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1. Introduction

The goal of this paper is to provide a partial answer to the question of how many (k + 1)-cliques
a graph with a given number of k-cliques can have.

Given a graph, we can readily count its cliques of various sizes. For simplicity, we refer to a clique
on n vertices as an n-clique. We can count the number of cliques of all possible sizes to get the
clique vector of a graph. It then makes sense to ask what integer vectors can arise as clique vectors
of graphs.

Simplicial complexes can be thought of as generalizations of graphs, as from any graph, we can
form its clique complex, a simplicial complex whose faces correspond to the cliques of the graph. The
question of which integer vectors can be clique vectors of graphs then becomes a question of which
integer vectors can be face vectors of simplicial complexes.

This question was answered in the 1960s independently by Kruskal [10] and Katona [9]. Much
additional work on face vectors has been done since then. For example, Stanley [12] characterized the
face vectors of Cohen-Macaulay complexes, while Frankl, Füredi, and Kalai [5] characterized the face
vectors of complexes with a given chromatic number.

Simplicial complexes that arise as clique complexes of graphs are also known as flag complexes,
and are of interest in their own right in this context. For example, the face ideal (see [13], Chapter 2)
of a flag complex is generated by quadratic monomials. Thus, the face ring of a simplicial complex is
Koszul exactly if the complex is a flag complex (see [6]).
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Work towards characterizing the clique vectors of graphs goes as far back as Mantel’s theorem
(see [15], p. 31), which states that a graph with n vertices and no triangles has at most �n2

4 � edges.
Turán’s theorem [14] generalized this to give a bound on the most edges a graph could have in terms
of the number of vertices and size of the largest clique. Zykov [16] further generalized this to get a
bound on cliques of all sizes in terms of the number of vertices and size of the largest clique. More
recently, Eckhoff [3,4] proved bounds on clique numbers in terms of the number of edges and size of
the largest clique. A paper of the author [7] generalized these results to give a bound on the number
of (i + 1)-cliques of a graph in terms of the number of i-cliques and the size of the largest clique of
the graph, thereby affirming a conjecture of Kalai (unpublished; see [13, p. 100]) and Eckhoff [2].

A related result of Lovász and Simonovits [11] proved a lower bound on the number of k-cliques a
graph with a given number of vertices and edges must contain. A very recent paper of Herzog, Hibi,
Murai, Trung, and Zhang [8] characterized the clique vectors of chordal and strongly chordal graphs.

However, the problem of characterizing the clique vectors of general graphs remains open. Clique
vectors of graphs must satisfy the inequalities shown by Kruskal and Katona to characterize face
vectors of all simplicial complexes. Satisfying these inequalities is enough to ensure that an integer
vector is the face vector of a simplicial complex, but not necessarily the clique vector of a graph. For
example, there is a complex with 9 faces on 3 vertices and 3 faces on 4 vertices, but it is easy to
show by checking cases that there is no graph with exactly 9 3-cliques and 3 4-cliques.

Dealing with graphs is harder than simplicial complexes because we can readily add a single face
of arbitrary dimension to a simplicial complex, but can only directly control the vertices and edges
of graphs. Adding a single edge often adds many cliques of each of several sizes to a graph, meaning
that a single construction is not enough as in the case of simplicial complexes.

For example, a complete graph on 10 vertices contains 120 3-cliques. If one edge is removed, the
resulting graph contains 112 3-cliques. Both of these graphs attain the bound of the Kruskal–Katona
theorem for the most 4-cliques a graph can have in terms of the number of 3-cliques, but they shed
no light on how many 4-cliques a graph with 119 3-cliques can have, and there is not a natural
intermediate construction that does.

As another example, a complete graph on 7 vertices has 35 3-cliques and 35 4-cliques. However,
by [7], if a graph has 35 3-cliques and does not have a 5-clique, then it can have at most 17 4-cliques.
This result can give a useful bound on graphs that do not have a large clique, but if we allow the graph
to have large enough cliques, the result of [7] usually coincides with the bounds of the Kruskal–Katona
theorem.

The structure of the paper is as follows. In Section 2, we give precise definitions of some needed
concepts, including some mentioned above. We also state some theorems needed as background ma-
terial. The section concludes by stating our main result, Theorem 2.18.

The main focus of Section 3 is to address what happens to graphs that do have a large clique. We
derive a bound in Lemma 3.6 on the clique numbers of graphs that do have as large of a clique as is
possible without exceeding the allowed number of cliques. For example, if we are given that a graph
has 102 3-cliques, then the graph could contain a clique on 9 vertices, as a 9-clique only contains(9

3

) = 84 3-cliques. However, it could not contain a clique on 10 vertices, as such a clique contains(10
3

) = 120 3-cliques, which is more than allowed. The main result of this section implies that a graph
with 102 3-cliques and at least one 9-clique can contain at most 147 4-cliques.

Continuing this example, [7] states that a graph with 102 3-cliques and no 9-cliques can have at
most 146 4-cliques. Since any graph with 102 3-cliques either contains a 9-clique or it does not, its
number of 4-cliques must be bounded above by either 147 or 146. Hence, it is bounded above by the
larger value, 147. For comparison, the Kruskal–Katona theorem states that the graph can have at most
149 4-cliques.

In Section 4, we evaluate our bounds to see just how good they are compared to the Kruskal–
Katona theorem. Theorem 4.6 is a convergence in probability result which shows that when a graph
does have the largest clique possible, the number of (k + 1)-cliques allowed by the bound of The-
orem 2.18 is nearly always much closer to the most (k + 1)-cliques of any graph with the chosen
number of k-cliques than to the bound of the Kruskal–Katona theorem. Proposition 4.8 shows that
the bound when we do not have a large clique is always strictly smaller than the bound of the
Kruskal–Katona theorem.
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We give three constructions in Section 4.3 to show that our bounds are attained by graphs under
certain circumstances. These constructions are the motivation behind the particular bounds that are
proven. To finish the running example, Construction 4.10 provides a graph with 102 3-cliques and 147
4-cliques, so the bound of Theorem 2.18 is attained.

Finally, in Section 5, we consider what happens to non-consecutive clique numbers of graphs, such
as how many 7-cliques a graph can have in terms of its number of 4-cliques. A bound in Theorem 5.1
immediately follows from work earlier in the paper, just as bounds on non-consecutive face num-
bers often followed immediately from bounds on consecutive face numbers in previous work on face
numbers by various authors.

Unlike when dealing with simplicial complexes, however, our bound on non-consecutive face num-
bers surprisingly gives new information. We demonstrate this in Example 5.3 to show that bounds on
consecutive clique numbers are not enough to characterize the clique vectors of graphs.

Throughout this paper, most of the lemmas are elementary arithmetic statements, but the proofs
are often combinatorial, and involve constructing various graphs or simplicial complexes. That the
Kruskal–Katona theorem or various other related results apply to the construction is used extensively
in proving the needed results.

2. Background and definitions

In this section, we review some material that will be needed for our results.

2.1. Graphs and simplicial complexes

Recall that a graph G is a set V of vertices and a set E of edges connecting pairs of vertices. This
paper deals only with simple graphs on a finite vertex set without loops or multiple edges. A clique
of a graph is a complete subgraph, that is, a subset C ⊂ V of the vertices such that every two vertices
of C are connected by an edge. In particular, if C contains only one vertex, it is a clique without any
condition on edges. Every graph also has a unique clique on zero vertices. We can count the number
of cliques of a given size.

Definition 2.1. The ith clique number of a graph G , denoted cli(G), is the number of cliques of i vertices
in G . These are also called i-cliques of G . If the largest clique of G has d vertices, the clique vector of
G is the vector

cl(G) = (
cl0(G), cl1(G), . . . , cld(G)

)
.

While the main theorems are results about cliques of graphs, the proofs extensively use simplicial
complexes. Recall that a simplicial complex � on a vertex set V is a collection of subsets of V such
that (i) for every v ∈ V , {v} ∈ � and (ii) for every B ∈ �, if A ⊂ B , then A ∈ �. The elements of � are
called faces. A face on i vertices is said to have dimension i − 1, while the dimension of a complex is
maximum dimension of a face of the complex. The maximal faces (under inclusion) are called facets.
A simplicial complex in which all maximal faces are of the same dimension is called pure.

