomic region (ChIP versus whole genomic DNA). Genes are shown to

scale below plots (exons are represented by vertical bars). The start and direction of transcription are noted by arrows.
308 Cell 125, 301–313, April 21, 2006 ª2006 Elsevier Inc.



are required for gastrulation and lineage differentiation in

the embryo, are also essential for self-renewal and dif-

ferentiation of ES cells in culture (Loebel et al., 2003; Mo-

lofsky et al., 2004). SUZ12 generally occupied the pro-

moters of multiple components of these pathways, but it

occupied larger domains within a group of signaling genes

that contained highly conserved elements. This group

contained members of the Wnt family (WNT1, WNT2,

WNT6) as well as components of the TGFb superfamily

(BMP2, GDF6). Recent studies have shown that Wnt sig-

naling plays a role in pluripotency and self-renewal in

both mouse and human ES cells (Sato et al., 2004), and

our results suggest that it is important to maintain specific

family members in a repressed state in ES cells.

Activation of PRC2 Target Genes

during Differentiation

PRC2 is associated with an important set of developmen-

tal regulators that must be silent in ES cells but activated

during differentiation. This observation suggests that

PRC2 ultimately functions to repress occupied genes in

ES cells and that these genes may be especially poised

for transcriptional activation during ES cell differentiation.

We reasoned that if this model is correct, genes bound by

SUZ12 should be preferentially activated upon ES cell dif-

ferentiation or in cells that lack SUZ12. Furthermore, in dif-

ferentiated cells, SUZ12 might continue to be observed at

silent genes but must be removed from genes whose ex-

pression is essential for that cell type.

We first examined gene expression in ES cells stimu-

lated to undergo differentiation (Sato et al., 2003). We

found that genes occupied by SUZ12 were more likely

to be activated during ES cell differentiation than genes

that were not occupied by SUZ12 (Figure 6A; Supplemen-

tal Data; Table S13), indicating that SUZ12-occupied

genes show preferential activation during differentiation

under these conditions. Thirty-six percent of genes bound

by SUZ12 showed greater than 2-fold increases in expres-

sion during ES cell differentiation, whereas only 16% of

genes not bound by SUZ12 showed such an increase.

This effect was particularly striking at the set of develop-

mental regulators (Figure 6B). SUZ12 occupied most

(83%) of the developmental regulators that were induced

more than 10-fold during ES cell differentiation.

We next examined the expression of SUZ12 target

genes in Suz12-deficient cell lines derived from homozy-

gous mutant blastocysts (Supplemental Data). We rea-

soned that genes bound by SUZ12 in human ES cells

have orthologs in mice that should be upregulated in

Suz12-deficient mouse cells, although we expected the

overlap in these sets of genes to be imperfect because

of potential differences between human and mouse ES

cells, the possible repression of PRC2 target genes by ad-

ditional mechanisms, and pleiotropic effects of the Suz12
knockout on genes downstream of Suz12-target genes.

Differences in gene expression between Suz12 homozy-

gous mutant cells and wild-type ES cells were measured

using gene expression microarrays and the human SUZ12

binding data mapped to orthologous mouse genes using

HomoloGene (www.ncbi.nlm.nih.gov/HomoloGene). We

found that a significant portion of mouse genes whose

counterparts were bound by SUZ12 in human ES cells

were upregulated in Suz12-deficient mouse cells (70 of

346 genes, p = 6 � 10�4); these genes are listed in Table

S14. Orthologs of genes occupied by SUZ12 in human

ES cells were more likely to be activated and less likely

to be repressed in Suz12-deficient mouse cells than ortho-

logs of genes not occupied by SUZ12 (Figure 6C). Further-

more, we found that orthologs of Suz12 target genes that

were induced upon human ES cell differentiation were

generally also induced upon loss of Suz12 in mouse cells

(Figure 6D). Genes that were activated during ES cell dif-

ferentiation and in Suz12-deficient cells included those

encoding transcriptional regulators (GATA2, GATA3,

GATA6, HAND1, MEIS2, and SOX17) signaling proteins

(WNT5A, DKK1, DKK2, EFNA1, EFNB1, EPHA4, and

EPHB3) and the cell-cycle inhibitor CDKN1A. These data

indicate that Suz12 is necessary to fully repress the genes

that are occupied by PRC2 in wild-type ES cells and have

since been confirmed with binding data and knockout

studies of a second PRC subunit in mouse (Boyer et al.,

2006).

