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Abstract

We classify all firm, residually connected coset geometries, on which the groupPSL(3, 4) acts as a
flag-transitive automorphism group fulfilling the residually weakly primitive condition: the stabilizer
of any flagF acts primitively on the elements of some type in the residueΓF . We demand also that
every residue of rank two satisfies the intersection property. We give geometric constructions for all
geometries obtained. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Following Tits’ geometric interpretation of the exceptional complex Lie groups[42, 44],
Francis Buekenhout generalized in[5] and [6] certain aspects of this theory in order to
achieve a combinatorial understanding of all finite simple groups. Since then, two main
traces have been developed in diagram geometry. One is to classify geometries over a
given diagram, mainly over geometries extending buildings (see e.g.[16, 39]or [31] for a
survey and[43] for the theory of buildings). Another trace is to classify coset geometries
for a given group under certain conditions. Rules for such classifications have been stated
by Buekenhout in[7] and[8].

Since 1993, several people, including Olivier Bauduin, Francis Buekenhout, Philippe
Cara, Michel Dehon, Xavier Miller, Koen Vanmeerbeek and the authors, have classified
geometries under the following assumptions. The geometries obtained must be firm,
residually connected, flag-transitive, residually weakly primitive (RWPRI) and they must
satisfy the intersection property of rank two.

Classifications for certain groups were given in[13, 25, 29, 34, 19, 23, 24, 11]. These
results rely partially on the use of algorithms described by Dehon[22] for the computer
algebra package CAYLEY [18] and translated later in MAGMA [2]. In the meantime, infinite
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classes of groups have been under investigation[35, 32, 33, 36]and theoretical work has
been accomplished in various directions[10, 12, 20, 15, 26–28].

In this paper, we present the classification of coset geometries for the groupPSL(3, 4) =
L3(4) satisfying the above conditions. We choose to study this particular group for two
main reasons. Firstly, it is a subgroup of 15 of the 26 sporadic groups, especially ofM22,
M23 andM24. Secondly, it is a small member of the two classesL3(q) andL3(q2).

We give geometric descriptions of all geometries obtained, and we test the extra
property(2T)1 on them. For each geometry, we give a construction of it using objects
of the projective plane of order four. Some of these geometries are better understood by
giving their construction inside the Steiner systemS(5, 8, 24). In this case, we give both
constructions. We prefer to focus on constructions in the projective plane of order four
since these constructions might lead to more general constructions of geometries on any
projective plane.

We determine the automorphism and correlation groups of the geometries using
MAGMA.

The paper is organised as follows. InSection 2, we recall the basic definitions and
notations needed in this paper. InSection 3, we state the classification of all geometries
fulfilling the required properties. In the last section, we give geometric descriptions for
each geometry.

2. Definitions and notations

2.1. Coset geometries

In this section, we recall the basic notion of a coset geometry and give formal definitions
of the conditions under which we classify such geometries in this paper. A general
reference for diagram geometries and their properties is[9] or [39].

Let I = {1, . . . , n} be a finite set, called thetype set. Its elements are calledtypes.
Let G be a group and(Gi )i∈I be a collection of distinct subgroups ofG, and let
X := {gGi : g ∈ G, Gi ∈ (Gi )i∈I } be the set of their cosets. We define apregeometry
Γ = Γ (G; (Gi )i∈I ) = (X, t, ∗) provided with atype function t : gGi �→ i and an
incidence relation∗ ⊂ X × X, such that

gGi ∗ hGj :⇔ gGi ∩ hGj �= ∅.

The numbern = |I | is called therank of Γ . A flag F of Γ is a set of pairwise incident
elements, andt (F) := {t (x) : x ∈ F} is called itstype. A flag C with t (C) = I is called
a chamber. ThenΓ is called a (coset) geometryprovided that any flag is contained in a
chamber. We call a geometryfirm (resp.thin, thick) if any flag is contained in at least two
(resp. exactly two, at least three) chambers.

The residueof a flagF of Γ is the geometryΓF consisting of the elements ofΓ\F
incident with all elements ofF , together with the restricted type-function and induced
incidence relation. LetF be a flag of typeJ ⊂ I . ThenΓF is a geometry over the typeset
I − J. We setΓ∅ := Γ .
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Let J be a subset ofI . TheJ-truncationof Γ is the geometry consisting of the elements
of type j ∈ J, together with the restricted type-function and induced incidence relation. In
group-geometry terms, theJ-truncation ofΓ (G; (Gi )i∈I ) is the geometryΓ (G; (G j ) j ∈J).

A coset geometryΓ is called residually connectedif the incidence graph of every
residue of rank at least two is connected.

For any∅ �= J ⊂ I we setGJ := ⋂
j ∈J G j , B := GI and G∅ := G. Then we

call L(Γ ) := {GJ : J ⊂ I } thesublattice(of the subgroup lattice ofG) spannedby the
collection(Gi )i∈I . The groupB is said to be theBorel subgroupof L(Γ ). We say that
L(Γ ) is strongly booleanif, for any two elements ofL(Γ ), their lowest upper bound is the
subgroup that they generate inG.

Then we have the following condition to check whether a pregeometryΓ is a residually
connected geometry.