We can count the number of faces on a given number of vertices in a simplicial complex, just as
we can count cliques in graphs.

Definition 2.2. The ith face number of a simplicial complex C , denoted cli(C) is the number of faces in
C containing i vertices. These are also called i-faces of C . If dim C = d − 1, the face vector of C is the
vector

cl(C) = (
cl0(C), cl1(C), . . . , cld(C)

)
.

It is sometimes useful in inductive proofs to consider certain subcomplexes of a given simplicial
complex, such as its links.
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Definition 2.3. Let � be a simplicial complex and F ∈ �. The link of F , lk�(F ), is defined as

lk�(F ) := {G ∈ � | F ∩ G = ∅, F ∪ G ∈ �}.

The link of a face of a simplicial complex is itself a simplicial complex. We can analogously define
a link of a clique of a graph.

Definition 2.4. The link of a clique C = {v1, v2, . . . , vn} of vertices in a graph G , denoted
lkG(v1 v2 . . . vn), is the induced subgraph of G on the set of vertices that are adjacent to all vertices
of C .

This paper usually considers only the link of a single vertex, or at most, the link of an edge.
A useful construction in building certain simplicial complexes is the reverse-lexicographic (“rev-

lex”) order. To define the rev-lex order of i-faces of a simplicial complex on n vertices, we start by
labelling the vertices 1,2, . . . . Let N be the set of natural numbers, let A and B be distinct subsets
of N with |A| = |B| = i, and let A∇B be the symmetric difference of A and B .

Definition 2.5. For A, B ⊂ N with |A| = |B|, we say that A precedes B in the rev-lex order if
max(A∇B) ∈ B , and B precedes A otherwise.

For example, {2,3,5} precedes {1,4,5}, as 3 is less than 4, and {3,4,5} precedes {1,2,6}.

Definition 2.6. The rev-lex complex on m i-faces is the pure complex whose facets are the first m i-sets
in rev-lex order. This complex is denoted Ci(m).

We can also specify more than one number in the face vector. For two sequences i1 < · · · < ir and
(m1, . . . ,mr), let

C = Ci1 (m1) ∪ Ci2 (m2) ∪ · · · ∪ Cir (mr).

A standard way to prove the Kruskal–Katona theorem involves showing that if the numbers
m1, . . . ,mr satisfy the bounds of the theorem, then the complex C has exactly m j i j-faces for all
j � r and no more. In this case, we refer to C as the rev-lex complex on m1 i1-faces, . . . , mr ir -faces.

The notion of rev-lex complexes can be extended to colored complexes. The chromatic number of
a simplicial complex is the minimal number of colors required to color all vertices of the complex
such that no two vertices in any face are the same color. This definition coincides with the chromatic
number of the 1-skeleton of the complex, taken as a graph.

Definition 2.7. A subset A ⊂ N is r-permissible if, for every two a,b ∈ A, r does not divide a − b. The
r-colored rev-lex complex on m i-faces is the pure complex whose facets are the first m r-permissible
i-sets in rev-lex order.

We can specify more than one number in the face vector for colored rev-lex complexes in the
same manner as for the usual (uncolored) rev-lex complexes.

2.2. Lemmas on binomial representations

In this section, we give some basic lemmas, which are necessary in order for the bounds on clique
numbers to be well-defined. We start with some notation.

Definition 2.8. For integers k � s � 0, define

rk(nk,nk−1, . . . ,nk−s) =
(

nk

k

)
+

(
nk−1

k − 1

)
+ · · · +

(
nk−s

k − s

)
.
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For example, the basic identity
(n

k

) = (n−1
k

)+ (n−1
k−1

)
can be expressed as rk(n) = rk(n − 1,n − 1). This

expression is not unique, as the same identity can be expressed as rk(n) = rk(n − 1) + rk−1(n − 1),
rk+1(0,n) = rk+1(0,n − 1) + rk−1(n − 1), or in many other ways. We can, however, make it unique
with additional restrictions.

Lemma 2.9. Given positive integers m and k, there are unique integers s � 0 and nk > nk−1 > · · · > nk−s �
k − s > 0 such that m = rk(nk,nk−1, . . . ,nk−s).

This is a standard lemma associated with the Kruskal–Katona theorem [9,10], so we do not give a
proof here.

One convention we use throughout this paper is that any time we define constants ak,ak−1,

. . . ,ak−s by saying that rk(ak,ak−1, . . . ,ak−s) is equal to a particular constant, the ai s are the unique
choice of constants that satisfy the conditions of Lemma 2.9. In particular, if rk(ak,ak−1, . . . ,ak−s) ap-
pears in the statement of a lemma and is the first time that the ai s have appeared, they are defined to
be the unique constants satisfying Lemma 2.9 to make rk(ak,ak−1, . . . ,ak−s) equal to some particular
constant. This convention only applies when we are defining new constants.

The value of s often does not matter to the proof. For notational simplicity, we often leave off the
last term and talk of ak,ak−1, . . . .

Lemma 2.10. Given positive integers m and k, there are unique integers s � 0, nk > nk−1 � k − 2, and ak−1 >

ak−2 > · · · > ak−s � k − s > 0, such that

rk−2(nk−1) > rk−1(ak−1, . . . ,ak−s) and m = rk(nk,nk−1) + rk−1(ak−1, . . . ,ak−s).

A bit of interpretation is required here for the case s = 0. This corresponds to the case when
m = rk(nk,nk−1), and the other conditions on the ai s are considered to be trivially satisfied. Similarly,
the case nk−1 = k − 2 corresponds to the case when m = rk(nk).

Proof. Define nk and nk−1 such that m = rk(nk,nk−1,nk−2, . . .) is the unique representation of
Lemma 2.9. Let q = m − rk(nk,nk−1), and define ai s such that q = rk−1(ak−1,ak−2, . . . ,ak−s). We must
have rk−2(nk−1) > q or else nk−1 would have been chosen to be larger, so this satisfies the conditions
of the lemma.

For uniqueness, once we pick nk and nk−1, the ai s are forced to be unique. If we make nk one
larger, then rk(nk) > m. If we make nk−1 one larger, then rk(nk,nk−1) > m. If we make nk or nk−1
smaller, then we reduce rk(nk,nk−1) by at least rk−2(nk−1), which would force q � rk−2(nk−1). In any
of these cases, it is not possible to pick ai s to satisfy the lemma, so the choices of nk and nk−1 are
also unique. �
Definition 2.11. The Turán graph Tn,r is the graph obtained by partitioning n vertices into r parts as
evenly as possible, and making two vertices adjacent exactly if they are not in the same part. Define(n

k

)
r := clk(Tn,r).

Lemma 2.12. Given positive integers m, k, and r with r � k, there are unique s, nk, nk−1 , . . . , nk−s such that

m =
(

nk

k

)
r
+

(
nk−1

k − 1

)
r−1

+ · · · +
(

nk−s

k − s

)
r−s

,

nk−i − �nk−i
r−i � > nk−i−1 for all 0 � i < s, and nk−s � k − s > 0.

The original use of this lemma in [5] misstated it. A correct version that is equivalent to the above
lemma appears in [1, Theorem 15.1.3].
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2.3. Kruskal–Katona type theorems

We need some notation to simplify the discussion of the bounds to be proven.

Definition 2.13. Let m = rk(nk,nk−1)+rk−1(ak−1,ak−2, . . .) be the representation of Lemma 2.10. Define

lgk(m) := rk+1(nk,nk−1) + rk(ak−1,ak−2, . . .).

Definition 2.14. Let m = rk(nk,nk−1, . . .). Define

oldk(m) := rk+1(nk,nk−1, . . .).

If nk > k, then let ak,ak−1, . . . and s be the unique integers satisfying the conditions of Lemma 2.12
such that

m =
(

ak

k

)
nk−1

+
(

ak−1

k − 1

)
nk−2

+ · · · +
(

ak−s

k − s

)
nk−s−1

.

Define

smk(m) :=
(

ak

k + 1

)
nk−1

+
(

ak−1

k

)
nk−2

+ · · · +
(

ak−s

k − s + 1

)
nk−s−1

.

If nk = k, then smk(m) is undefined; in this case, oldk(m) = 0.
The oldk(m) and smk(m) bounds have already been proven in the relevant cases, so we merely cite

them here.

