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Abstract P-glycoprotein (ABCB1) is an ATP-binding cassette
protein that is associated with the acquisition of multi-drug resis-
tance in cancer and the failure of chemotherapy in humans.
Structural insights into this protein are described using a combi-
nation of small angle X-ray scattering data and cryo-electron
crystallography data. We have compared the structures with bac-
terial homologues, and discuss the development of homology
models for P-glycoprotein based on the bacterial Sav1866 struc-
ture.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The ATP-binding cassette (ABC) family of proteins [1–5]

comprise a minimal functional unit of two transmembrane do-

mains (TMDs) and two nucleotide binding domains (NBDs).

The TMDs are composed of multiple membrane-spanning a-

helices that interact together to form the binding site(s) for

the transported allocrite and the translocation pathway across

the lipid bilayer. The NBDs power the translocation process

via ATP binding, hydrolysis and nucleotide release [1,2]. To

date, only low to medium resolution three dimensional struc-

tures have been obtained for eukaryotic ABC proteins using

electron microscopy (EM) [3,5,6]. Currently, a maximum reso-

lution of �8 Å [6] has been attained for the nucleotide bound

form of mammalian P-glycoprotein (ABCB1) and �20 Å for

the nucleotide free state [7,8]. In contrast high resolution struc-

tures of six bacterial ABC transporters have been solved,
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Sav1866, MsbA, ModBC, BtuCD, MalFGK2 and HI1470/1

[9–16]. However, only Sav1866 and MsbA have been identified

as putative exporters, a function shared by eukaryotic ABC

transporters. This similarity is supported by amino acid se-

quence comparisons of eukaryotic ABC proteins with the bac-

terial ABC proteins for which structural data is available [9–

16], with Sav1866 as currently the closest homologue as a basis

for homology models.

Recombinant human ABCB1 expressed in insect cell lines

has previously yielded highly active protein [17–19], but in

insufficient quantities for structural methods such as small an-

gle X-ray scattering (SAXS). Improvements in yield and purity

are described herein. SAXS data can be used to provide low

resolution models of proteins and protein complexes that are

often validated by EM [20,21]. However, SAXS studies can

also be used to enhance EM structural data by obtaining a sep-

arate measure of the radially averaged amplitude profile [22].

The SAXS data can also correct for the rapid fall-off of ampli-

tudes with resolution with EM data. Noise and errors in EM

maps can also be reduced by exploiting any symmetry in the

structure. Where symmetry is coincident with a crystal axis

(crystallographic symmetry), reciprocal space averaging of

the amplitudes is carried out [23]. For other cases, e.g. non-

crystallographic symmetry, it is possible to use real-space aver-

aging [24–26].