If PRC2 functions to repress genes in ES cells that are

activated during differentiation, then in differentiated tis-

sues SUZ12 occupancy should be diminished at genes

encoding developmental regulators that have a role in

specifying the identity of that tissue, similar to results

seen with Ezh2 at specific genes in mouse (Caretti

et al., 2004). To test this, we designed an array focused

on the promoters of developmental regulators and used

ChIP-Chip to investigate SUZ12 occupancy at these

promoters in primary differentiated muscle cells. The re-

sults demonstrated that genes encoding key regulators

of muscle differentiation, including MYOD1, displayed

greatly diminished SUZ12 occupancy when compared to

ES cells (Figure 6E). MYOD1 is a master regulator for

muscle differentiation (Tapscott, 2005), and the gene en-

coding this transcription factor displayed no significant

SUZ12 occupancy when compared to the levels of

SUZ12 occupancy observed in ES cells. Genes encoding

other transcriptional regulators that play a central role in

muscle development, such as PAX3 and PAX7 (Brand-

Saberi, 2005), showed reduced levels of SUZ12 occu-

pancy in muscle cells relative to ES cells (Supplemental

Data and Figure S11). In contrast, other developmental

regulators important for differentiation of nonmuscle

tissues remained occupied by SUZ12 in differentiated

muscle cells (Figure 6F and Table S15). These data
(F) Suz12 binding profiles across the gene encoding LHX9 in H9 human ES cells (green) and primary human skeletal myotubes (gray). The plots show

unprocessed enrichment ratios for all probes within a genomic region (ChIP versus whole genomic DNA). Genes are shown to scale below plots

(exons are represented by vertical bars). The start and direction of transcription are noted by arrows.
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Figure 7. SUZ12 Is Localized to Genes also Bound by ES Cell

Transcriptional Regulators

(A) Transcriptional regulatory network model of developmental regula-

tors governed by OCT4, SOX2, NANOG, RNA polymerase II, and

SUZ12 in human ES cells. The ES cell transcription factors each bound

to approximately one-third of the PRC2-occupied, developmental

transcription factor genes. Developmental regulators were selected

based on gene ontology. Regulators are represented by dark blue cir-

cles; RNA polymerase II is represented by a light blue circle; SUZ12 is

represented by a green circle; gene promoters for developmental reg-

ulators are represented by small red circles.

(B) SUZ12 occupies a set of repressed developmental regulators also

bound by OCT4, SOX2, and NANOG in human ES cells. Genes anno-

tated as bound by OCT4, SOX2, and NANOG previously and identified

as active or repressed based on expression data (Boyer et al., 2005)

were tested to see if they were bound by SUZ12 or RNA polymerase

II. Ten of eleven previously identified active genes were found to be

bound by RNA polymerase II at known promoters, while eleven of

twelve previously identified repressed genes were bound by SUZ12.
310 Cell 125, 301–313, April 21, 2006 ª2006 Elsevier Inc.
support a model where PRC2 binding in ES cells re-

presses key developmental regulators that are later ex-

pressed during differentiation.

Targets of PRC2 Are Shared with Key

ES Cell Regulators

The transcription factors OCT4, SOX2, and NANOG have

essential roles in early development and are required for

the propagation of undifferentiated ES cells in culture

(Nichols et al., 1998; Avilion et al., 2003; Chambers

et al., 2003; Mitsui et al., 2003). We recently reported

that these transcription factors occupied promoters for

many important developmental regulators in human ES

cells (Boyer et al., 2005). This led us to compare the set

of genes encoding developmental regulators and occu-

pied by OCT4, SOX2, and NANOG with those occupied

by PRC2 (Figure 7 and Supplemental Data). We found

that each of the three DNA binding transcription factors

occupied approximately one-third of the PRC2-occupied

genes that encode developmental transcription factors

(Figure 7A; Supplemental Data; Table S11). Remarkably,

we found that the subset of genes encoding developmen-

tal regulators that were occupied by OCT4, SOX2, and

NANOG and repressed in the regulatory circuitry high-

lighted in Boyer et al. were almost all occupied by PRC2

(Figure 7B). These included genes for transcription factors

known to be important for differentiation into extraembry-

onic, endodermal, mesodermal, and ectodermal lineages

(e.g., ESX1L, ONECUT1, HAND1, HOXB1). As expected,

active genes encoding ES cell transcription factors (e.g.,

ZIC3, STAT3, OCT4, NANOG) were occupied by OCT4,

SOX2, NANOG, and RNA polymerase II but not by PRC2

(Figure 7B).