Lemma 2.1 ([43]). Let Γ = Γ (G; (Gi )i∈I ) be a pregeometry. ThenΓ is a residually
connected geometry if and only ifL(Γ ) is strongly boolean.

Clearly, if Γ (G; (Gi )i∈I ) is a (pre-)geometry,G acts as an automorphism group onΓ by
left multiplication. The action involves akernel K which is the largest normal subgroup of
G contained in everyGi , i ∈ I . If the kernel is the identity, we say thatG acts faithfully
onΓ . If the subgroupGi acts with a non-trivial kernelKi of the residue of the elementGi

of Γ , we describeGi as · Gi /Ki . We callG a flag-transitiveautomorphism group if
G acts transitively on the set of flags of typeJ for all subsetsJ of I . However the lemma
stated above imposes restrictions to the choice of the family(Gi )i∈I , it does not guarantee
G to act flag-transitively1. A criterion for both properties, namely being a geometry and
being flag-transitive is given by the following lemma.

Lemma 2.2 ([14]). LetΓ = Γ (G; (Gi )i∈I ) be a pregeometry, and letα : P(I )−{∅} → I
be a map, such that Jα ⊂ J for every non-empty subset of I . ThenΓ is a flag-transitive
geometry if and only if, for every J⊂ I with |J| ≥ 3, we have

⋂
j ∈J−Jα

G j GJα =
( ⋂

j ∈J−Jα

G j

)
GJα.

We say thatΓ is weakly primitive(WPRI) if Gi is maximal inG for at least onei ∈ I .
Moreover,Γ is said to be RWPRI provided thatΓF is WPRI for every flagF .

We say thatΓ satisfies theintersection property(I P)2 if every residue of rank two is
either a partial linear space or a generalized digon. Note that this condition excludes all
2 − (v, k, λ) designs,λ ≥ 2, except the generalized digons.

We callΓ locally 2-transitiveand we write(2T)1 for this, provided that the stabilizer
GF of any flagF of rankn − 1, acts 2-transitively on the residueΓF .

In this paper, we classify the geometries ofG = PSL(3, 4) under the following
conditions. LetΓ = Γ (G; (Gi )i∈I ) be a geometry. The geometryΓ must be firm,

1 A counter-example is given, e.g. in[25].
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residually connected, it must satisfy the intersection property(I P)2 and the groupG must
act flag-transitively and RWPRI onΓ .

Assume thatI is a set of types and thatΓ is a geometry. Acorrelation of Γ is
an automorphism of the incidence graph ofΓ mapping any two elements of equal
type onto elements of equal type. The group of all correlations ofΓ is called Cor(Γ ).
The automorphism group or group of type-preserving correlations is called Aut(Γ ). We
compute Aut(Γ ) and Cor(Γ ) with MAGMA.

Throughout this paper, we use the notation of the ATLAS [21] for groups.

2.2. Ordered butterflies in PG(2, 4)

Let P = PG(2, 4) denote the (unique) projective plane of order four. Among the small
finite projective planesP plays an outstanding role. Its combinatorics and the interplay
between geometric objects like Baer subplanes, hyperovals, unitals, etc. have been studied
often (see e.g.[26–28, 40]and the references stated there). In this paper, we assume that
the reader is familiar with the concepts of hyperoval, Baer subplane and unital as it can be
found in those references. For the convenience of the reader for the last section we only
mention here that the groupL3(4) has three orbits of size 56 on the set of all hyperovals
and three orbits of size 120 on the set of Baer subplanes inP . We introduce the notion of
ordered butterflies inP .

In [28] so-calledbutterfliesin P are introduced. It is shown that there exists sets of four
Baer subplanes{B1,B2,B′

1,B′
2} such that:

1. B1 ∩ B′
1 = B2 ∩ B′

2 consists of a single pointp of P ,

2. B1 ∩ B2 andB′
1 ∩ B′

2 consist of three collinear points, moreover,(B1 ∩ B2) ∪ (B1 ∩
B′

2) is a full line z of P .

The setS := {B1,B2,B′
1,B′

2} is called abutterflyand the pair(p, z) is called thecentral
pair of S. It is easy to see thatS is uniquely determined by one of the following data:

• B1 andB2,

• B1 andB′
1 or

• B1 and(p, z).

Clearly, ifS is a butterfly, then all four subplanes ofS are in the sameL3(4)-orbit of Baer
subplanes andG ∼= L3(4) acts transitively on the set of butterflies defined by oneG-orbit
of subplanes. Moreover, for a subplaneB of P , GB acts transitively on the subplanes
intersectingB in three collinear points (see e.g.[28]), thus,G acts transitively on the pairs
of subplanes intersecting in three collinear points. We introduce the following notion:

Definition 2.1. Let S be a butterfly inP . The setS̄ := {{B1,B2}, {B′
1,B′

2}} is called an
ordered butterfly. The set{B1,B2} is called the+poleof S̄, {B′

1,B′
2} its −pole.

Definition 2.2. Let S̄ := {{B1,B2}, {B′
1,B′

2}} be an ordered butterfly. When a linel of
PG(2, 4) is such thatl ⊂ (B1 ∪ B2), we say thatl is contained in the+pole ofS̄. Similarly,
if l ⊂ (B′

1 ∪ B′
2), we say thatl is contained in the−pole ofS̄.
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Note that any butterfly gives rise to two ordered butterflies. By the remark made above,G
is transitive on the set of ordered butterflies defined by the subplanes of oneG-orbit.

