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distributions, moments, and the characteristic function, are also presented. A trilinear
example is used to explain the general contents at a simpler level. The estimation of
parameters using a flip-flop algorithm is also briefly discussed.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The matrix normal distribution, being an extension of the ordinary multivariate (vector-) normal distribution, can
be regarded as a bilinear normal distribution — a distribution of a two-way (two-component) array, each component
representing a vector of observations. The complexity of data, which has become a norm of the day for a variety of applied
research areas, requires a consideration of extension of the bilinear normal distribution. The present paper presents this
extension, correspondingly named multilinear normal distribution [20, Ch. 2], based on a parallel extension of bilinear
matrices to multilinear tensors [9]. The adjectivemultilinear has not yet found its way into the general statistical literature.
One may, however, trace the same or similar nomenclature with reference to the analysis of complicated data structures,
with a commonly used alternative expression being analysis of multiway data [21, p. 16]. [21] also gives some useful
references on multiway analysis, particularly based on tensor algebra; see also [10].

Compared to the multivariate normal distribution, the multilinear distribution has been a relatively uncharted territory
of research. Still, however, some interesting and very useful applications of multilinear distribution can be found in the
literature. Particularly, the emergence of complicated and enormousdata sets in recent decades has given serious impetus for
such applied literature to flourish. As a byproduct, this has caused a huge amount of literature on the theory and applications
of tensors in statistics.

One of the most important uses of the multilinear normal (MLN) distribution, and hence tensor analysis, is perhaps in
magnetic resonance imaging (MRI). A nice work, particularly focusing on the need to go frommatrix-variate to tensor-based
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Fig. 1. The box visualizes a three-dimensional data set as a third order tensor.

MLN distribution, is given in [3]. They genuinely argue why a vectorial treatment of a complex data set which actually needs
a tensorial treatment and the application of multilinear normality, can lead to wrong or inefficient conclusions. For some
more relevant work in the same direction, see [2,4,5], and the references cited therein, whereas a Bayesian perspective
is given in [25]; see also [15]. Analysis of multilinear, particularly trilinear data, has a specific attraction in chemometrics
and spectroscopy; see for example [23,6]. Other areas of applications include signal processing [18], morphometry [22],
geostatistics [24], and statistical mechanics [34], to mention a few. The extensive use of tensor variate analysis in these and
other similar fields has generated a special tensorial nomenclature, for example diffusion tensor, dyadic tensor, stress and
strain tensors etc. [27]. Similarly, special tensorial decompositions, for example PARAFAC and Tucker decompositions [21],
have been developed; for a general comprehensive review of tensor decompositions and their various applications,
see [8,19,32].

The use of a tensor, and its associated distributional structure, is even older, and with most frequent applications in
the theory of linear models. Some classical treatises on tensors and multilinear algebra are [1,28,7]. For a comprehensive
exposition of the use of tensors in statistics, see [27]. In another unique contribution, McCullagh had already introduced
tensor notation in statistics with particular reference to the computation of polynomial cumulants [26]; see also [17,11].
The decomposition of ANOVA models into the potential sources of variation is always an important task in the theory of
linear models. A tensorial treatment of ANOVA decomposition is given in [36], whereas a study of multilinear skewness
and kurtosis in linear models is given in [30]; see also [12]. [14] gives an interesting application in the theory of design of
experiments, with particular emphasis on rock magnetism. This paper uncovers some very attractive features of theoretical
and geometrical aspects of tensors, when considered from a statistical perspective. The geometrical consideration of tensors
in statistics, sometimes even more important than pure theoretical treatment, owes basically to setting the multivariate
normality on the Riemannian geometry [33]. As the simplest case of geometrical structure of the parameter space of bivariate
normal distribution, see [31], which also uses tensor notation to simplify complicated expressions.

This paper formally introduces MLN distribution, i.e., a normal distribution for the analysis of multiway data, and
discusses some basic properties. The rest of the paper is organized as follows. Section 2 introduces the MLN distribution,
along with some notation which simplifies the calculations that follow. In Section 3, some properties of the MLN
distribution, such as marginal and conditional distributions, moments, and characteristic function, are given. A special case
of trilinear normal distribution is interspersed throughout Sections 2 and 3 to explain the theory and notations at a more
comprehensible level. Section 4 presents an estimation procedure for the parameters of the distribution.