Theorem 2.15 (Kruskal–Katona). (See [9,10].) Let C be a simplicial complex. If clk(C) = m, then clk+1(C) �
oldk(m). Furthermore, if a non-negative integer vector f = (1, c1, c2, . . .) satisfies these inequalities for all k,
then there is a rev-lex complex C with f as its face vector.

Theorem 2.16. (Frankl, Füredi and Kalai [5].) For an r-colorable simplicial complex C , let

m = clk(C) =
(

nk

k

)
r
+

(
nk−1

k − 1

)
r−1

+ · · · +
(

nk−s

k − s

)
r−s

be the unique representation of Lemma 2.12. Then

clk+1(C) �
(

nk

k + 1

)
r
+

(
nk−1

k

)
r−1

+ · · · +
(

nk−s

k − s + 1

)
r−s

.

Furthermore, given a vector f = (1, c1, c2, . . . , ct) that satisfies this bound for all 1 � k < t, there is an r-
colorable rev-lex complex that has f as its face vector.

If rk(r + 1) � m < rk(r + 2), this theorem states that clk+1(C) � smk(m).

Theorem 2.17. For a positive integer r and a graph G with clr+1(G) = 0, let

m = clk(G) =
(

nk

k

)
r
+

(
nk−1

k − 1

)
r−1

+ · · · +
(

nk−s

k − s

)
r−s

be the unique representation of Lemma 2.12. Then

clk+1(G) �
(

nk

k + 1

)
r
+

(
nk−1

k

)
r−1

+ · · · +
(

nk−s

k − s + 1

)
r−s

.
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This theorem was proven by the author in [7]. It verified a statement conjectured independently by
Kalai (unpublished; see [13, p. 100]) and Eckhoff [2]. Together with Theorem 2.16, it implies that for
every clique complex of dimension r − 1, there is an r-colorable complex with the same face vector.

If we let clk(G) = rk(nk,nk−1, . . .) be the representation of Lemma 2.9, then if G does not have
an nk-clique, this immediately implies clk+1(G) � smk(m). Furthermore, if nk = nk−1 + 1, then be-
cause

(nk+1
k

)
nk

= rk(nk,nk − 1), this theorem states that clk+1(G) �
(nk+1

k+1

)
nk

= rk+1(nk,nk − 1) = lgk(G).

Lemma 3.6 shows that clnk (G) > 0 is also a sufficient condition for clk+1(G) � lgk(G). Combining these
results gives the statement of our main theorem.

Theorem 2.18. Let G be a graph and clk(G) = m. Then

clk+1(G) � max
{

lgk(m), smk(m)
}
.

The notation smk(m) is chosen because it is the bound that applies when the largest clique of
the graph is “small”, that is, not as large as it could have been for the allowed number of k-cliques.
Likewise, lgk(m) was so named because it is the bound that applies when the largest clique is as large
as it possibly could have been. The notation oldk(m) is used because that bound is much older than
the others, having been first proven in the 1960s.

The goal of the next section is to prove Theorem 2.18.

3. Proof of the main theorem

Theorem 2.17 gives a bound on clique numbers of graphs that depends on the size of the largest
clique of the graph. If the largest clique of the graph is relatively small, this bound can be much less
than the bound of the Kruskal–Katona theorem, and allows far fewer (k + 1)-cliques than a graph
with a larger clique can be readily constructed to have. However, if a graph with a prescribed number
of k-cliques has the largest clique it could possibly have without exceeding the allowed number of
k-cliques, this bound often coincides with the Kruskal–Katona theorem. In this section, we prove a
bound on the number of (k + 1)-cliques that such a graph can have.

We need several technical lemmas. The lemmas are stated in terms of elementary arithmetic,
though their proofs are often combinatorial and involve constructing simplicial complexes. The lem-
mas lead to Lemma 3.6, which is a bound on clique numbers that applies to graphs that do have
the largest clique possible. Our main theorem then follows from a combination of Lemma 3.6 and
Theorem 2.17.

Lemma 3.1. If j > 0, k > 0, and rk(ak,ak−1, . . .) � rk(bk,bk−1, . . .), then r j(ak, . . .) � r j(bk, . . .).

Proof. If ai exists and bi does not, then we will use the convention that ai > bi . If ai = bi for all i,
the result is trivial. Otherwise, let m = max{i | ai 
= bi}. If am does not exist, then rk(ak,ak−1, . . .) <

rk(bk,bk−1, . . .), a contradiction. Otherwise, we can subtract rk(ak, . . . ,am+1) from both sides of the
statement of the lemma to get rm(am, . . .) � rm(bm, . . .). If bm > am , then bm � am + 1, so

rm(bm, . . .) � rm(bm) � rm(am + 1) > rm(am, . . .),

a contradiction. Thus, am > bm , and so

r j(ak, . . .) � r j(ak, . . . ,am) � r j(bk, . . . ,bm + 1) � r j(bk, . . .). �
Lemma 3.1 can also be derived from the Kruskal–Katona theorem with a comparably easy proof.

Lemma 3.2. If m = rk(ck, ck−1, . . .) = rk(ak,ak−1, . . .) + rk(bk,bk−1, . . .), then

rk+1(ck, . . .) � rk+1(ak, . . .) + rk+1(bk, . . .).
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Proof. The rev-lex complex on rk+1(ak, . . .) (k + 1)-faces has rk(ak, . . .) k-faces. The rev-lex com-
plex on rk+1(bk, . . .) (k + 1)-faces has rk(bk, . . .) k-faces. Then their disjoint union has m k-faces and
rk+1(ak, . . .) + rk+1(bk, . . .) (k + 1)-faces. By the Kruskal–Katona theorem, if a simplicial complex has
m k-faces, then it has at most oldk(m) = rk+1(ck, . . .) (k + 1)-faces, so the complex constructed above
as the disjoint union of two others satisfies this bound. �

An equivalent formulation of the above lemma is oldk(m + n) � oldk(m) + oldk(n).

Lemma 3.3. If rk(ak,ak−1, . . .)� rk(bk,bk−1, . . .) and rk(ck, ck−1, . . .)= rk(ak,ak−1, . . .)+rk−1(bk,bk−1, . . .),
then

rk+1(ck, . . .) � rk+1(ak, . . .) + rk(bk, . . .).

Proof. Let C be the rev-lex complex on rk+1(ak, . . .) (k + 1)-faces, and let D be the rev-lex complex
on rk+1(bk, . . .) (k + 1)-faces. Since rk(ak, . . .) � rk(bk, . . .), by Lemma 3.1, C ⊇ D . Form a new complex
E by taking C and adding a new vertex v , such that lkE(v) = D .

The number of k-faces of E is the number of k-faces containing v , plus the number not contain-
ing v . These are clk−1(D) and clk(C), respectively, so

clk(E) = clk(C) + clk−1(D) = rk(ak, . . .) + rk−1(bk, . . .) = rk(ck, . . .).

By the Kruskal–Katona theorem, clk+1(E) � rk+1(ck, . . .). Applying the same argument for the number
of (k + 1)-faces of E gives

rk+1(ck, . . .) � clk+1(E) = clk+1(C) + clk(D) = rk+1(ak, . . .) + rk(bk, . . .). �
The next lemma has an algorithmic proof, and is used repeatedly in this paper, both in the proof

of the main theorem and later.

Lemma 3.4. If m = rk(ck, ck−1, . . .) + rk(ak,ak−1, . . .), ck � ak, and m = rk(ak + 1) + rk(bk,bk−1, . . .), then

rk+1(ak + 1) + rk+1(bk, . . .) > rk+1(ck, . . .) + rk+1(ak, . . .).

Proof. Set up a rectangular board with two rows and k columns. In each square of the board, we can
either write a positive integer or leave the square blank. Number the columns based on how far from
the right edge they are. The far right column is column 1, then one next to it is column 2, and so
forth, with column k being the far left one. An arrangement of numbers on the board is permissible if

(1) for each pair of adjacent squares in the same row, either the one to the left contains a larger
number than the one to the right or the one on the right is empty and

(2) for each row, if the rightmost non-empty column in a row is column i, then the entry in that box
is at least i.