Lemma 2.3. Let S̄ be an ordered butterfly ofP . Then GS̄ ∼= 2 × D8.

Proof. Since the ordered butterflies defined by oneG-orbit of subplanes correspond
bijectively to the pairs of two subplanes intersecting in three collinear points, we hold
120· 21

2 = 1260 such ordered butterflies. By the transitivity ofG on them, we get|GS̄ | =
16. Let {B1,B2} be the+pole of S̄, {B′

1,B′
2} its −pole and(p, z) its central pair. Then

GB1,B2
∼= D8 (see e.g.[28]). Let Q1 := B1\z (this is a quadrangle) and letl be an ‘edge’

of Q1 with p /∈ l ∩ z. Denote byb1 the involution inGB1,B2 fixing l . Clearly, we have
|l ∩ B′

i | = 1, for i = 1, 2. Also,b1 fixes the point inl ∩ z, thus, it interchanges the two
points in l ∩ B′

1 and l ∩ B′
2. Hence,GB1,B2 interchangesB′

1 andB′
2. In the same way

we hold an involutionb2 ∈ G′
B′

1,B2
interchangingB1 andB2. Denote bya a generator

of GB1,B′
1

which is a cyclic group of order four[28]. Then a fixes all four subplanes

of S̄. In fact, it acts on the quadrangle in the complement ofz in each subplane. So
〈a〉 = GB1,B2,B′

1,B′
2

andGS̄ = 〈a, b1, b2〉. Sinceab1 = ab2 = a−1, we have[b1b2, a] = 1

and b1, b2 ∈ Gp,z ∼= 24 : A4. Now, b1 and b2 fix p and another point ofz but each
complement ofO2(Gz) in Gp,z acts asA4 on the four remaining points ofz. Thus,
b1, b2 ∈ O2(Gz), [b1, b2] = 1 and the lemma is proved.�

Let S̄ be an ordered butterfly ofP . Let Qi := Bi \z andQ′
i := B′

i \z (i = 1, 2). Then
the four quadranglesQ1, Q2, Q′

1 andQ′
2 determine four hyperovalsH1, H2, H′

1 andH′
2

in P such thatHi containsQi andH′
i containsQ′

i . The two remaining points ofHi are the
two points onz different fromp in the−pole ofS̄ and those ofH′

i these two points in the
+pole. We call the hyperovalsH1 andH2 hyperovals of the+pole,H′

1 andH′
2 hyperovals

of the−poleof S̄. Clearly, hyperovalsH1, H2, H′
1 andH′

2 are conjugate under the action
of PSL(3, 4). This is why we sometimes talk about the class of ordered butterflies defined
by a class of hyperovalsH. It means the hyperovals appearing in the butterflies as shown
above belong toH.

2.3. PSL(3, 4) as a subgroup of M24

Let G = M24 be the automorphism group of the Steiner systemS(5, 8, 24). Let Ω
be the set of points ofS(5, 8, 24). Take a triad{a, b, c} (i.e. a triple of points) ofΩ . As
described in the Atlas of Finite Groups[21], the pointwise stabilizer of{a, b, c} in M24,
also denotedM21, is isomorphic toPSL(3, 4). The remaining 21 points form the projective
plane of order four whose lines are the 21 pentads which complete the triad to an octad of
theS(5, 8, 24).

Thus objects appearing in the projective plane of order fourPG(2, 4) have a correspond-
ing object in the Steiner systemS(5, 8, 24).

For instance, Baer subplanes ofPG(2, 4) are the blocks of theS(5, 8, 24) having one
point in common with{a, b, c}. These are calledheptadsin the literature. This explains
why there are three classes of non-conjugate Baer subplanes under the action ofPSL(3, 4).
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Hyperovals arehexadsof the S(5, 8, 24), i.e. blocks of theS(5, 8, 24) that have two
points in common with{a, b, c}. Hence again here, we readily see why there are also three
classes of nonconjugate hyperovals under the action ofPSL(3, 4).

Ovals are hexads having one special point, the nucleus.
This correspondence between objects ofPG(2, 4) and blocks ofS(5, 8, 24) implies

that we may construct geometries forPSL(3, 4) using eitherPG(2, 4) or S(5, 8, 24). In
Section 4, we usually construct the geometries using objects of the projective plane. We
make an exception for geometries 4.6, 4.11, 5.1 and 5.2 for which we give both the
construction with objects ofPG(2, 4) and with objects of theS(5, 8, 24). The central
objects in these constructions are the ordered butterflies described in the previous section.
So we decide to give here an interpretation of these objects in the Steiner system
S(5, 8, 24). Roughly speaking, it suffices to change the words “Baer subplane” in the
previous section with “heptads” to obtain this correspondence.

Take the class of heptads containing one point of{a, b, c}, saya. A butterflyis a set of
four heptads{h1, h2, h′

1, h′
2} such that

1. h1 ∩ h′
1 = h2 ∩ h′

2 consists of a single pointp in Ω\{a, b, c},
2. there exists a pentadl such that, inΩ\{a, b, c}, we haveh1 ∩ h2 ⊂ l , h′

1 ∩ h′
2 ⊂ l ,

andl = (h1 ∩ h2) ∪ (h′
1 ∩ h′

2).