2. Model

Let X = (xi1,...,ik) : ×
k
i=1 pi be a tensor of order k, with the dimensions p1, p2, . . . , pk. Fig. 1 shows the special case when

k = 3. If pi = 1, 2 ≤ i ≤ k or 3 ≤ i ≤ kwe have the special cases when the tensor equals a vector or a linear mapping.
In order to perform explicit computations, the tensor has to be represented via coordinates. In this paper, the

representation will mainly be in vector form. However, the representation of the tensor X : ×
k
i=1 pi as a vector can be

done in several ways. If we look at the tensor space in Fig. 1, this means that we can look upon the tensor from different
directions.

Put epi1:ik = ep1i1 ⊗ · · · ⊗ epkik , where p = (p1, . . . , pk) and ⊗ denotes the Kronecker product. To emphasize the dimension,
we will write pk, or p(1 : k), instead of p. The vectors epj : p × 1 are the unit basis vectors, i.e., a p-vector with 1 in the jth
position, and 0 elsewhere. Further, let

p∗

j:l =

l
i=j

pi and p+

j:l =

l
i=j

pi, (1)

with the special cases

p∗
= p∗

1:k and p+
= p+

1:k, (2)

respectively. When there is no ambiguity, we shall drop the dimension from the basis vectors and write ep1i1 as ei1 , and epi1:ik
as ei1:ik , etc. We begin with a formal definition of tensor space.
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Definition 2.1.

(i) T p
=


x : x =


Ip xi1...ike

p
i1:ik


, where

Ip =

i1, . . . , ik : 1 ≤ ij ≤ pj, 1 ≤ j ≤ k


is the index set,

(ii) T pq
=


X : X =


Ip∪Iq xi1...ik,j1,...,jle

p
i1:ik

(eqj1:jl)
′


, where

Iq = {j1, . . . , jl : 1 ≤ ji ≤ pi, 1 ≤ i ≤ l}

is another index set, Ip being the same as in (i) above,
(iii) T

pq
⊗ = {X ∈ T pq

: X = X1 ⊗ · · · ⊗ Xk,where Xi : pi × qi},
(iv) T

p
⊗ =


X ∈ T

pp
⊗ : X = X1 ⊗ · · · ⊗ Xk,where Xi : pi × pi


.

Note that, the tensor space in (i) is described using vectors, whereas in (ii) using matrices.

The space T p defined in Definition 2.1 (i) is the space of vectorized tensors of size p1 × p2 × · · · × pk; see [19] for more
details about decompositions of tensors. In the following, we beginwith an example of a trilinear normal distribution, which
we shall continue to embed with several other main results to follow, to explain the general results at a simpler level.

Example 1. Let X = (xi1,i2,i3) : 3 × 2 × 2 be a tensor of order 3. This tensor can be written as

X =


x311 x312
x321 x322

x211 x212
x221 x222

x111 x112
x121 x122

 ,

where

X1:: =


x111 x112
x121 x122


, X:2:


x211 x212
x221 x222


, and X::3 =


x311 x312
x321 x322


,

are known as the horizontal slices of a tensor. One can similarly define lateral and frontal slices of a third order tensor by
fixing the other two indices (see [19]). By Definition 2.1(i), the vectorization of the tensor is given as x = vecX ∈ T p, such
that, in lexicographical order,

x = (x111, x112, x121, x122, x211, x212, x221, x222, x311, x312, x321, x322)′. �

The univariate, multivariate, andmatrix normal distributions are well known.Wemay observe that amatrix-variate normal
distribution, X ∼ Np,n(µ, Σ, Ψ), can be defined as X = µ + Σ1/2UΨ 1/2, where U = (uvl), uvl ∼ N(0, 1), i.i.d. This can also
be written as

ij

Xije
p
i (e

n
j )

′
=


ij

µije
p
i (e

n
j )

′
+


ik


vl


mj

τikδmjuvle
p
i (e

p
k)

′epv(e
n
l )

′enm(enj )
′,

where Σ = ττ ′ and Ψ = δδ′. Alternatively,
ij

Xije
p
i (e

n
j )

′
=


ij

µije
p
i (e

n
j )

′
+


ij


kl

τikδljukle
p
i (e

n
j )

′.

Writing the basis vectors as a Kronecker product, i.e., epi (e
n
j )

′
→ enj ⊗ epi , we obtain the vec-representation of the matrix

normal distribution. This leads to the following extension of the matrix-variate normal distribution.