In this article, we have employed both SAXS and symmetry

averaging to improve electron crystallography data for

ABCB1 and to help in the interpretation of the resultant den-

sity map. This has provided further insights into the ABCB1

map when interpreted in the context of the Sav1866 model.
2. Methods

2.1. Protein expression and purification
The Trichoplusia ni (High Five) cell line was maintained in shaking

suspension cultures as previously described [17]. Cells at a density of
�3 · 106 cells ml�1 were infected with recombinant baculovirus
(�5 · 107 plaque-forming units ml�1) at a multiplicity of infection of
10. After 2 h of incubation with virus, the cells were diluted to a density
of 1.5 · 106 cells ml�1 and grown for a further 3 days before harvesting
by centrifugation (2000 · g, 10 min). Crude membrane preparations
were isolated as previously described [27], with the exception that buf-
fers contained 20 mM MOPS, pH 7.4, 200 mM NaCl, 0.25 M sucrose.
Membranes were solubilised in 20 mM MOPS, pH 7.4, 200 mM NaCl,
1.5 mM MgCl2, 20% glycerol buffer containing 2% (w/v) dodecyl mal-
toside (DDM) and 0.4% (w/v) lipid (4:1 Escherichia coli lipid:choles-
terol) and protease inhibitors (Roche, UK) for 60 min at 4 �C and
blished by Elsevier B.V. All rights reserved.
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then clarified by ultracentrifugation (100000 · g, 60 min). Superna-
tants were fractionated using a 5 ml HisTrap column with a stepwise
gradient from 40 to 800 mM imidazole. Selected fractions were concen-
trated using centrifugal ultrafiltration concentrators (Millipore, UK,
100 kDa cut-off). Gel permeation chromatography was performed in
20 mM MOPS, pH 7.4, 200 mM NaCl, 5 mM TCEP, 5% glycerol,
0.02% DDM on a Superdex S200 column 10/30 at a flow rate of
0.3 ml min�1. Protein determination was performed using the BioRad
DC Brad protein determination kit with a BSA-calibrated standard
curve and with absorbance measured at 750 nm on a Hitachi U200
spectrophotomer. Sodium dodecyl sulphate–polyacrylamide gel elec-
trophoresis (SDS–PAGE) gels were stained using PAGE-Blue (Fer-
mentas, UK).

2.2. SAXS data collection and model generation
SAXS data were recorded at station 2.1 of the Daresbury SRS, UK

using a wavelength of 1.54 Å and a sample-to-detector distance of 1 m
as described in [28]. Data was collected for a total of 20 min in 60s
batches, which allowed for monitoring of any deleterious effects due
to exposure to the beam. A similar dataset was collected for the buffer
alone and subtraction of the contribution due to buffer was carried out.
No change in the scattering profile of neither ABCB1 nor buffer was
identified over the data collection period.

Model 3D density distributions were produced ab initio using the
GASBOR software [29] which uses simulated annealing to find poly-
mer chain-compatible spatial distributions of dummy residues which
fit the experimental SAXS profile. The degree of correspondence be-
tween the experimental SAXS data for ABCB1 and the theoretical
solution scattering profiles of the density distributions generated by
the GASBOR program was good (see Supplementary Fig. 1). The re-
sults of 22 GASBOR runs were averaged using the DAMMAVER pro-
gram [30] to produce a 3D probability map which was then filtered
using DAMFILT to a cut-off volume calculated to include the ex-
pected protein mass, core glycosylation and detergent.

2.3. Correction of the EM derived map and model fitting
A volume containing one molecule within the ABCB1 EM-derived

map was interactively selected using the Chimera software [31], and
then pasted into a 120-pixel box for further manipulation using the
SPIDER [32] and EMAN [33,34] image processing software suites.
The radially averaged structure factor amplitudes were adjusted to
match the SAXS amplitude profile (see Fig. 1c) and then applied to
Fig. 1. (a) IMAC purification of dodeca-histidine tagged ABCB1. The solid
(containing 1 M imidazole). SDS–PAGE with PAGE-blue staining of fract
400 mM imidazole, are displayed on the right. (b) Superdex S200 column fra
preceded by a void volume peak at 8 ml and followed by a large peak corresp
is shown on the right. (c) Small angle X-ray scattering (SAXS) profile for D
smoothed fit (solid line) to the measured data. Superimposed (scattered data p
of P-gp in the presence of AMP–PNP. For comparison, the two sets of data
the original map [33,34]. The Sav1866 structure [9] (backbone atoms)
was initially fitted by hand, and then the local position was refined
by using the Chimera �fit model to map� function. The Fourier shell
correlation (FSC) was calculated between the map and a 180� rotated
version of it in order to assess the degree of approximation to C2 sym-
metry. This procedure was repeated after small (2� increment) rota-
tions of the map in order to find the optimal pseudo-C2 symmetry
axis, which was within 5� of the initial position.
3. Results and discussion