Let the numbers in the top row be xk, xk−1, . . . , xg and the numbers in the bottom row be
yk, yk−1, . . . , yh . A rearrangement of the numbers on the board (or a move) is allowable if

(1) the arrangement of numbers on the board after the move is permissible,
(2) the sum rk(xk, . . . , xg) + rk(yk, . . . , yh) is unchanged,
(3) the sum rk+1(xk, . . . , xg) + rk+1(yk, . . . , yh) does not decrease, and
(4) rk(xk, . . . , xg) strictly increases.

The structure of the proof is to have the board start with ak,ak−1, . . . as the entries in the top
row and ck, ck−1, . . . as the entries in the bottom row, with any leftover boxes initially empty. We
then define a number of moves that are allowable under certain circumstances and show that in all
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Fig. 1. Picking a type of move.

possible circumstances, there is an allowable move, until the board reaches a state in which the top
row has ak + 1 in column k and the rest of the row is empty, while the bottom row has bk,bk−1, . . .

as its entries. Conditions two, three, and four are usually trivial to check, so we do not give reasons
why they hold in such cases. The result of the lemma follows from the conditions for a move to be
allowable and that at least one move strictly increases the sum of condition 3.

We now explain the needed types of allowable moves. Fig. 1 contains a flow chart showing how
to choose which move to make at a given step.

Suppose that g > h and xg � yg . A move of the first type is to move the last g − h entries in the
bottom row up to the top row. This gives a permissible arrangement of the board since xg � yg >

yg−1.
Suppose that there is an i for which yi > xi . We can pick the largest such i, and get that xi+1 �

yi+1 > yi . A move of the second type is to swap the portions of the two rows from column i all
the way to the far right edge of the board. This results in an allowable arrangement as the only new
pairs of adjacent numbers are that now xi+1 is next to yi and yi+1 is next to xi , and by assumption,
xi+1 > yi and yi+1 > yi > xi . For the fourth condition, we have

ri(xi, xi−1, . . . , xg) � ri(xi, xi − 1, . . . , xi − i + 1) = ri(xi + 1) − 1

< ri(xi + 1) � ri(yi) � ri(yi, yi−1, . . . , yh).

Suppose that yh > h > 1. Then for any i < h, a subdivision is to replace the entries of the bottom
row of columns h through i by yh − 1, yh − 2, . . . , yh − (h − i), yh − (h − i). This does not change the
sums of conditions two, three, or four, as is easily seen by repeated application of the combinatorial
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identity
(n+1

k

) = (n
k

) + ( n
k−1

)
. Thus, if a subdivision is combined with other operations that satisfy

conditions two, three, and four, and the end result satisfies condition one, it is an allowable move.
Suppose that at some point, the entries in columns i through g of the top row are xi, xi − 1,

. . . , xi − (i − g), xi − (i − g). Then a collapse is to choose the largest value of i with this property and
replace these entries by an xi +1 in column i and clear all entries to the right of it. This is the inverse
of a subdivision, and does not change the sums of conditions two, three, or four, so if combined with
other operations satisfying those conditions in a way that ends with the first condition satisfied, it
forms an allowable move. Furthermore, the only new adjacent pair of entries that the collapse creates
is xi+1 adjacent to xi + 1. Since xi+1 > xi + 1 by the choice of i, condition one will be satisfied in the
top row for a move ending in a collapse.

Suppose that yh = h and g = 1. A move of the third type starts by clearing the entry in column h
of the bottom row. Increase x1 by 1, and if necessary, do a collapse. This operation strictly increases
rk+1(xk, . . .) without changing rk+1(yk, . . .), so the sum of condition 3 strictly increases. This is an
allowable move because if the only changed entry not deleted were at least as large as the one to its
left, it would have been fixed by a collapse.

Suppose that yh = h and g > 1. A move of the fourth type is to clear the entry in column h of the
bottom row and put g − 1 in column g − 1 of the top row. This is an allowable move because the
only new entry is g − 1 and immediately to its left is xg � g .

Suppose that xh � yh > h � g and xg − g < yh − h. This implies h > g , as h = g would yield
xh � yh > xh , a contradiction. Pick the largest value of i such that yh − (h − i) > xi ; i = g is such a
value by assumption, so there must be a largest such value. Since xh � yh , i < h. By the choice of i,
xi+1 � yh −(h−(i +1)). A move of the fifth type is to subdivide yh into yh −1, yh −2, . . . , yh −(h− i),
yh − (h − i), and then make a move of the second type to swap the two rows from column i to the
far right edge of the board. Since xi+1 � yh − (h − (i + 1)) > yh − (h − i) > xi , we can make the move
of the second type. The new pairs of adjacent entries in the same row are yh+1 > yh − 1 > yh − 2 >

· · · > yh − (h − i) > xi in the bottom row and xi+1 > yh − (h − i) in the top row, so this is an allowable
move.

Suppose that yh > h � g > 1 and xg − g � yh − h. The latter condition is equivalent to xg >

yh − (h − g + 1). A move of the sixth type is to subdivide yh into yh − 1, yh − 2, . . . , yh − (h − g + 1),

yh − (h − g + 1), and then move the yh − (h − g + 1) from column g − 1 of the bottom row to the top
row. The new adjacent pairs are xg > yh − (h − g + 1) in the top row, and yh+1 > yh − 1 > yh − 2 >

· · · > yh − (h − g + 1) in the bottom row, so the first condition is satisfied.
Suppose that g = h = 1 and x1 � y1. A move of the seventh type is to decrease y1 by one (or

delete it, if y1 = 1), increase x1 by 1, and collapse the top row as needed if x2 = x1 + 1. Condition
one is directly satisfied if x2 > x1 + 1. It is also satisfied if x2 = x1 + 1, as the move would end with a
collapse. For condition three, we have(

x1 + 1

2

)
+

(
y1 − 1

2

)
=

(
x1

2

)
+

(
y1

2

)
+ x1 − y1 + 1 >

(
x1

2

)
+

(
y1

2

)
,

so this is an allowable move, and the relevant sum strictly increases.
Suppose that h > g = 1 and yh − h � x1 − 1. The latter condition is equivalent to yh − h < x1.

A move of the eighth type is to subdivide the bottom row so that the entries from column h on
rightward become yh − 1, yh − 2, . . . , yh − (h − 1), yh − (h − 1), and then make a move of the seventh
type. The bottom row satisfies the first condition, as the new adjacent entries are yh+1 > yh − 1 >

yh − 2 > · · · > yh − h. The top row also satisfies the first condition, as it is only changed by a move
of the seventh type. Hence, this is an allowable move.

If xk � ak , the bottom row is not empty, since m � rk(ak +1). This ensures that the questions in the
above chart all make sense. The algorithm is that if xk � ak , we make the allowable move displayed in
Figure 1. We repeat this until the first time that xk > ak , at which point, we stop. Condition 3 provides
the weak inequality in the statement of the lemma.

If k = 1, then the algorithm consists of a single move of the seventh type before terminating. This
increases the sum of condition 3, and increases xk by one. As such, the lemma holds.

Otherwise k > 1. The final move must increase xk . The only way that any of the eight types of
moves used can change xk is to end with a collapse that goes all the way across the top row. This
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ensures that the top row has only one entry. The only three moves to potentially involve a collapse
are those of the third, seventh, and eighth types, all of which strictly increase the sum of condition 3.
That the final move must be one of these types ensures that one of them is used in the algorithm,
and so the inequality of the lemma is strict.

Further, a collapse only increases xk by one, so we now have xk = ak + 1. Condition 2 of allowable
moves and the definition of bk,bk−1, . . . then ensure that at this point, the only possible configuration
of the board is for the entries of the bottom row to be bk,bk−1, . . ., which is what we wanted.

Condition 1 ensures that if rk(xk, . . . , xg) � rk(ak + 1), then xk � ak + 1, and the algorithm ter-
minates. Condition four says this sum must increase by at least one with each step. Since the sum
trivially cannot be negative, the algorithm then terminates in at most rk(ak + 1) steps. �

Next is an easy extension of the previous lemma.

Lemma 3.5. If m = rk(ck, ck−1, . . .) + rk(ak,ak−1, . . .), j > ck, j > ak, and m = rk( j) + rk(bk,bk−1, . . .), then

rk+1( j) + rk+1(bk, . . .) > rk+1(ck, . . .) + rk+1(ak, . . .).