Definition 2.2. A tensor X is multilinear normal (MLN) of order k,

X ∼ Np (µ, Σ) ,

if

x = µ + Σ1/2u,

where x ∈ T p, µ ∈ T p, Σ ∈ T
p

⊗ , p = (p1, . . . , pk), and the elements of u ∈ T p are independent standard normally
distributed. The square root Σ1/2 can be any square root.

The dispersion matrix in Definition 2.2, Σ ∈ T
p

⊗ , expanded in terms of its component matrices, can be written as
Σ = Σ1:k = Σ1 ⊗ · · · ⊗ Σk. Moreover, X ∼ Np (µ, Σ) and x ∼ Np (µ, Σ) pertain to the same distribution.
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Relieving Definition 2.2 of its basis vectors, a coordinate-free (vector-space) version of the MLN distribution follows
immediately as (see [37,13])

xi1...ik = µi1...ik +


j1,...,jk

τ 1
i1j1τ

2
i2j2 · · · τ k

ikjkuj1j2...jk ,

where Σi = τ i(τ i)′ : pi × pi with τ i
= (τ i

kl) : pi × pi.
Using vector representation, x ∈ T p, and the fact thatΣ1:k

 =
Σ1 ⊗ · · · ⊗ Σk

 =

k
i=1

Σi
p∗/(pi)

,

Σ−1
1:k = (Σ1 ⊗ · · · ⊗ Σk)

−1
= Σ−1

1 ⊗ · · · ⊗ Σ−1
k ,

where p∗ is defined in (2), we can convenientlywrite the probability density function (pdf) of anMLNdistribution, extending
the pdf of ordinary multivariate normal distribution.

Theorem 2.1. The density function of the MLN distribution (Definition 2.2) is given as

fX(x) = (2π)−p∗/2


k

i=1

|Σi|
−p∗/(2pi)


exp


−

1
2
(x − µ)′Σ−1

1:k(x − µ)


, (3)

where Σ1:k is positive definite, x, µ ∈ T p, Σ1:k ∈ T
p

⊗ , and p∗ is defined in (2).

Example 1 (Continued). Simplifying Theorem 2.1 to the notations of Example 1, the pdf of trilinear normal distribution of
order 3 × 2 × 2 can be written as follows:

fX(x) = (2π)−6
|Σ1|

−2
|Σ2|

−3
|Σ3|

−3exp

−

1
2
(x − µ)′(Σ1 ⊗ Σ2 ⊗ Σ3)

−1(x − µ)


. �

We close this section by giving some comments on a special matrix which will be used in Section 4.

Definition 2.3. For some i, jwith i < j, define

ep(i:j)i:j = epii ⊗ epi+1
i+1 ⊗ · · · ⊗ epjj .

The matrix Ks,r ∈ T
p

⊗ is the tensor commutation operator, defined as an orthogonal matrix, satisfying

Ks,re
p
i1:ik

= ep(1:s−1)
i1:is−1

⊗ eprir ⊗ ep(s+1:r−1)
is+1:ir−1

⊗ epsis ⊗ ep(r+1:k)
ir+1:ik

, s ≤ r,

i.e., Ks,r interchanges basis vectors.

Observe that, multiplying with the commutation matrix Ks,r from the left will change rows. For notational convenience,
we shall write

Ks,re
p
i1:ik

= es,ri1:ik
.

The tensor commutation operator that operates on the same lines as the well-known commutation matrix is used to
interchange vectors in a Kronecker product of two vectors. Hence, for x ∈ T p, we write

Ks,rx = xs,r .

The following two theorems, about the properties of the tensor commutation operator, follow directly from Definition 2.3,
and from properties of the commutation matrix.

Theorem 2.2. Let Ks,r ∈ T
p

⊗ be the tensor commutation operator (Definition 2.3). Then
(i) Ks,r = K ′

r,s, and
(ii) Ks,rKr,s = Ip+ .

Theorem 2.3. Let Ks,r ∈ T
p

⊗ be the tensor commutation operator, and Σ1:k ∈ T
p

⊗ . Then

Kr,sΣ1:kKs,r = Σ1:s−1 ⊗ Σr ⊗ Σs+1:r−1 ⊗ Σs ⊗ Σr+1:k,

where Σi:j = Σi ⊗ Σi+1 ⊗ · · · ⊗ Σj, for some i < j.