3.1. ABCB1 purification

Solubilised insect cell membranes were analysed by IMAC

(Fig. 1a). Dodeca-histidine tagged ABCB1 eluted at an imidaz-

ole concentration of 400 mM. SDS–PAGE indicated that the

protein was 80–90% pure. The peak fractions were concen-

trated and further purified by gel permeation chromatography

(Fig. 1b). A peak containing ABCB1 emerged at 12 ml as well

as a smaller peak corresponding to the void volume of the col-

umn (8 ml) which was due to aggregated ABCB1. The SDS–

PAGE analysis indicates that small amounts of ABCB1 are

present in this initial aggregation peak. The large peak ob-

served at 18–26 ml corresponds to imidazole. The fractions

11.5–12.5 ml were combined and concentrated to �5–

10 mg ml�1 for the SAXS analysis. Dynamic light scattering

of the concentrated protein sample (data not shown) con-

firmed its monodispersity prior to SAXS analysis. Purified,

detergent solubilised human P-gp does not display measurable

ATPase activity. However, reconstitution of the purified pro-

tein, as previously described [18–20], resulted in high rates of

drug stimulated ATP hydrolysis (data not shown).

3.2. SAXS data

The SAXS profile for a 6 mg ml�1 ABCB1 preparation di-

luted in the gel permeation chromatography buffer is shown
line is the absorbance at 280 nm and the broken line is the % buffer B
ions from 184 to 204 ml, corresponding to the main elution peak at
ctionation of the IMAC-purified ABCB1. The main peak at �12 ml is
onding to imidazole (18–26 ml). SDS–PAGE for the indicated fractions
DM-solubilised ABCB1 in the presence of AMP–PNP represented as
oints) are the EM-derived structure factor amplitudes from 2D crystals
have been normalised in the middle of the resolution range.
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in Fig. 1c. Variations in the low angle scattering region

(s < 0.008 Å�1) between protein batches were detected and

are due to the presence of oligomers (dimers, and higher aggre-

gates) in solution as a result of the protein concentration used.

This region of the scattering curve which is associated with

intermolecular distances does not affect the EM data adjust-

ment. However, for ab initio generation of density distribu-

tions from the SAXS data, a second dataset was recorded

for the low angle scattering region at a 10-fold lower protein

concentration. The two datasets were then merged to allow a

fuller sampling of reciprocal space (see Supplementary

Fig. 1). At about s � 0.025 Å�1, an undulation in the SAXS

profile was observed that may be partly due to the presence

of a detergent belt surrounding the protein. In contrast, free

detergent micelles contribute very little at 0.02% (w/v) DDM

– (data not shown). Compared to the SAXS profile, there is

some suppression of the low resolution EM amplitudes, prob-

ably as a result of the CTF. There is also a more noticeable

fall-off of EM-derived amplitudes at higher resolution.

Low resolution density distributions consistent with the

SAXS profile of ABCB1 were calculated and the averaged dis-

tribution displays a shape approximating a prolate ellipsoid,

with overall dimensions of �150 · 70 · 55 Å (Fig. 2). The

maximum diameter Dmax and the radius of gyration were cal-

culated as 149 and 49 Å, respectively. The unsymmetrised

structure has a compact globular region of �55 Å diameter
Fig. 2. Orthogonal views of the ab initio-generated low resolution 3D
density distribution calculated using the SAXS profile for ABCB1 and
applying no symmetry (top, green surface) or C2 symmetry (bottom,
yellow semi-transparent surface). The latter data is compared with an
optimised fit with the bacterial ABC transporter Sav1866 (ribbon
trace). Regions of the Sav1866 structure that lie within the calculated
density distribution are indicated by the green outline, whilst regions
lying outside the boundaries are highlighted in purple.
at the bottom, but has a more open and branched appearance

at the top. After orientation along the long axis, C2 symmetry

was applied to the density distribution. Automated fitting with

the bacterial ABC transporter protein Sav1866 gave an unam-

biguous alignment of the Sav1866 NBDs with the lower region

and its TMDs with the branched upper region. There is a good

agreement at very low resolution between the two sets of struc-

tural information, but it is difficult to say whether at finer de-

tail, the discrepancies observed in Fig. 2 could be due to real

differences between ABCB1 and Sav1866 structures. Ambigu-

ity in the modelling by GASBOR arises mainly because of

the absence of the phase component from the SAXS data,

but to some extent this is overcome by generating several inde-

pendent models and then averaging them [29].