Proof. Assume without loss of generality that ck � ak . If we define di s such that

rk(ak, . . .) + rk(ck, . . .) = rk(ck + 1) + rk(dk,dk−1, . . .),

then Lemma 3.4 states that

rk+1(ak, . . .) + rk+1(ck, . . .) < rk+1(ck + 1) + rk+1(dk, . . .). (1)

If j = ck + 1, then we are done. Otherwise, j > ck + 1, so we repeat the process, using Lemma 3.4
and increasing the ck + 1 term by 1 again, as many times as necessary to bring it up to j. Since this
operation increases the right-hand side of (1) each time, the result follows. �

The following lemma is the key result in the proof of the main theorem.

Lemma 3.6. Let G be a graph with clk(G) = m and let m = rk(nk,nk−1)+ rk−1(ak−1, . . . ,ak−s) be the unique
representation of Lemma 2.10. If G contains an nk-clique, then clk+1(G) � lgk(m).

Proof. If k < 3, then lgk(m) = oldk(m), so the lemma holds by the Kruskal–Katona theorem. Other-
wise, we can assume that k � 3.

Let U be the vertex set of an nk-clique of G , and V the set of vertices of G not contained in U .
If the lemma is false, there must be a counterexample for which |V | is minimal. If |V | = 0, then G is
an nk-clique, which clearly satisfies the lemma. If |V | = 1 and the one vertex of V has degree nk−1,
then we have clk(G) = rk(nk,nk−1) and clk+1(G) = rk+1(nk,nk−1), which likewise satisfies the lemma.
Hence we must have |V | � 2.

Let v ∈ V . Then G − {v} has one fewer vertex in its own V set, so it must satisfy the lemma.
A k-clique of G either contains v or it does not. If it does, then it corresponds to the (k − 1)-
clique of lkG(v) consisting of the clique minus v . If not, then it is a k-clique of G − {v}. These
correspondences reverse, so we have clk(G) = clk(G − {v}) + clk−1(lkG(v)). By the same argument,
clk+1(G) = clk+1(G − {v}) + clk(lkG(v)).

Define bi s and cis by

clk
(
G − {v}) = rk(nk,bk−1,bk−2, . . .) and clk−1

(
lkG(v)

) = rk−1(ck−1, ck−2, . . .).

The leading term of clk(G − {v}) written in the form of Lemma 2.9 is indeed nk , as it contains a clique
on nk vertices, and is a subgraph of G , so clk(G − {v}) � clk(G) < rk(nk + 1). By the Kruskal–Katona
theorem,

clk+1
(
G − {v}) � rk+1(nk,bk−1, . . .) and clk

(
lkG(v)

)
� rk(ck−1, . . .).
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We are given that

clk(G) = rk(nk) + rk−1(bk−1, . . .) + rk−1(ck−1, . . .) and

clk(G) = rk(nk,nk−1) + rk−1(ak−1, . . .).

Applying the above inequalities gives

clk+1(G) = clk+1
(
G − {v}) + clk

(
lkG(v)

)
� rk+1(nk) + rk(bk−1, . . .) + rk(ck−1, . . .).

Then it suffices to show that

rk+1(nk) + rk(bk−1, . . .) + rk(ck−1, . . .) � rk+1(nk,nk−1) + rk(ak−1, . . .),

or equivalently,

rk(bk−1, . . .) + rk(ck−1, . . .) � rk(nk−1) + rk(ak−1, . . .). (2)

Suppose that nk−1 > bk−1 and nk−1 > ck−1. Then Lemma 3.5 immediately gives us (2).
Now suppose that nk−1 = bk−1. Since G − {v} satisfies the lemma, we can define di s by

clk
(
G − {v}) = rk(nk,nk−1) + rk−1(dk−1,dk−2, . . .)

and have the bound

clk+1
(
G − {v}) � rk+1(nk,nk−1) + rk(dk−1,dk−2, . . .).

Then

clk(G) = clk
(
G − {v}) + clk−1

(
lkG(v)

)
= rk(nk,nk−1) + rk−1(dk−1, . . .) + rk−1(ck−1, . . .).

Since

clk(G) = rk(nk,nk−1) + rk−1(ak−1, . . .),

we obtain

rk−1(ak−1, . . .) = rk−1(dk−1, . . .) + rk−1(ck−1, . . .).

Hence by Lemma 3.2,

rk(ak−1, . . .) � rk(dk−1, . . .) + rk(ck−1, . . .).

Putting the above inequalities together yields

clk+1(G) = clk+1
(
G − {v}) + clk

(
lkG(v)

)
� rk+1(nk,nk−1) + rk(dk−1, . . .) + rk(ck−1, . . .)

� rk+1(nk,nk−1) + rk(ak−1, . . .)

= lgk(m).

The remaining case is nk−1 = ck−1 > bk−1. We have not made any restrictions on the choice of v
except for v ∈ V , so if a different choice of v puts us in one of the earlier cases, we are done. That
leaves only the case where nk−1 = ck−1 > bk−1 regardless of the choice of v .

Pick vertices p,q ∈ V and define graphs H = G − {p} and J = G − {q}. Assume without loss of
generality that clk(H) � clk( J ). Both H and J contain all k-cliques of G that include neither p nor q
as vertices. By construction, the rest of the k-cliques of H are those that contain q but not p, and the
remaining k-cliques of J are those that contain p but not q. Since clk(H) � clk( J ), there are at least
as many k-cliques of G containing q but not p as vice versa.
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Define di s and eis by

clk(H) = rk(nk,dk−1,dk−2, . . .) and clk−1
(
lk J (p)

) = rk−1(ek−1, ek−2, . . .).

Since H contains all k-cliques of G containing q but not p as well as all
(nk

k

)
k-cliques of the nk

vertices of U , and these are disjoint sets of cliques, the number of k-cliques of G containing q but not
p is at most rk−1(dk−1, . . .). Each (k − 1)-clique of lk J (p) corresponds to a k-clique of G containing p
but not q, so there are rk−1(ek−1, . . .) such cliques. Thus,

rk−1(dk−1, . . .) � rk−1(ek−1, . . .). (3)

If p and q are not connected by an edge, then by taking v = p, we get that bk−1 � ck−1, a previous
case. Otherwise, p and q must be connected by an edge, so we can define f i s by

clk−1
(
lkG(pq)

) = rk−1( fk−2, fk−3, . . .).

A (k − 1)-clique in the link of pq has all vertices adjacent to p in G , so if p is added, it gives a
k-clique containing p but not q. This is a k-clique in J containing p, so it corresponds to a unique
(k − 1)-clique in lk J (p). Thus, clk−1(lkG(pq)) � clk−1(lk J (p)), or equivalently,

rk−1(ek−1, . . .) � rk−1( fk−2, . . .). (4)

By Lemma 3.1,

rk−2(ek−1, . . .) � rk−2( fk−2, . . .).

Hence,

rk−1(ek−1, . . .) + rk−2( fk−2, . . .) � rk−1(ek−1, . . .) + rk−2(ek−1, . . .)

= rk−1(ek−1 + 1, ek−2 + 1, . . .). (5)

Applying Lemma 3.1 to (3) gives

rk−2(dk−1, . . .) � rk−2(ek−1, . . .).

Add the last inequality to (3) to obtain

rk−1(dk−1, . . .) + rk−2(dk−1, . . .) � rk−1(ek−1, . . .) + rk−2(ek−1, . . .),

or equivalently,

rk−1(dk−1 + 1,dk−2 + 1, . . .) � rk−1(ek−1 + 1, ek−2 + 1, . . .). (6)

Let

z = rk−1(dk−1, . . .) + rk−1(ek−1, . . .) + rk−2( fk−2, . . .) and (7)

z+ = rk(dk−1, . . .) + rk(ek−1, . . .) + rk−1( fk−2, . . .). (8)

Applying the Kruskal–Katona theorem to the definitions of the di s, eis and f i s yields

clk+1(H) � rk+1(nk,dk−1,dk−2, . . .),

clk
(
lk J (p)

)
� rk(ek−1, . . .), and

clk−2
(
lkG(pq)

)
� rk−2( fk−2, . . .).