3. Properties of the MLN distribution

In this section, we establish some properties of the MLN distribution, using the notations introduced in Section 2.
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3.1. Moments, characteristic function and cumulants

When comparing the multivariate normal distribution with the MLN distribution, the difference lies in the structure of
the parameter space generated by µ and Σ. The elements of both distributions are organized in vectors of non-repeated
normal components. Thus, it is easy to imagine that moments for the MLN distribution can be obtained from those of the
multivariate distribution. Indeed, the characteristic function and the cumulant generating function for theMLN distribution
follow immediately from those of the multivariate normal distribution.

Theorem 3.1. Let x ∼ Np(µ, Σ), where x ∈ T p. The characteristic function of x is

ϕ(t) = E[ei t
′x
] = ei t

′µ−
1
2 t

′Σt , t ∈ T p,

and the cumulant generating function is

κ(t) = ln E[ei t
′x
] = i t ′µ −

1
2
t ′Σt, t ∈ T p.

To compute moments, we need a suitable differential operator (matrix derivative). Let Y ∈ T pq be a function of X ∈ T rs,
with their vectorized versions y and x, defined as

y =


i1:ik1


j1:jk2

yi1:ik1 j1:jk2 e
q(1:k2)
j1:jk2

⊗ ep(1:k1)i1:ik1
,

x =


m1:mk3


n1:nk4

xm1:mk3n1:nk4
es(1:k4)n1:nk4

⊗ er(1:k3)m1:mk3
,

respectively. Then,

dY
dX

=
dy
dx

=


i1:ik1


j1:jk2


m1:mk3


n1:nk4

∂yi1:ik1 j1:jk2
∂xm1:mk3n1:nk4


es(1:k4)n1:nk4

⊗ er(1:k3)m1:mk3

 
eq(1:k2)j1:jk2

⊗ ep(1:k1)i1:ik1

′

. (4)

Higher order derivatives may be defined recursively, i.e.,
dkY
dX k

=
d
dX

dk−1Y
dX k−1

.

Applying (4) to ϕ(t), and evaluating the derivatives at t = 0, we get
dϕ(t)
dt


t=0

= (iµ − Σt)ϕ(t)

t=0

= iµ,

which, on further differentiation, gives
d2ϕ(t)
dt2


t=0

=

−Σ + (iµ − Σt)(iµ − Σt)′


ϕ(t)


t=0

= −Σ − µµ′.

The samemoments can also be obtained using κ(t), following the same lines as for multivariate normal distribution, where
it can also be shown that all moments of order more than two are zero.

Using the same differential operator directly on the pdf, we get
dkfX(x)
dxk

= (−1)kHk(x, µ, Σ)fX(x),

where fX(x) is the pdf (Eq. (3)), and Hk(x, µ, Σ) are the Hermite polynomials. Clearly, for k = 0, d0fX(x)
dX0 = fX(x).

Theorem 3.2. Let x ∼ Np(µ, Σ), where x ∈ T p. The Hermite polynomials, H(x, µ, Σ)k = 0, 1, 2, are given by

H0(x, µ, Σ) = 1,
H1(x, µ, Σ) = Σ−1(x − µ),

H2(x, µ, Σ) = Σ−1(x − µ)(x − µ)′Σ−1
− Σ−1.

One possible application of Hermite polynomials is in Edgeworth expansions. Finally, we state the following theorem
which can be trivially proved using the invariance property of normal distribution under linear (in general, affine)
transformation.

Theorem 3.3. Let x ∼ Np(µ, Σ), where x ∈ T p, and let A ∈ T
qp

⊗ is nonsingular. Then,

Ax ∼ Nq(Aµ,AΣA′),

where AΣA′
∈ T

q
⊗ .

By appropriately choosing A in Theorem 3.3, several interesting special cases can be studied.
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3.2. Marginal distributions

The matrix

Mr =


Ir

ep(1:r−1)
i1:ir−1

⊗ er
(2)

−r(1)+1
ir−r(1)+1

⊗ ep(r+1:k)
ir+1:ik


epi1:ik

′

,

with the index set

Ir =

i1, . . . , ik : 1 ≤ it ≤ pt , t = 1, . . . , r − 1, r + 1, . . . , k, r (1)

≤ ir ≤ r (2) ,

facilitates the computation of several marginal distributions. The margins r (1), r (2) are known values. The index set Ir , by
imparting restrictions onMr through r (1) and r (2), generates marginal distributions,Mrx, represented as

Mrx ∼ Npr (r(2)−r(1)+1)(Mrµ,MrΣM ′

r). (5)