The setS̄ := {{h1, h2}, {h′
1, h′

2}} is called anordered butterfly.
From this, we readily see that the hyperovals appearing from the Baer subplanes as

described in the previous section are the hexads containing{b, c}.
When we talk about hyperovals corresponding to Baer subplanes (or the converse), we

mean that the Baer subplanes are heptads containing one pointx of {a, b, c} and that the
hyperovals are the hexads containing the set{a, b, c}\{x}.
2.4. A link between certain geometries

In [40, Section 8.2.2], a construction called doubling is described. Roughly speaking,
it says that ifΓ is a geometry with points and pairs of points such thatΓ satisfies the
intersection property, then we can construct a geometryΓ ′ by replacing the pairs of points
of Γ by a copy of the points ofΓ . This construction is studied in more detail in[38].
In the latter, the conditions to apply the construction are weakened. We describe here the
construction of[38] instead of that of Pasini since, in order to apply it to geometries of
L3(4) and show links between some of them, we need the weaker hypotheses of[38].
Indeed, looking for example at geometry 5.1 ofL3(4) (seeSection 3), the reader may
check easily that this geometry does not satisfy the hypotheses of[40] and that it satisfies
those of[38], which permits us to conclude that geometry 5.4 is obtained from geometry
5.1 using that construction.

Theshadowof a flagF of Γ on the elements of typei , for anyi ∈ I , is denotedσi (F).
It is the set of elements of typei of Γ that are incident withF .

The main condition to be satisfied by a geometry in order to apply the construction is as
follows.
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(I12) Let e be an element of type two andx be an element of typei with i ∈ I − {1, 2}.
Then, eitherσ1(x) ∩ σ1(e) = ∅, or there exists a flagF , incident withe andx, such
thatσ1(F) = σ1(x) ∩ σ1(e).

Corollary 2.1 ([38]). Let Γ be a residually connected geometry of finite rank n≥ 3,
satisfying condition(I12). Suppose the diagram ofΓ is as follows, where the diagram on
I \{1, 2} is arbitrary.

Then, there exists a geometryΓ ′ with a diagram as follows.

where the diagram on{3, . . . , n} is the restriction of that ofΓ . If d12 = g12 = d21 = 2n+1
then d′12 = g′

12 = d′
21 = 2n + 1. Furthermore,Γ ′ is residually connected.

3. The geometries of L3(4)

The following classification was obtained by the first author in his Diplomarbeit[25]
up to three missing geometries. He classified these geometries using geometries of the
maximal subgroups isomorphic toA6, L3(2) ∼= L2(7) and 32 : Q8 as given in[13].
Proving a reduction lemma, it is shown in[25] that there is only one geometry forL3(4) of
rank at least three, fulfilling the required conditions, that does not have at least one maximal
parabolic subgroup isomorphic to one of these three. This geometry is number 3.7 in the
list below.

The technique used in[25] was to take all geometriesΓ of maximal subgroups one
by one and to consider them as possible residues of a geometryΓ ′ of L3(4) such that
rk(Γ ′) = rk(Γ ) + 1.
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Using a series of MAGMA programs[23], the second author checked the results obtained
in [25]. It turned out that two rank four geometries (numbers 4.10 and 4.11) and one rank
five geometry (number 5.1) were missing in[25].

In this section, we give, up to isomorphism, all geometries forL3(4) that are firm,
residually connected, that satisfy the condition(IP)2 and on whichL3(4) acts flag-
transitively and RWPRI. We mention when a geometry satisfies(2T)1. For a given
geometryΓ , we give its type-preserving automorphism groups Aut(Γ ) and its full group
of automorphisms Cor(Γ ) provided it is different from Aut(Γ ). We also mention when a
geometry is a truncation of one of the geometries we obtained or when it can be constructed
usingCorollary 2.1. For all known geometries, we state references. In the case where no
reference is stated the geometry was found by the authors during the work on this paper
or in [25]. The number in parentheses after the numbering of each geometry gives us
the number of conjugacy classes of geometries under the action ofL3(4) that are fused
in Aut(L3(4)). Up to isomorphism, we obtain 7, 7, 11, 4, 0 geometries of rank 2–5 and
≥6. Some diagrams have their vertices numbered (see for instance geometry 3.3). These
numbers correspond to the types of elements, as they are given inSection 4when the
corresponding geometry is constructed.

Rank two geometries

Projective plane of order four.

Truncation of geometries 5.1, 5.2, 4.10, 3.1, 3.4 and 3.6.

Gewirtz graph[4].
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In [27]. Truncation of geometries 4.11 and 3.5.

Truncation of geometry 3.3.

Obtained from geometry 2.7 usingCorollary 2.1.

Unital graph (see[3]).

Rank three geometries

In [41]. Truncation of geometries 5.1, 5.2 and 4.1.
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In [1, 30]. Truncation of geometries 4.3 and 4.4.

In [45] (see also[26]).

In [26, 27].
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In [26]. Truncation of geometries 5.1, 5.3, 4.1 and 4.10.

In [37].