Applying these three inequalities to the definitions of z and z+ provides

z + rk(nk) � clk(H) + clk−1
(
lk J (p)

) + clk−2
(
lkG(pq)

) = clk(G) and (9)

z+ + rk+1(nk) � clk+1(H) + clk
(
lk J (p)

) + clk−1
(
lkG(pq)

) = clk+1(G). (10)
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Suppose that z � rk−1(nk−1). By (4) and the proof of Lemma 3.3, there is a complex with
rk−1(ek−1, . . .) + rk−2( fk−2, . . .) (k − 1)-faces and rk(ek−1, . . .) + rk−1( fk−2, . . .) k-faces. The disjoint
union of this complex and the rev-lex complex on rk(dk−1, . . .) k-faces has z (k − 1)-faces and z+
k-faces. By the Kruskal–Katona theorem, in case the complex has at most rk−1(nk−1) (k − 1)-faces, it
has at most rk(nk−1) k-faces. Then z+ < rk(nk−1), and so

clk+1(G) � z+ + rk+1(nk) � rk+1(nk,nk−1) � rk+1(nk,nk−1) + rk(ak−1, . . .),

as desired.
Otherwise, z > rk−1(nk−1). Define gis and hi s such that

z = rk−1(nk−1) + rk−1(gk−1, . . .) and

rk−1(hk−1, . . .) = rk−1(ek−1, . . .) + rk−2( fk−2, . . .). (11)

Substituting the latter into (7) gives

z = rk−1(dk−1, . . .) + rk−1(hk−1, . . .). (12)

By (4), Lemma 3.3 gives

rk+1(nk,dk−1, . . .) + rk(ek−1, . . .) + rk−1( fk−2, . . .) � rk+1(nk,dk−1, . . .) + rk(hk−1, . . .)

= rk+1(nk,hk−1, . . .) + rk(dk−1, . . .). (13)

Recall that this case was based on the assumptions that bk−1 < nk−1 and ck−1 = nk−1. Taking v = p
gives us dk−1 = bk−1 < nk−1 and hk−1 � ck−1 = nk−1. If hk−1 < nk−1, then combine (11) and (12) to get

rk−1(dk−1, . . .) + rk−1(hk−1, . . .) = rk−1(nk−1) + rk−1(gk−1, . . .).

Apply Lemma 3.5 and add rk+1(nk) to both sides to obtain

rk+1(nk,hk−1, . . .) + rk(dk−1, . . .) � rk+1(nk,nk−1) + rk(gk−1, . . .). (14)

Otherwise, hk−1 = nk−1. We wish to show that (14) also holds in this case. Since dk−1 < nk−1, we
must have dk−1 + 1 � nk−1. Combine (5) and (6) to get

rk−1(dk−1 + 1,dk−2 + 1, . . .) � rk−1(ek−1, . . .) + rk−2( fk−2, . . .) = rk−1(hk−1, . . .).

Then by Lemma 3.1,

rk(dk−1 + 1,dk−2 + 1, . . .) � rk(hk−1, . . .) (15)

and dk−1 + 1 � hk−1. This yields dk−1 + 1 � nk−1 = hk−1 � dk−1 + 1, so equality must hold throughout,
and we have dk−1 = nk−1 − 1 and hk−1 = nk−1.

Substitute these values of dk−1 and hk−1 into (11) and (12) and subtract rk−1(nk−1) to obtain

z − rk−1(nk−1) = rk−1(gk−1, gk−2, . . .) and

z − rk−1(nk−1) = rk−2(hk−2, . . .) + rk−1(nk−1 − 1,dk−2, . . .),

so we have

rk−2(hk−2, . . .) + rk−1(nk−1 − 1,dk−2, . . .) = rk−1(gk−1, gk−2, . . .). (16)

Subtract rk(nk−1) from both sides of (15) and use nk−1 − 1 > dk−2 > dk−3 > · · · to get

rk−1(hk−2,hk−3, . . .) � rk−1(dk−2 + 1,dk−3 + 1, . . .)

� rk−1(nk−1 − 1,dk−2, . . .).
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Applying Lemma 3.3 to (16) yields

rk−1(hk−2, . . .) + rk(nk−1 − 1,dk−2, . . .) � rk(gk−1, gk−2, . . .).

Add rk+1(nk,nk−1) to both sides to get (14) in this case also.
Finally, we chain together (10), (8), (13), (14), the definition of lgk(m), (11), and (9) to conclude

clk+1(G) � z+ + rk+1(nk)

= rk+1(nk,dk−1, . . .) + rk(ek−1, . . .) + rk−1( fk−2, . . .)

� rk+1(nk,hk−1, . . .) + rk(dk−1, . . .)

� rk+1(nk,nk−1) + rk(gk−1, . . .)

= lgk
(
rk(nk,nk−1) + rk−1(gk−1, . . .)

)
= lgk

(
rk(nk) + z

)
� lgk

(
clk(G)

)
.

The last inequality holds because lgk(m) is nondecreasing in m. �
We are now ready to prove our main theorem, Theorem 2.18, which states that for a graph G with

clk(G) = m,

clk+1(G) � max
{

lgk(m), smk(m)
}
.

Proof. Let clk(G) = rk(nk,nk−1, . . .). Either G has a clique on nk vertices or it does not. If G does have
a clique on nk vertices, then by Lemma 3.6, clk+1(G) � lgk(m) � max{lgk(m), smk(m)}. If G does not
have a clique on nk vertices, then by Theorem 2.17, clk+1(G) � smk(m) � max{lgk(m), smk(m)}. �
4. Evaluating the bound

In this section, we evaluate the bound of Theorem 2.18. There are several questions to consider.
First, which of the two bounds is larger? Next, how close is each bound to being sharp? Finally, how
close is each bound to the bound of the Kruskal–Katona theorem?

On the first question, we have only empirical results. If we fix k and nk and compute the bounds
for all values of m with rk(nk) � m < rk(nk + 1), we find that for a large number of consecutive values
of m at the start of the interval (somewhere between one third and half of all of the values), lgk(m) >

smk(m). In addition, if m � rk(nk,nk − 2), then lgk(m) > smk(m), with only a handful of exceptions for
very small values of nk . For the intermediate values of m, if we fix nk−1 and break into subintervals
where rk(nk,nk−1) � m < rk(nk,nk−1 + 1), there is value p in the interval such that lgk(m) > smk(m)

if m < p and lgk(m) < smk(m) otherwise, with very few exceptions–often no exceptions for particular
choices of nk and nk−1.

If we define a sequence f j = #{m� j|lgk(m)>smk(m)}
j , this sequence seems to converge to a number

around 0.7. That is, lgk(m) > smk(m) a substantial majority of the time. Because there are very long
sets of consecutive increasing terms of the sequence f j , the sequence converges very slowly, if it
converges at all.

Regarding the question of how good each of the bounds is, we evaluate the lgk(m) and smk(m)

bound separately. Loosely, the lgk(m) bound is not sharp, but is much better than Kruskal–Katona. The
smk(m) bound is also an improvement over Kruskal–Katona, but not necessarily such a good bound
when it applies. We also give several constructions of graphs that attain the new bound under certain
circumstances.

It is worth mentioning that Theorem 2.18 characterizes exactly when the bounds of the Kruskal–
Katona theorem are attained by a graph for k � 7. In this case, the bound is attained by a graph
exactly when lgk(m) = oldk(m). The proof of this fact is a long computation that we decided to omit.



32 A. Frohmader / Journal of Combinatorial Theory, Series A 117 (2010) 17–37
4.1. The lgk(m) bound

In this section, we evaluate the bound of Lemma 3.6. The inequality lgk(m) � oldk(m) follows
immediately from Lemma 3.3. Still, that leaves open the question of whether it is much less, or
whether the inequality is even strict. Theorem 4.6 is a convergence in probability type of result that
shows that lgk(m) is almost always much closer to being sharp than it is to oldk(m).

Throughout this section, let m = rk(nk,nk−1, . . .) be the representation of Lemma 2.9 and let m =
rk(nk,nk−1)+rk−1(ak−1, . . .) be the representation of Lemma 2.10. First we need a couple of definitions
in order to state the result more precisely.

Definition 4.1. Let conk(m) be the largest number of (k + 1)-cliques that a graph with m k-cliques and
at least one nk-clique can possibly have.

While we do not have a formula for conk(m), Lemma 3.6 states that conk(m) � lgk(m). We can
also readily get a constructive lower bound.

Lemma 4.2. For all m,k > 0, conk(m) � rk+1(nk,nk−1) + rk(ak−1).