In the sequel, we shall focus on the specific marginal distributions,

x•rl = Mr1x, (6)

x•r l = Mr2x, (7)

where

Mr1 =


Ir1

ep(1:r−1)
i1:ir−1

⊗ emir ⊗ ep(r+1:k)
ir+1:ik


epi1:ik

′

, (8)

Mr2 =


Ir2

ep(1:r−1)
i1:ir−1

⊗ epr−m
ir−m ⊗ ep(r+1:k)

ir+1:ik


epi1:ik

′

, (9)

with their respective index sets

Ir1 = {i1, . . . , ik : 1 ≤ it ≤ pt , t = 1, . . . , r − 1, r + 1, . . . , k, 1 ≤ ir ≤ m},

Ir2 = {i1, . . . , ik : 1 ≤ it ≤ pt , t = 1, . . . , r − 1, r + 1, . . . , k,m + 1 ≤ ir ≤ pr}.

Example 1 (Continued). For the third order tensor in Example 1, we calculate two marginal distributions, one for the slice
X1::, and one for the the other two slices, X:2: and X::3, combined. That is, the tensor is partitioned as

X =


x311 x312
x321 x322

x211 x212
x221 x222

x111 x112
x121 x122

 ,

with the index sets for the two partitions are given as

Ir1 = {i1, i2, i3 : i1 = 1, 1 ≤ i2 ≤ 2, 1 ≤ i3 ≤ 2} ,

Ir2 = {i1, i2, i3 : 2 ≤ i1 ≤ 3, 1 ≤ i2 ≤ 2, 1 ≤ i3 ≤ 2} ,

respectively. Then, from Eqs. (8) and (9), we have

Mr1 =


i2=1,2


i3=1,2

1 ⊗ e2i2 ⊗ e2i3

e31 ⊗ e2i2 ⊗ e2i3

′
=


i2=1,2


i3=1,2

(e31)
′
⊗ e2i2(e

2
i2)

′
⊗ e2i3(e

2
i3)

′
= (e31)

′
⊗ I4,

Mr2 =


i1=2,3


i2=1,2


i3=1,2

e2i1−1 ⊗ e2i2 ⊗ e2i3

e3i1 ⊗ e2i2 ⊗ e2i3

′
= (02 : I2) ⊗ I4,

where 02 = (0 , 0)′. This gives the marginal vectors

x•rl = Mr1x = (x111, x112, x121, x122)′

x•r l = Mr2x = (x211, x212, x221, x222, x311, x312, x321, x322)′,

so that the corresponding marginal distributions can be calculated from (5). �
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The following three theorems specify certain independence conditions on the marginals.

Theorem 3.4. The normal variables x•rl and x•r l are independent, if and only if, Σr
12 = 0, where Σr

12, of size m × (pr − m), is
the upper right partition of Σr in Σ1:k.

Proof. Because of normality, independence holds if and only if

0 = C[x•rl , x•r l ] = Mr1C[x, x]M ′

r1 = Mr1ΣM ′

r1

=


Ip+

1:r−1
⊗ (I : 0) ⊗ Ip+

r+1:k


Σ1:k


Ip+

1:r−1
⊗ (0 : I)′ ⊗ Ip+

r+1:k


= Σ1:r−1 ⊗ Σr

12 ⊗ Σr+1:k, (10)

where p+

j:l is defined in (1). Since Σi, i = 1, 2, . . . k, differ from zero, (10) holds if and only if Σr
12 = 0. �

Clearly, with r = 1 and r = k, we can reduce Theorem 3.4 to obvious special cases.

Example 1 (Continued). First, we note that the covariance matrix for the tensor X in Example 1 can be written as

C(X) = C(vecX) = Σ1 ⊗ Σ2 ⊗ Σ3

=


σ 1
11 ⊗ Σ2 ⊗ Σ3 (σ1

12)
′
⊗ Σ2 ⊗ Σ3

σ1
12 ⊗ Σ2 ⊗ Σ3 Σ1

22 ⊗ Σ2 ⊗ Σ3


,

where Σ1 is partitioned according to the margins, i.e., σ 1
11 : 1 × 1, (σ1

12)
′
: 1 × 2 and Σ1

22 : 2 × 2. Then, by the property of
normal distribution, x•rl and x•r l are independent if and only if σ1

12 = 0. �

Theorem 3.5. The normal variables x•rl and x•sl are not independent, if s ≠ r.