Rank four geometries

In [17]. Truncation of geometries 5.1 and 5.2.
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Due to Buekenhout (unpublished work).
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Truncation of geometries 5.3 and 5.4. May be obtained from geometry 4.1 using
Corollary 2.1.

Truncation of geometry 5.2.
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Truncation of geometry 5.1.

Rank five geometries
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May be obtained from geometry 5.2 usingCorollary 2.1.

May be obtained from geometry 5.1 usingCorollary 2.1.
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4. Geometric constructions

In this section, we give geometric constructions for all geometries listed in the previous
section that are not constructed elsewhere or cannot be obtained as truncation of a geometry
of higher rank or using the “doubling” process described in[38] (see also[40]). If one
of these possibilities occurs, it has already been stated in the previous section. In order
to make things more readable, we only give the full details for one of them, namely for
geometry number 5.1. Using this detailed construction as a guideline, the descriptions
of the other geometries can be extended to such constructions. Sometimes we give
constructions using objects of the projective plane of order four and using objects of the
Steiner systemS(5, 8, 24). This is the case for geometries 5.1, 5.2, 4.6 and 4.11. This
permits to understand these geometries a little bit better. We do not give both constructions
for each geomety because either the description using the projective plane is simple or the
construction using the Steiner system can be easily derived from the other one.

Geometry 5.1

Inside PG(2, 4)

Elements of type one (resp. two, three, four and five) ofΓ are the lines ofPG(2, 4)

(resp. points, hyperovals of a classH3, hyperovals of a classH4 �= H3 and the pairs of
points). Incidence is defined as follows.

• A line l is incident with

– a pointp if and only if p /∈ l ;
– a hyperovalh j ∈ H j ( j = 3, 4) if and only if l ∩ h3 = ∅ (resp. if and only if

l ∩ h4 �= ∅);
– a pair of points{p1, p2} if and only if l ∩ {p1, p2} = ∅.

• A point p is incident with

– a hyperovalh j ∈ H j ( j = 3, 4) if and only if p ∈ h j ;
– a pair of points{p1, p2} if and only if p ∈ {p1, p2}.

• A hyperovalh3 ∈ H3 is incident with

– a hyperovalh4 ∈ H4 if and only if |h3 ∩ h4| = 3;
– a pair of points{p1, p2} if and only if {p1, p2} ∈ h3.

• A hyperovalh4 ∈ H4 is incident with

– a pair of points{p1, p2} if and only if {p1, p2} ∈ h4.

Lemma 4.1. Γ is a firm geometry having20 160chambers.

Proof. Using the description of the incidence relation ofΓ given above, we easily compute
thatΓ has 56· (63) flags of type{3, 4} (any triple of pointsT on a given hyperovalh3 of H3

defines a unique hyperovalh4 of H4 with h3 ∩ h4 = T). So we have 56· (63) · 3 flags of

type{2, 3, 4}. Hence there are 56· (63) ·3 ·2 flags of type{2, 3, 4, 5}. Let T ′ = h4\T . There
are six lines disjoint withh3. The points not inT ′, that are on a line having two points in
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Table 1
The number of flags of type{i, j , k, l} containing a given flag of type{ j , k, l}

{1,2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}
{1, 2, 3} 5 5
{1, 2, 4} 3 3
{1, 2, 5} 2 2
{1, 3, 4} 3 3
{1, 3, 5} 2 2
{1, 4, 5} 2 2
{2, 3, 4} 3 2
{2, 3, 5} 6 4
{2, 4, 5} 6 4
{3, 4, 5} 3 2

common withT ′ form a unitalU . So T ′ is determined by a parallel class ofU (see e.g.
[28, 27]). ThusT is also determined by a parallel class ofU showing that the same holds
true forT ′′ = h3\T . Soh3 ∩U = ∅ and we have that three of the six lines not intersecting
h3 intersecth4 non-trivially. This proves that there are 56· (63) · 3 · 2 · 3 = 20 160 chambers

in Γ and that the orders1 equals two. In the same way, we get 56· (63) · 3 · 3 flags of type

{1, 2, 3, 4} and thuss5 = 1, we get 56· (63) · 3 · 3 flags of type{1, 3, 4, 5} and thuss2 = 1,

we get 56· 6 · 6 · 5 flags of type{1, 2, 3, 5} and thuss4 = 1, and 56· (62) · 4 · 3 flags of type
{1, 2, 4, 5} and thuss3 = 1. HenceΓ is a firm geometry. �

Using similar counting arguments, we obtainTable 1. In this table, the number of
elements of typei incident to a flag of type{ j , k, l } with i /∈ { j , k, l } and{i , j , k, l } ⊂
{1, 2, 3, 4, 5} is given.

Lemma 4.2. The group G∼= L3(4) acts flag-transitively onΓ .

Proof. The groupG acts transitively on the setH3 andGh3
∼= A6. Let p be a point of

h3. Then,Gh3,p ∼= A5 which is acting transitively on the five remaining points ofh3.
Therefore, the stabilizer of a flag{h3, p, {p, q}} is isomorphic toA4. Each choice of a
point p′ ∈ h3\{p, q} determines a unique flag of type{2, 3, 4, 5} and the stabilizer of such
a flagF = {h3, p, {p, q}, h4} is therefore isomorphic to a cyclic group of order three. This
subgroup is transitive onh4\h3 and thus also transitive on the three lines incident toF . �

Lemma 4.3. Γ is residually connected and(Γ , G) is RWPRI.