3.3. ABCB1 structure after correction using the SAXS data

EM data has phase information but the amplitude informa-

tion is distorted. Hence we corrected the distortions using the

well defined amplitude information from SAXS of ABCB1.

Fig. 3 shows a single ABCB1 molecule within the �8 Å-resolu-

tion map after such correction. Compared to the previously

published map [6], the SAXS-corrected map showed better def-

inition of peripheral features of the EM map, e.g. the extracel-

lular loop regions and the NBDs. Two features that were

previously fitted as short alpha helical elements on the extracel-

lular surface [6] are consistent with extensions of transmem-

brane helices, as observed for the Sav1866 structure.

Fitting the Sav1866 structure, initially manually and then

automatically with the Chimera �fit to map� routine [31],

yielded a good correspondence between the Sav1866 structure

(backbone atoms) and the ABCB1 map (Fig. 3, right hand pa-

nel). The average density value of the map at the locations of

the 4624 backbone atoms of Sav1866 was 0.82r above the

mean. In comparison, other ABC proteins with less homology

to ABCB1 yielded poorer fits. The 4296 backbone atoms of

BtuCD [13], and the 5180 backbone atoms of ModABC [11],

have values of 0.64 and 0.65r above the mean (respectively).

As previously noted [6], the ABCB1 map shows an approxima-

tion to non-crystallographic (NCS) two-fold symmetry.
Fig. 3. ABCB1 map at �8 Å resolution after global correction of
experimental amplitudes with the SAXS profile shown in Fig. 1. The
panels show the unsymmetrised map using blue, pink and red netting
to represent density at 1, 2 and 4r above the mean level, respectively.
The panel on the right shows the bacterial homologue, Sav1866 fitted
to the map (white Ca trace). Sav1866 transmembrane domain helices 1,
2, 3 (and 5 from the opposite monomer) are indicated. The scale bar
corresponds to 20 Å.



Fig. 4. Map sections (1 nm thick) parallel to the pseudo-NCS axis. The left-hand sections are after application of two-fold rotational symmetry
about the (vertical) NCS axis, with blue netting at 2r above the mean density and purple netting at 6r. The right-hand sections in each panel show the
corresponding unsymmetrised map superimposed, using yellow and red netting to represent density at 2 and 6r above the mean level, respectively. In
each case, the bacterial homologue, Sav1866 is fitted to the map (white Ca trace), and the TM helices numbered. Sections equidistant from the C2
symmetry axis through the rear, and front of the map are shown in the panels on the right. The scale bar corresponds to 20 Å.
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A Fourier shell correlation (FSC) analysis of the unsym-

metrised map versus a 180�-rotated version of it was carried

out, and a FSC = 0.5 value was passed at a resolution of about

23 Å. In comparison with other membrane proteins that have

arisen by gene duplication [35] this seemed reasonable. For

example, the L and M subunits of the Rhodopseudomonas

sphaeroides photosynthetic reaction centre (sequence identity

�30%) display an overall C2 symmetry to about 21 Å [36]

whilst the A and B subunits of cyanobacterial photosystem I

(sequence identity �44%) display C2 symmetry to about

12 Å [37]. Consequently, we applied real space averaging to

facilitate comparison with the Sav1866 structure [9]. Features

in the ABCB1 map that are not related by symmetry will be

smeared out, but the exercise allowed a comparison of the

overall �footprint� of ABCB1 versus the equivalent Sav1866 re-

gions.

A section along the pseudo-C2 symmetry axis is shown in

Fig. 4. The NBD region at the bottom shows two heart-shaped

lobes of density that match the expected NBD structure. Addi-

tional features may be due to the linker region between NBD1

and TMD2 and/or the C-terminus of ABCB1 (blue arrows).