Proof. The statement is evident from Eq. (10), i.e., for any matrices Pi, Qi, i = 1, 2, (P1 ⊗ P2)(Q1 ⊗ Q2) = 0 if and only if
PiQi = 0 for either i = 1 or i = 2. �

Finally, Theorem 3.4 is the special case of the following theorem.

Theorem 3.6. Let A ∈ T sp andB ∈ T tp. Then,Ax andBx are independent if and only if AΣB′
= 0, i.e., if for some r,ArΣrB′

r = 0.

3.3. Conditional distributions

Having the joint and marginal densities, we can compute the conditional densities. Define

µ•rl = Mr1µ, (11)

µ•r l = Mr2µ, (12)

Σr
1•2 = Σr

11 − Σr
12(Σ

r
22)

−1Σr
21, Σr = (Σr

ij). (13)

Then, we have the following theorem.

Theorem 3.7. Let x ∼ Np(µ, Σ), where x ∈ T p. Let x•rl , x•r l , µ•rl , µ•r l , be as defined in (6), (7), (11) and (12), respectively.
Then, x•rl |x•r l has the same distribution as

µ•rl + (Ip+

1:r−1
⊗ Σr

12(Σ
r
22)

−1
⊗ Ip+

r+1:k
)(x•r l − µ•r l) + (Σ1:r−1 ⊗ Σr

1•2 ⊗ Σr+1:k)
1/2u, (14)

where u ∼ Np+(0, Ip+), and p+

j:l and p+ are defined in (1) and (2), respectively.

Proof. The normality of the conditional distribution from the properties of the normal distribution. Then, we only need to
compute the conditional mean and dispersion. Since

D[Mr1x] = Mr1ΣM ′

r1 ,

D[Mr1x] = Mr1ΣM ′

r1 ,

C[Mr1x,Mr1x] = Mr1ΣM ′

r1 ,

the conditional mean is

E[Mr1x|Mr1x] = Mr1µ + Mr1ΣMr1(Mr1ΣM ′

r1)
−1(Mr1x − Mr1µ)

which is identical to (14). The conditional dispersion is

D[Mr1x|Mr1x] = Mr1ΣM ′

r1 − Mr1ΣMr1(Mr1ΣM ′

r1)
−1Mr1ΣMr1

= Σ1:r−1 ⊗ Σr
1•2 ⊗ Σr+1:k. �
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4. Inference

In what follows, it is explained how maximum likelihood estimators of the unknown parameters in the MLN can be
obtained. The likelihood equations for the covariance matrices, Σ1, . . . , Σk of Σ1:k, will be derived. To achieve unique
parametrization, we need to put certain restrictions on a subset of the parameters, for example,

σ (2)
p2p2 = σ (3)

p3p3 = · · · = σ (k)
pkpk = 1, (15)

where Σr =


σ

(r)
ij


; see [35]. A Bayesian estimation strategy for a multidimensional separable covariance matrix, without

restrictions like (15), is given in [16]. Assume that there are n independent tensor observations Xj : ×
k
i=1 pi, j = 1, . . . , n,

from fX(x) in (3), with vector representations xj. From the joint likelihood function, one can easily see that µ will be
estimated by averaging all vectors of observations. Hence, in the subsequent computations, we assume µ = 0, without
any loss of generality. Then, the likelihood function for Σ1:k is given by

L = L(Σ1:k) = (2π)−p∗/2
k

i=1

|Σi|
−p∗n/(2pi)exp


−

1
2

n
j=1

x′

jΣ
−1
1:kxj


, (16)

which can also be written as

L = (2π)−p∗/2
k

i=1

|Σi|
−p∗n/(2pi)exp


−

1
2

n
j=1

tr

Σ−1

1


X (1)
j

′

Σ−1
2:kX

(1)
j


, (17)

where

X (1)
j =


Ip

xi1...ik(e
p2
i2

⊗ · · · ⊗ epkik )(ep1i1 )′

=


Ip

xi1...ike
p2:k
i2:ik

(ep1i1 )′ : p∗

2:k × p1,

since vecX (1)
j = xj. For simplicity, we will omit the upper index ‘‘(1)’’ and write the matrix as X (1)

j = Xj. Now the trace in
(17) can be rewritten as (see also [29])