Proof. Let {l , p, h3, h4, {p, q}} be a chamber ofΓ . By definition ofΓ , we haveGl ∼=
Gp ∼= 24 : A5, Gh3

∼= Gh4
∼= A6 and G{p,q} ∼= 24 : S3. HenceΓ is connected.

The incidence relation ofΓ givesGl ,p ∼= A5, Gl ,h3
∼= A5, Gl ,h4

∼= S4, Gl ,{p,q} ∼= 23,
Gp,h3

∼= Gp,h4
∼= A5, Gp,q ∼= 24 : 3, Gh3,h4

∼= 32 : 2, Gh3,{p,q} ∼= Gh4,{p,q} ∼= S4. This
implies that all rank four residues are also connected. Moreover, using incidence relation
and flag-transitivity, we see thatGl ,p,h3

∼= D10, Gl ,p,h4
∼= S3, Gl ,p,q ∼= 22, Gl ,h3,h4

∼= S3,
Gl ,h3,{p,q} ∼= 22, Gl ,h4,{p,q} ∼= 22, Gp,h3,h4

∼= S3, Gp,h3,q
∼= A4, Gp,h4,q

∼= A4,
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Gh3,h4,{p,q} ∼= S3. Thus we readily see that all rank three residues are connected. The
orders computed inLemma 4.1show that the stabilizer of a flag of rank four is isomorphic
to a cyclic group of order two or three. Thus all rank two residues are connected as well.
We readily verify the RWPRI condition.�

The diagram ofΓ is easily obtained usingTable 1and the fact that all rank two residues
are connected.

Inside the S(5, 8, 24)
Elements of type one (resp. two, three, four and five) ofΓ are the pentads ofS(5, 8, 24)

(resp. points ofΩ\{a, b, c}, the classH1 of hexads containing{a, b}, the classH2 of hexads
containing{b, c} and the pairs of points ofΩ\{a, b, c}). Incidence is defined as follows.

• A pentadl is incident with

– a pointp if and only if p /∈ l ;
– a hexadh1 ∈ H j ( j = 3, 4) if and only if l ∩ h3 = ∅ in Ω\{a, b, c} (resp. if and

only if l ∩ h4 �= ∅ in Ω\{a, b, c});
– a pair of points{p1, p2} if and only if l ∩ {p1, p2} = ∅.

• A point p is incident with

– a hexadh j ∈ H j ( j = 3, 4) if and only if p ∈ h j ;
– a pair of points{p1, p2} if and only if p ∈ {p1, p2}.

• A hexadh3 ∈ H3 is incident with

– a hexadh4 ∈ H4 if and only if |h3 ∩ h4| = 3 in Ω\{a, b, c};
– a pair of points{p1, p2} if and only if {p1, p2} ∈ h3.

• A hexadh4 ∈ H4 is incident with

– a pair of points{p1, p2} if and only if {p1, p2} ∈ h4.

An easier proof ofLemma 4.1may then be written using the above description.

Proof of Lemma 4.1. There are 56 hexads inH3. Let h3 ∈ H3. Since there are 20 triples
of points inh3\{a, b, c}, there are 20 hexads of the classH4 incident withh3. So there
are 56· 20 flags of type{3, 4}. Let h4 ∈ H4 be a hexad incident toh3. The hexadsh3
andh4 have three points in common inΩ\{a, b, c}. So there are 56· 20 · 3 flags of type
{2, 3, 4}. In Ω\{a, b, c}, choose one pointp such thatp ∈ h3 ∩ h4. There are exactly
two pairs of points inh3 ∩ h4 that containp. So there are 56· 20 · 3 · 2 flags of type
{2, 3, 4, 5}. Since there are three pairs of points ofh4 disjoint fromh3 in Ω\{a, b, c}, there
are three pentads incident to a flag of type{2, 3, 4, 5}. Hence the number of chambers is
56·20·3·2·3 = 20 160. In the same way, we get 56· (63) ·3·3 flags of type{1, 2, 3, 4} and

thuss5 = 1, we get 56·(63) ·3·3 flags of type{1, 3, 4, 5} and thuss2 = 1, we get 56·6·6·5
flags of type{1, 2, 3, 5} and thuss4 = 1, and 56· (62) ·4 ·3 flags of type{1, 2, 4, 5} and thus
s3 = 1. HenceΓ is a firm geometry. �
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Geometry 5.2

Inside PG(2, 4)

Elements of this geometry are the same as those of geometry 5.1. Incidence is also the
same except for the following.

• A line l is incident with

– a hyperovalh4 ∈ H4 if and only if l ∩ h4 = ∅.

Inside the S(5, 8, 24)
Elements of this geometry are the same as those of geometry 5.1. Incidence is also the

same except for the following.

• A pentadl is incident with

– a hexadh4 ∈ H4 if and only if l ∩ h4 = ∅ in Ω\{a, b, c}.
Geometry 4.2

Elements of type one (resp. two, three and four) ofΓ are the lines ofPG(2, 4) (resp.
points, hyperovals of a classH3, and the class of ordered butterflies defined byH3).
Incidence is defined as follows.