Proof. Start with a clique on nk vertices. Add a new vertex and make it adjacent to nk−1 previous
vertices. Add another new vertex and make it adjacent to ak−1 of the first nk vertices. If we call this
graph G , then we have

clk(G) = rk(nk,nk−1) + rk−1(ak−1) � m and

clk+1(G) = rk+1(nk,nk−1) + rk(ak−1) � conk(m). �
Definition 4.3. Given m and k with conk(m) 
= oldk(m), define

ratk(m) := lgk(m) − conk(m)

oldk(m) − conk(m)
.

If conk(m) = oldk(m), define ratk(m) := 1.

It is immediate from the definition that 0 � ratk(m) � 1. Intuitively lgk(m) is a good bound when
ratk(m) is small. When conk(m) = oldk(m), the lgk(m) bound is irrelevant, so choice of ratk(m) is
arbitrary and does not affect the final result.

First we need a lemma that is a very rough approximation.

Lemma 4.4. If nk−2 > k2 , then ratk(m) � k2

nk−2−k2 .

Proof. We can compute

rk−2(nk−2 + 1) > rk−2(nk−2, . . .) = m − rk(nk,nk−1) = rk−1(ak−1, . . .). (17)

We must have k � 3 in order for nk−2 to be defined, so nk−2 > k2 > 2k. If ak−1 > nk−2, then nk−2 > 2k
and (17) would yield

rk−1(ak−1) � rk−1(nk−2 + 1) > rk−2(nk−2 + 1) > rk−1(ak−1, . . .),

a contradiction. Hence, ak−1 � nk−2.
We can also use (17) to get(

nk−2 + 1

k − 2

)
>

(
ak−1

k − 1

)
, and hence

(
nk−2

k − 1

)
>

k(nk−2 − k + 2)(nk−2 − k + 3)

(k − 1)(ak−1 − k + 1)(nk−2 + 1)

(
ak−1

k

)
.
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We can then apply the definition of oldk(m) to obtain

oldk(m) � rk+1(nk,nk−1,nk−2)

> rk+1(nk,nk−1) + k(nk−2 − k + 2)(nk−2 − k + 3)

(k − 1)(ak−1 − k + 1)(nk−2 + 1)
rk(ak−1).

The quantity ratk(m) is made larger if we overestimate lgk(m) and if we underestimate oldk(m)

and conk(m). Then we can use the bound of the previous paragraph as well as

lgk(m) � rk+1(nk,nk−1) + rk(ak−1 + 1) and

conk(m) � rk+1(nk,nk−1) + rk(ak−1)

to get an upper bound on ratk(m) of

rk+1(nk,nk−1) + rk(ak−1 + 1) − (rk+1(nk,nk−1) + rk(ak−1))

rk+1(nk,nk−1) + k(nk−2−k+2)(nk−2−k+3)

(k−1)(ak−1−k+1)(nk−2+1)
rk(ak−1) − (rk+1(nk,nk−1) + rk(ak−1))

= rk−1(ak−1)

k(nk−2−k+2)(nk−2−k+3)

(k−1)(ak−1−k+1)(nk−2+1)
rk(ak−1) − rk(ak−1)

=
k

ak−1−k+1 rk(ak−1)

(
k(nk−2−k+2)(nk−2−k+3)

(k−1)(ak−1−k+1)(nk−2+1)
− 1)rk(ak−1)

=
k

ak−1−k+1 (k − 1)(ak−1 − k + 1)(nk−2 + 1)

k(nk−2 − k + 2)(nk−2 − k + 3) − (k − 1)(ak−1 − k + 1)(nk−2 + 1)

� k(k − 1)(nk−2 + 1)

k(nk−2 − k + 2)(nk−2 − k + 3) − (k − 1)(nk−2 − k + 1)(nk−2 + 1)

= k(k − 1)(nk−2 + 1)

(nk−2 + 1)(nk−2 − k2) + k2(k − 3) + 2knk−2 + nk−2 + 4k + 1

� k(k − 1)(nk−2 + 1)

(nk−2 + 1)
(
nk−2 − k2

) � k2

nk−2 − k2
. �

Lemma 4.5. For every k � 3 and w,

lim
j→∞

#{m � j | nk−2 < w}
j

= 0.

Proof. For any particular values of nk and nk−1, there are at most
( w

k−2

)
corresponding values of m

with nk−2 < w . If we define n such that
(n

k

)
� j <

(n+1
k

)
, then there are at most

(n
2

)
ways to pick nk

and nk−1 corresponding to some value of m � j. Hence, #{m � j | nk−2 < w} �
(n

2

)( w
k−2

)
. Since j �

(n
k

)
,

we have

#{m � j | nk−2 < w}
j

�
(n

2

)( w
k−2

)
(n

k

) .

The right-hand side is a rational function in n, with the numerator of degree 2 and the denominator
of degree k � 3, so it goes to zero as n → ∞. If we let j → ∞, then n → ∞ as well, so we have

lim sup
j→∞

#{m � j | nk−2 < w}
j

� lim sup
n→∞

(n
2

)( w
k−2

)
(n

k

) = 0.

Since the lim sup of this non-negative sequence is not positive, the sequence must converge to
zero. �
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Finally we reach the main result of this section. With suitable definitions of distributions, it essen-
tially says that ratk(m) converges to zero in probability.

Theorem 4.6. For every k � 3 and ε > 0,

lim
j→∞

#{m � j | ratk(m) > ε}
j

= 0.

Proof. Let w = � k2(1+ε)
ε �, so that k2

w−k2 � ε . By Lemma 4.4, if nk−2 � w , then

ratk(m) � k2

nk−2 − k2
� k2

w − k2
� ε.

Then by Lemma 4.5,

lim sup
j→∞

#{m � j | ratk(m) > ε}
j

� lim sup
j→∞

#{m � j | nk−2 < w}
j

= 0. �

4.2. The smk(m) bound

In this section, we evaluate the smk(m) bound. Unlike the case of the lgk(m) bound, if we were to
define something analogous to ratk(m) here, it does not empirically seem to converge in probability. It
may converge weakly to some distribution, but this would be difficult to calculate, and if we restrict
to values of m such that smk(m) > lgk(m), it may not still converge to the same distribution.

Instead, we prove that smk(m) < oldk(m) whenever oldk(m) > 0, or equivalently, whenever smk(m)

is defined. Hence, the (non-zero) bounds of the Kruskal–Katona theorem are never attained by a graph
lacking the largest clique it could possibly have for its prescribed number of cliques of a given size.
Whether the bound of Theorem 2.18 is strictly tighter than that of the Kruskal–Katona theorem then
depends only on the lgk(m) bound.

First we need a lemma showing that the inequality of Lemma 3.3 is strict if we strengthen one
assumption.

Lemma 4.7. If rk(ck, ck−1, . . .) = rk(ak,ak−1, . . .) + rk−1(bk−1,bk−2, . . .) and ck − 1 = ak > bk−1 , then

rk+1(ck, . . .) > rk+1(ak, . . .) + rk(bk−1, . . .).

Proof. Subtract rk(ak) from both sides of the equation of the lemma to get

rk−1(ak) + rk−1(ck−1, . . .) = rk−1(ak−1, . . .) + rk−1(bk−1, . . .).

Lemma 3.5 states that

rk(ak) + rk(ck−1, . . .) > rk(ak−1, . . .) + rk(bk−1, . . .).

Adding rk+1(ak) to both sides completes the proof. �
Proposition 4.8. If m and k satisfy oldk(m) > 0, then smk(m) < oldk(m).

Proof. Let m = rk(nk,nk−1, . . .) and m = (ak
k

)
nk−1 + (ak−1

k−1

)
nk−2

+ · · · be the representations used in the

definitions of oldk(m) and smk(m). Since
(n

k

)
r �

(n
k

)
, m � rk(ak,ak−1, . . .), and so ak � nk .

Suppose that nk = ak . Since ak −� ak
ak−1 � > ak−1 and � ak

ak−1 � � 1, we have that nk −1 = ak −1 > ak−1,

and so nk −2 � ak−1. Then we have that
(ak−1

k−1

) = (ak−1
k−1

)
, and similarly for all ak−i terms with i � 1.
nk−2
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The Turán graph Tak,ak−1 consists of a clique on ak − 1 vertices and one other vertex adjacent to
ak − 2 vertices. Thus,

(ak
k

)
ak−1 = rk(ak − 1,ak − 2), and so m = rk(ak − 1,ak − 2) + rk−1(ak−1,ak−2, . . .).