tr

Σ−1

1 X ′

j (Σ2 ⊗ Σ3:k)
−1 Xj


= tr


Σ−1

1 X ′

j


Ip2 ⊗ Σ

−1/2
3:k

 
Σ−1

2 ⊗ Ip∗
3:k

 
Ip2 ⊗ Σ

−1/2
3:k


Xj


=

p∗
3:k

l=1

tr

Σ−1

1 X ′

j


Ip2 ⊗


Σ

−1/2
3:k e

p∗
3:k

l


Σ−1

2


Ip2 ⊗


e
p∗
3:k

l

′

Σ
−1/2
3:k


Xj



=

p∗
3:k

l=1

tr

Σ−1

1 Y ′

jlΣ
−1
2 Yjl


, (18)

where

Yjl =


Ip2 ⊗


e
p∗
3:k

l

′

Σ
−1/2
3:k


Xj.

Hence, given Σ3:k, we have n p∗

3:k independent observations Yjl, j = 1, . . . , n, l = 1, . . . , p∗

3:k, respectively.
Under the condition σ

(2)
p2p2 = 1, the likelihood equations for Σ1 and Σ2 follow from [35]

Σ1 =
1

p∗

2:kn

n
j=1

p∗
3:k

l=1

Y ′

jlΣ
−1
2 Yjl, (19)

Σ2 =
1

p1p∗

3:kn

n
j=1

p∗
3:k

l=1

YjlΣ
−1
1 Y ′

jl. (20)

Rewriting (19), we have

Σ1 =
1

p∗

2:kn

n
j=1

p∗
3:k

l=1

Y ′

jlΣ
−1
2 Yjl

=
1

p∗

2:kn

n
j=1

p∗
3:k

l=1

X ′

j


Ip2 ⊗


Σ

−1/2
3:k e

p∗
3:k

l


Σ−1

2


Ip2 ⊗


e
p∗
3:k

l

′

Σ
−1/2
3:k


Xj
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=
1

p∗

2:kn

n
j=1

X ′

j Σ
−1
2:kXj. (21)

Using the tensor commutation operator (Definition 2.3), we can also write the likelihood function as

L = (2π)−p∗/2
k

i=1

|Σi|
−p∗n/(2pi)exp


−

1
2

n
j=1

(xs,rj )′

Σ

s,r
1:k

−1 xs,rj


(22)

and, for s = 2, r ≠ 1, 2,

L = (2π)−p∗/2
k

i=1

|Σi|
−p∗n/(2pi)exp


−

1
2

n
j=1

tr

Σ−1

1


X2,r
j

′ 
Σ

2,r
2:k

−1
X2,r
j


, (23)

where

X2,r
j =


i1,...,ik

x(j)
i1...ik

e2,ri2:ik
(ep1i1 )′ : p∗

2:k × p1,

and, for notational convenience, we have used Kr,sΣ1:kKs,r = Σ
s,r
1:k. Now, the trace in (23) equals

tr

Σ−1

1


X2,r
j

′ 
Σ

2,r
2:k

−1
X2,r
j


=

p∗
2:k/pr
l=1

tr

Σ−1

1


Y 2,r
jl

′

Σ−1
r Y 2,r

jl


, (24)

where

Y 2,r
jl =


Ipr ⊗


e
p∗
2:k/pr

l

′ 
Σ

2,r
2:k\r

−1/2


X2,r
j ,

Σ
2,r
2:k\r = Σ3 ⊗ · · · ⊗ Σr−1 ⊗ Σ2 ⊗ Σr+1 ⊗ · · · ⊗ Σk, (25)

i.e., Σ2,r
2:k\r is Σ

2,r
2:k with Σr deleted. Using a similar notation for basis vectors, we write e2,ri1:ik\ir

as e2,ri1:ik
with eir removed, so

that

e2,ri1:ik\ir
= ep1i1 ⊗ ep3i3 ⊗ · · · ⊗ epr−1

ir−1
⊗ ep2i2 ⊗ epr+1

ir+1
⊗ · · · ⊗ epkik . (26)

Then, givenΣ
2,r
2:k\r , we have n p∗

2:k/pr = n p∗

1:r−1p
∗

r+1:k independent observations. Again, since σ
(r)
prpr = 1, using the techniques

in [35], the following likelihood equations for Σ1 and Σr become

Σ1 =
1

p∗

2:kn

n
j=1

p∗
2:k/pr
l=1


Y 2,r
jl

′

Σ−1
r Y 2,r

jl , (27)

Σr =
1

p∗

1:r−1p
∗

r+1:kn

n
j=1

p∗
2:k/pr
l=1

Y 2,r
jl Σ−1

1


Y 2,r
jl

′

. (28)

The following theorem can now be stated.