The observation that OCT4, SOX2, and NANOG are

bound to a significant subset of developmental genes oc-

cupied by PRC2 supports a link between repression of de-

velopmental regulators and stem cell pluripotency. Like

PRC2, OCT4 and NANOG have been shown to be impor-

tant for early development and ES cell identity. It is possi-

ble, therefore, that inappropriate regulation of develop-

mental regulators that are common targets of OCT4,

NANOG, and PRC2 contributes to the inability to establish

ES cell lines in OCT4, NANOG, and EZH2 mutants (Nichols

et al., 1998; O’Carroll et al., 2001; Chambers et al., 2003;

Mitsui et al., 2003).

Concluding Remarks

We have mapped the sites occupied by SUZ12 through-

out the genome to gain insights into how PRC2 contrib-

utes to pluripotency in human embryonic stem cells. ES

cells proliferate in an undifferentiated state yet remain

poised to respond to development cues. Genes encoding

the transcriptional regulators that promote differentiation

must therefore be repressed in ES cells but activated

Regulators are represented by dark blue circles, RNA polymerase II

by a light blue circle, and SUZ12 by a green circle. Gene promoters

are represented by red rectangles.



upon receiving signals to differentiate. We found that

PRC2 occupies large domains at genes encoding a key

set of repressed developmental regulators that are prefer-

entially activated upon cellular differentiation, thus impli-

cating this complex directly in the maintenance of the plu-

ripotent state.

Transcription factors and chromatin regulators contrib-

ute to the transcriptional regulatory circuitry responsible

for pluripotency and self-renewal in human ES cells. Un-

derstanding this circuitry is fundamental to understanding

human development and realizing the therapeutic poten-

tial of these cells. In this context, we find it exciting that

the outlines of the core transcriptional regulatory circuitry

of human ES cells are emerging. The transcription factors

OCT4, SOX2, and NANOG are associated with actively

transcribed genes that contribute to growth and self-re-

newal (Boyer et al., 2005). These factors also occupy

genes encoding key developmental regulators that are

transcriptionally repressed, due at least in part to their as-

sociation with PRC2 and nucleosomes modified at histone

H3K27me3. Further study of transcription factors and

chromatin regulators genome-wide will allow investigators

to produce a more comprehensive map of transcriptional

regulatory circuitry in ES cells and to test models that

emerge from the circuitry. This information may provide in-

sights into approaches by which pluripotent cells can be

stimulated to differentiate into different cell types.

EXPERIMENTAL PROCEDURES

Cells and Cell Culture

Human H9 ES cells (WiCell, Madison, WI) were cultured as described

(Boyer et al., 2005). Primary human skeletal muscle cells were ob-

tained from Cell Applications (San Diego, CA) and expanded and dif-

ferentiated into myotubes according to the supplier’s protocols.

Suz12 �/� mouse cell lines were derived from blastocysts from

crosses between heterozygous Suz12 mutant animals, as described

in Supplemental Data.

Chromatin Immunoprecipitation and DNA Microarray Analysis

ChIP was combined with DNA microarray analysis as described (Boyer

et al., 2005). The antibodies used here were specific for hypophos-

phorylated RNA polymerase II (8WG16) (Thompson et al., 1989),

SUZ12 (Upstate, 07-379), EED (Hamer et al., 2002), H3K27me3 (Ab-

cam, AB6002), and total histone H3 (Abcam, AB1791). The design of

the oligo-based arrays, which were manufactured by Agilent Technol-

ogies, is described in detail in Supplemental Data. A whole-chip error

model was used to calculate confidence values from the enrichment

ratio and the signal intensity of each probe (probe p-value) and of

each set of three neighboring probes (probe-set p-value). Probe-sets

with significant probe-set p-values (p < 0.001) and significant individ-

ual probe p-values were judged to be bound (see Supplemental

Data for additional information). Bound regions were assigned to

genes if they were within 1 kb of the transcription start site from one

of five genomic databases; RefSeq, MGC, Ensembl, UCSC Known

Gene, or H-Inv. All microarray data is available at ArrayExpress under

the accession designation E-WMIT-7.

Gene Expression Analysis

Gene expression data were collated from H1 ES cells (Sato et al.,

2003), H9, HSF1, and HSF6 ES cells (Abeyta et al., 2004), and 79 dif-

ferentiated human cell and tissue types (Su et al., 2004) and analyzed
as described in detail in Supplemental Data. Replicate gene expres-

sion data was obtained for wild-type mouse ES cells and Suz12-

deficient cells using Agilent Mouse Development arrays and were

analyzed as described in Supplemental Data.

Supplemental Data

Supplemental Data include fifteen figures, fifteen tables, Experimental

Procedures, and References and can be found with this article online

at http://www.cell.com/cgi/content/full/125/2/301/DC1/.
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