Since ak − 1 > ak−1, we get the desired inequality from Lemma 4.7.
Now we proceed by induction on ak . Let C be the r-colored rev-lex complex on m k-faces and

smk(m) (k + 1)-faces and let v be the first vertex in the rev-lex order. The number of k-faces of C is
the number of those containing v plus the number not containing v , so

m = clk(C) = clk
(
C − {v}) + clk−1

(
lkC (v)

)
and

smk(m) = clk+1(C) = clk+1
(
C − {v}) + clk

(
lkC (v)

)
.

Define bi s and cis by

rk(bk,bk−1, . . .) = clk
(
C − {v}) and

rk(ck, ck−1, . . .) = clk
(
lkC (v)

)
.

By construction, C − {v} contains the clique complex of a Tak−1,r and is contained in the clique
complex of a Tak,r but does not have a k-face on the last k vertices. Hence, if clk(C − {v}) is written as
in the definition of smk(clk(C − {v})), its leading term will be ak −1. As such, the inductive hypothesis
provides

rk+1(bk,bk−1, . . .) > clk+1
(
C − {v}).

Since lkC (v) ⊂ (C − {v}), rk(bk, . . .) � rk(ck, . . .), so by Lemma 3.3, we have

oldk(m) � rk+1(bk, . . .) + rk(ck, . . .)

> clk+1
(
C − {v}) + clk

(
lkC (v)

)
= smk(m). �

4.3. Attaining the bounds

In this section, we give a few conditions under which the bounds of Theorem 2.18 are attained.
The proofs that the bounds are attained are by construction.

Construction 4.9. Let m = rk(nk,nk−1) + rk−1(ak−1,ak−2, . . .) be the representation of m satisfying the
conditions of Lemma 2.10. Suppose that ak−2 = k − 2 or does not exist. Construct G by starting with a
clique on nk vertices. Add a new vertex and make it adjacent to nk−1 of the original nk vertices. Add
another new vertex and make it adjacent to ak−1 of the original vertices. Then clk+1(G) = lgk(m) and
clk(G) � m. If the latter inequality is strict, we can add however many isolated cliques on k vertices
are needed to make equality hold.

Construction 4.10. Let m = rk(nk,nk−1)+ rk−1(ak−1,ak−2, . . .) be the representation of m satisfying the
conditions of Lemma 2.10. Suppose that ak−3 = k − 3 or does not exist and nk + ak−2 � nk−1 + ak−1.
Construct G by starting with a clique on n vertices. Add a new vertex v and make it adjacent to nk−1
of the original nk vertices. Add another new vertex u and make it adjacent to ak−1 of the original
vertices as well as adjacent to v such that u and v are adjacent to ak−2 common vertices.

This can be done if u is adjacent to ak−2 vertices to which v is also adjacent, and ak−1 − ak−2
vertices (other than v) to which v is not adjacent. Since nk−1 � ak−1 > ak−2, we can make the last
two vertices adjacent to enough common neighbors. We can prevent them from being adjacent to too
many common neighbors if there are at least nk−1 +ak−1 −ak−2 vertices in the first nk available. That
is, this construction can be done if nk � nk−1 + ak−1 − ak−2, or equivalently, nk + ak−2 � nk−1 + ak−1,
the condition of the lemma.

Then clk+1(G) = lgk(m) and clk(G) � m. If the latter inequality is strict, we can add several isolated
cliques on k vertices to make equality hold.



36 A. Frohmader / Journal of Combinatorial Theory, Series A 117 (2010) 17–37
Construction 4.11. Let m = (ak
k

)
nk−1 + (ak−1

k−1

)
nk−2

+ · · · + (ak−s
k−s

)
nk−s−1

be the representation satisfying

the conditions of Lemma 2.12. Suppose that ak−2 = k − 2 or does not exist. Let G be the Turán
graph Tak,nk−1. If we remove a part tied for the smallest from G , it still has at least ak − � ak

nk−1 �
vertices remaining. Since ak −� ak

nk−1 � > ak−1, Tak,nk−1 has a Turán graph Tak−1,nk−2 as an induced sub-
graph. Hence, we can create a graph G ′ from G by adding a new vertex adjacent to the vertices of a
Tak−1,nk−2 induced subgraph of G . Then clk(G ′) � m and clk+1(G ′) = smk(m). If the inequality is strict,
we can add some isolated cliques on k vertices to make equality hold.

5. Bound for non-consecutive dimensions

Theorem 5.1. Let k, i > 0, clk(G) = rk(nk,nk−1) + rk−1(ak−1,ak−2, . . .) be the representation of Lemma 2.10,

and clk(G) = (bk
k

)
nk−1 + (bk−1

k−1

)
nk−2

+ · · · + (bk−s
k−s

)
nk−s−1

be the representation of Lemma 2.12. Then

clk+i(G) � max

{
rk+i(nk,nk−1) + rk+i−1(ak−1, . . .),( bk

k+i

)
nk−1

+ · · · + ( bk−s
k+i−s

)
nk−s−1

.

Proof. If G has a clique on nk vertices, then by Lemma 3.6, clk+1(G) � lgk(m), clk+2(G) �
lgk+1(clk+1(G)) � lgk+1(lgk(clk(G))), and so forth, until we get

clk+i(G) � lgk+i−1
(
. . . lgk+1

(
lgk(m)

)
. . .

)
= rk+i(nk,nk−1) + rk+i−1(ak−1,ak−2, . . .).

Otherwise, G does not have a clique on nk vertices, in which case, by Theorem 2.17, clk+i(G) �( bk
k+i

)
nk−1

+ · · · + ( bk−s
k+i−s

)
nk−s−1

. Either way, the assertion holds. �
The next example shows that if m = clk(G), then the first bound in Theorem 5.1 is

lgk+i−1(. . . lgk+1(lgk(m)) . . .). The second bound, on the other hand, may not be
smk+i−1(. . . smk+1(smk(m)) . . .), but Theorem 5.1 could have been stated using this quantity as the
second bound.

Example 5.2. Let cl3(G) = r3(6) = 20. We can compute 20 = (6
3

)
5 + (3

2

)
4 + (1

1

)
3. Then the second

possible upper bound on cl5(G) in Theorem 5.1 is
(6

5

)
5 + (3

4

)
4 + (1

3

)
3 = 2, while sm3(20) = (6

4

)
5 +(3

3

)
4 + (1

2

)
3 = 10. We can also compute 10 = r4(5,4) + r3(3) and then 10 = (7

4

)
4 + (4

3

)
3. Then we com-

pute sm4(10) = (7
5

)
4 + (4

4

)
3 = 0, so that sm4(sm3(20)) = 0 
= 2.

What happened here is that the value of nk used for the first time we apply the bound was not the
same as for the second. This cannot be used to get an improved bound, though, as when this happens,
the latter bound is always < rk+i(nk), while the former bound is always � rk+i(nk), and hence larger.
By this logic, Theorem 5.1 could have instead stated that

ck+i(G) � max
{

lgk+i−1
(
. . . lgk+1

(
lgk(m)

)
. . .

)
, smk+i−1

(
. . . smk+1

(
smk(m)

)
. . .

)}
,

as this would never change the larger of the two bounds.

Theorem 5.1 does sometimes give us a sharper bound than Theorem 2.18 alone, as shown in the
next example.

Example 5.3. If cl3(G) = 70, then the bound of Theorem 2.18 is cl4(G) � max{sm3(70), lg3(70)} =
max{85,81} = 85. This bound is attained by the Turán graph T9,7, as cl3(T9,7) = 70 and cl4(T9,7) = 85.

If cl4(G) = 85, then by Theorem 2.18, cl5(G) � max{sm4(85), lg4(85)} = max{61,62} = 62. This
bound is attained by Construction 4.9.
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By Theorem 5.1, if cl3(G) = 70, then cl5(G) � max{61,61} = 61. Hence, there is a graph G1 with
cl3(G1) = 70 and cl4(G1) = 85 and there is a graph G2 with cl4(G2) = 85 and cl5(G2) = 62, but there
is no graph G3 with cl3(G3) = 70 and cl5(G3) = 62.
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