Theorem 4.1. The likelihood equations that are maximizing the likelihood function (16) under the conditions σ
(2)
p2p2 = σ

(3)
p3p3 =

· · · = σ
(k)
pkpk = 1 are given by

Σ1 =
1

p∗

2:kn

n
j=1

X ′

j Σ
−1
2:kXj (29)

and, for r = 2, . . . , k

Σr =
1

p∗

1:r−1p
∗

r+1:kn

n
j=1


X2,r(r)
j

′ 
Σ

2,r
1:k\r

−1
X2,r(r)
j , (30)

where X2,r(r)
j =


Ip x

(j)
i1...ik

e2,ri1:ik\ir
(eprir )′, and Σ

2,r
1:k\r and e2,ri1:ik\ir

are given above in (25) and (26), respectively.
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Proof. Σ1 is given in (21). We will now prove (30). From (28), we have

Σr =
1

p∗

1:r−1p
∗

r+1:kn

n
j=1

p∗
2:k/pr
l=1

Y 2,r
jl Σ−1

1


Y 2,r
jl

′

=
1

p∗

1:r−1p
∗

r+1:kn

n
j=1

p∗
2:k/pr
l=1


Ipr ⊗


e
p∗
2:k/pr

l

′ 
Σ

2,r
2:k\r

−1/2


X2,r
j Σ−1

1


X2,r
j

′

Ipr ⊗


Σ

2,r
2:k\r

−1/2
e
p∗
2:k/pr

l



=
1

p∗

1:r−1p
∗

r+1:kn

n
j=1


Ip


I ′p

x(j)
i1...ik

x(j)
i′1...i

′
k
(ep1i1 )′Σ−1

1 ep1i′1

p∗
2:k/pr
l=1


Ipr ⊗


e
p∗
2:k/pr

l

′ 
Σ

2,r
2:k\r

−1/2


e2,ri2:ik


e2,ri′2:i

′
k

′

×


Ipr ⊗


Σ

2,r
2:k\r

−1/2
e
p∗
2:k/pr

l


=

1
p∗

1:r−1p
∗

r+1:kn

n
j=1


Ip


I ′p

x(j)
i1...ik

x(j)
i′1...i

′
k
(ep1i1 )′Σ−1

1 ep1i′1

p∗
2:k/pr
l=1

eprir

epri′r

′

⊗


e
p∗
2:k/pr

l

′ 
Σ

2,r
2:k\r

−1/2
e2,ri2:ik\ir



×


e2,ri′2:i

′
k\i

′
r

′ 
Σ

2,r
2:k\r

−1/2
e
p∗
2:k/pr

l


=

1
p∗

1:r−1p
∗

r+1:kn

n
j=1


Ip


I ′p

x(j)
i1...ik

x(j)
i′1...i

′
k
(ep1i1 )′Σ−1

1 ep1i′1


e2,ri2:ik\ir

′ 
Σ

2,r
2:k\r

−1
e2,ri′2:i

′
k\i

′
r


eprir

epri′r

′


=
1

p∗

1:r−1p
∗

r+1:kn

n
j=1


Ip


I ′p

x(j)
i1...ik

x(j)
i′1...i

′
k


ep1i1 ⊗ e2,ri2:ik\ir

 
eprir
′′ 

Σ1 ⊗ Σ
2,r
2:k\r

−1 
ep1i′1

⊗ e2,ri′2:i
′
k\i

′
r

 
epri′r

′

=
1

p∗

1:r−1p
∗

r+1:kn

n
j=1


X2,r(r)
j

′ 
Σ

2,r
1:k\r

−1
X2,r(r)
j ,

since
p∗
2:k/pr
l=1

e
p∗
2:k/pr

l


e
p∗
2:k/pr

l

′

= Ip∗
2:k/pr

.

Thus the proof is complete. �

The likelihood equations (29) and (30) are nested, for which no explicit solution exists. One way to solve these equations
is to use the so-called flip-flop algorithm [35]. Wemay also note that by using the results of [35], the algorithm converges to
a unique solution provided there is enough data, and σ

(2)
p2p2 = σ

(3)
p3p3 = · · · = σ

(k)
pkpk = 1 is chosen to be a part of the starting

values.
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