• An ordered butterflyb is incident with

– a line l if and only if l is a line through the central point ofb, such thatl is
contained in the+pole ofb;

– a pointp if and only if p is on the central line ofb, such thatp is contained in
the+pole ofb and p is not the central point ofb;

– a hyperovalh3 ∈ H3 if and only if h3 is a hyperoval of the−pole ofb.

• A line l is incident with

– a pointp if and only if p /∈ l ;
– a hyperovalh3 ∈ H3 if and only if l ∩ h3 = ∅.

• A point p is incident with

– a hyperovalh3 ∈ H3 if and only if p ∈ h3.

From the incidence relation described above, we readily see that the residue of a butterfly
in Γ is a geometry whose diagram has no edges. Moreover, we see that this residue is thin
(i.e. the orderssi , i = 1, 2, 3 are equal to 1).

Geometry 4.3

Elements of type one and two are two copiesH1 andH2 of a class of hyperovals. Those
of type three are the elements of a classP of Baer subplanes intersecting any element of
Hi (i = 1, 2) in an even number of points. Elements of type four are the ordered butterflies
defined byP. Incidence is defined as follows.

• An ordered butterflyb is incident with
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– a hyperovalh1 ∈ H1 if and only if h1 is a hyperoval of the−pole ofb;
– a hyperovalh2 ∈ H2 if and only if h2 is a hyperoval of the+pole ofb;
– a Baer subplanep ∈ P if and only if p contains the three points on the central

line of b in the+pole andp is not a subplane of the+pole.

• A hyperovalh1 ∈ H1 is incident with

– a hyperovalh2 ∈ H2 if and only if h1 ∩ h2 = ∅;
– a Baer subplanep ∈ P if and only if |h1 ∩ p| = 4.

• A hyperovalh2 ∈ H2 is incident with

– a Baer subplanep ∈ P if and only if h2 ∩ p = ∅.

As with the previous geometry, from the incidence relation described above, we readily see
that the residue of a butterfly inΓ is a geometry whose diagram has no edges. Moreover,
we see that this residue is thin (i.e. the orderssi , i = 1, 2, 3 are equal to 1).

Geometry 4.4

Elements of type one and two are two copiesH1 andH2 of a class of hyperovals. Those
of type three are the points ofPG(2, 4). Elements of type four are the ordered butterflies
defined byHi . Incidence is defined as follows.

• An ordered butterflyb is incident with

– a hyperovalh1 ∈ H1 if and only if h1 is a hyperoval of the−pole ofb;
– a hyperovalh2 ∈ H2 if and only if h2 is a hyperoval of the+pole ofb;
– a pointp if and only if p is one of the two points on the central line ofb that are

different from the central point ofb in the+pole ofb.

• A hyperovalh1 ∈ H1 is incident with

– a hyperovalh2 ∈ H2 if and only if h1 ∩ h2 = ∅;
– a pointp if and only if p ∈ h1.

• A hyperovalh2 ∈ H2 is incident with

– a pointp if and only if p /∈ h2.

As with geometries 4.2 and 4.3, from the incidence relation described above, we readily see
that the residue of a butterfly inΓ is a geometry whose diagram has no edges. Moreover,
we see that this residue is thin (i.e. the orderssi , i = 1, 2, 3 are equal to 1).

Geometry 4.5

Elements of type one (resp. two, three and four) ofΓ are the lines ofPG(2, 4) (resp.
points, hyperovals of a classH3, and the class of ordered butterflies defined byH3).
Incidence is defined as follows.

• Between hyperovals, ordered butterflies and points, we take the same incidence as
for geometry 4.4, taking hyperovals of type one of this geometry;
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• A line l is incident with

– a pointp if and only if p /∈ l ;
– a hyperovalh3 ∈ H3 if and only if l ∩ h3 �= ∅;
– an ordered butterflyb if and only if l is a line through the central point ofb, such

thatl is contained in the−pole ofb.

Again here, from the description above, it is easy to see that the residue of a butterfly is a
thin geometry whose diagram has no edge.

Geometry 4.6

Inside PG(2, 4)

Elements of type one are the points ofPG(2, 4). Those of type two are the elements of a
class of hyperovalsH2. Those of type three are the elements of a classP of Baer subplanes
intersecting any element ofH2 in an even number of points. Elements of type four are the
ordered butterflies defined byP. Incidence is defined as follows.

• An ordered butterflyb is incident with

– a pointp if and only if p is one of the two points of the central line ofb different
from its central point in the+pole;

– a hyperovalh2 ∈ H2 if and only if h2 is a hyperoval of the−pole ofb;
– a Baer subplaneB ∈ P if and only if p contains the three points on the central

line of b in the+pole andp is not a subplane of the+pole.

• A point p is incident with

– a hyperovalh2 ∈ H2 if and only if p ∈ h2;
– a Baer subplaneB ∈ P if and only if p ∈ B.

• A hyperovalh2 ∈ H2 is incident with

– a Baer subplaneB ∈ P if and only if |h2 ∩ B| = 4.

As with geometries 4.2–4.5, from the incidence relation described above, we readily see
that the residue of a butterfly inΓ is a geometry whose diagram has no edges. Moreover,
we see that this residue is thin (i.e. the orderssi , i = 1, 2, 3 are equal to 1).

Inside the S(5, 8, 24)
Elements of type one are the points ofΩ\{a, b, c}. Those of type two are the elements

of a class of hexadsH2 containing{a, b}. Those of type three are the elements of the class
H of heptads containingc. Elements of type four are the ordered butterflies generated by
H. Incidence is defined as follows.

• An ordered butterflyb = {{h1, h2}, {h′
1, h′

2}} is incident with

– a pointp if and only if p ∈ (h1 ∩ h2)\h′
1;

– a hexadi2 ∈ H2 if and only if i2 ∩ (h1 ∩ h2) = (h1 ∩ h2)\h′
1 and|i2 ∩ (h′

1 ∪
h′

2)| = 4;
– a heptadh ∈ H if and only if h1 ∩ h2 ⊂ h andh1 �= h �= h2.
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• A point p is incident with

– a hexadh2 ∈ H2 if and only if p ∈ h2;
– a heptadh ∈ H if and only if p ∈ H .

• A hexadh2 ∈ H2 is incident with

– a heptadh ∈ H if and only if |h2 ∩ h| = 4.

Geometry 4.7

Elements of type one (resp. two, three and four) ofΓ are the lines ofPG(2, 4) (resp.
points, Baer subplanes of a classP, and the classB of ordered butterflies defined byP).
Incidence is defined as follows.

• An ordered butterflyb is incident with

– a line l if and only if l is a line through the central point ofb, such thatl is
contained in the+pole ofb;

– a pointp if and only if p is on the central line ofb, such thatp is contained in
the+pole ofb and p is not the central point ofb;

– a Baer subplaneB if and only if B is a subplane of the+pole ofb.

• A line l is incident with

– a pointp if and only if p /∈ l ;
– a Baer subplaneB if and only if |l ∩ B| = 3;

• A point p is incident with

– a Baer subplaneB if and only if p ∈ B;

As with geometries 4.2–4.6, from the incidence relation described above, we readily see
that the residue of a butterfly inΓ is a geometry whose diagram has no edges. Moreover,
we see that this residue is thin (i.e. the orderssi , i = 1, 2, 3 are equal to 1).

Geometry 4.11

Inside PG(2, 4)

Elements of type one and two ofΓ are two distinct classes of Baer subplanesP1 and
P2. Those of type three are a classO1 of ovals. Finally, the elements of type four are the
dualsO2 of ovals. Incidence is defined as follows.

• A Baer subplanep1 ∈ P1 is incident with

– a Baer subplanep2 ∈ P2 if and only if p1 ∩ p2 = ∅;
– an ovalo1 ∈ O1 if and only if |p1 ∩ o1| = 4;
– a dual ovalo2 ∈ O2 if and only if the nucleusl of o2 has three points inp1 and

for all linesg of o2, we have that|g ∩ p1| = 1.

• A Baer subplanep2 ∈ P2 is incident with

– an ovalo1 ∈ O1 if and only if p2 contains the nucleus ofo1 andp2 ∩ o1 = ∅;
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– a dual ovalo2 ∈ O2 if and only if four lines ofo2 have three points inp2.

• An ovalo1 ∈ O1 is incident with

– a dual ovalo2 ∈ O2 if and only if two points ofo1 are on the nucleus ofo2 and
the three remaining points ofo1 are not on any line ofo2.

Inside the S(5, 8, 24)
Elements of type one (resp. two) ofΓ are the heptads containinga (resp.b). Those of

type three are hexads containing{b, c} and in which there is a special point belonging to
Ω\{a, b, c}. Finally, the elements of type four are sets of five pentads such that any two
pentads have a common point but no three pentads have one. These latter elements are such
that they determine five special points, those that are on exactly one of the five pentads.

Incidence is defined as follows.

• A heptadha is incident with

– a heptadhb if and only if ha ∩ hb = ∅;
– a hexadh with one special pointp ∈ h if and only if |ha ∩ (h\{p})| = 4;
– a set of five pentadss if and only if, inΩ\{a, b, c}, the heptadha contains exactly

four of the five special points ofs.

• A heptadhb is incident with

– a hexadh with one special pointp if and only if hp ∪ hb = {p} in Ω\{a, b, c};
– a set of five pentadss if and only if four pentads have three points in common

with hb in Ω\{a, b, c}.
• A hexadh with a special pointp is incident with

– a set of five pentadss if and only if h has exactly three points in common withs
in Ω\{a, b, c}, which are three of the five special points ofs.

Geometry 3.3

Elements of type one are Baer subplanes of a classP. Elements of type two (resp. three)
are the pairs of lines (resp. pairs of points) ofPG(2, 4). Incidence is defined as follows.

• A Baer subplaneB ∈ P is incident with

– a pair of lines{l1, l2} if and only if B ∩ (l1 ∪ l2) = l1 ∩ l2;
– a pair of points{p1, p2} if and only if B ∩ {p1, p2} = ∅ and|B ∩ p1p2| = 3.

• A pair of lines{l1, l2} is incident with

– a pair of points{p1, p2} if and only if (l1 ∪ l2) ∩ {p1, p2} = ∅ andl1 ∩ l2 ∩
p1p2 �= ∅ and there exists a Baer subplaneB ∈ P such that{l1, l2} is incident to
B and{p1, p2} is also incident toB.
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