The centre of the TMD region shows a �V� shaped profile with

a good match between cylindrical densities and Sav1866 TM

helices 3. A central density is not occupied by the fitted

Sav1866 model (blue arrow, see also Fig. 4). The position of

the membrane-spanning region in Sav1866 is indicated by

the dashed lines. Interestingly, densities protrude outwards in

the ABCB1 map at the expected lipid bilayer boundaries (red

arrows). In Sav1866 [9], an N-terminal amphipathic helix is

in a position consistent with it being embedded into the cyto-
plasmic surface of the membrane and therefore adds significant

density in this boundary region. Two sections taken equidis-

tant from the C2 symmetry axis are also displayed in Fig. 4.

The discrimination between the two halves of the ABCB1 mol-

ecule is clear from these sections, with a leftwards tilt to the

TMD in the rearmost section and to the right in the front sec-

tion (lower panel). The position of the intracytoplasmic loop

(ICL) between helices 4 and 5 in Sav1866 that makes contact

with the opposing NBD is indicated by the yellow ellipse in

the upper panel. The ABCB1 map shows density in this region.

A region not matched by the Sav1866 model in the ICL region

is indicated by the blue arrows. Fig. 5 shows three sections

from the ABCB1 map taken perpendicular to the C2 symmetry

axis and representing the TMD, ICL and NBD regions. For

each section, the unsymmetrised map and symmetrised maps

are again compared. The map in the NBD region is consistent

with a closed dimer configuration, as expected for nucleotide-

bound protein [2,38,39]. The overall footprint of Sav1866 in

this region is similar to the density in the ABCB1 map, and

the expected position of the adenine ring of the AMP–PNP

molecules in Sav1866 is indicated by the red arrows. In

Sav1866, the cytoplasmic loop between TM helices 4 and 5

forms contacts with the opposing NBD [9]. As discussed

above, there is density present in the ABCB1 map in the ex-

pected position of this loop (yellow ellipses). In the ICL region,

the footprint of Sav1866 again matches the ABCB1 map and

any asymmetry in this region (arrows) is likely to arise from

the linker region connecting NBD1 to TMD2.

In the membrane-spanning region, most of the Sav1866 heli-

ces map into available density in the unsymmetrised ABCB1



Fig. 5. Sections (1 nm thick) perpendicular to the pseudo-NCS axis.The upper panels show the map after application of two-fold rotational
symmetry and the lower panels show the corresponding section of the unsymmetrised map superimposed, with netting as in Fig. 3. In each case, the
bacterial homologue, Sav1866 is fitted to the map (white Ca trace). Slices through the transmembrane, intracytoplasmic loop and nucleotide binding
domains are shown left, centre and right, respectively. Sav1866 transmembrane domain helices are indicated in the top left panel. The scale bar
corresponds to 20 Å.
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map, with the exception of the two transmembrane helices 6,

and one of the two transmembrane helices 2 which falls in a

gap on the periphery of the ABCB1 map (green ellipse). As

previously reported [6], peripheral densities are somewhat

asymmetrical (blue arrow), and a gap on one side of the pro-

tein is closed on the other side. At the centre of the ABCB1

map, the two transmembrane helices 6 of Sav1866 would have

to move about 5 Å inwards to give a good fit. Data obtained

previously by cross-linking of inserted cysteine residues sug-

gests that helices 6 and 12 are indeed close together in ABCB1

[40,41]. The same technique also identifies a close association

of helices 2 and 11 and 5 and 8 in ABCB1 [42,43], consistent

with the arrangement of these helices (2 and 5) in the

Sav1866 homodimer [9].

A homology model for ABCB1 based on the bacterial

Sav1866 structure has already been published [44]. Eukaryotic

NBD structures will be similar to their bacterial counterparts

[38,45–47], but for the TMD regions, homology at the level

of primary through to tertiary structure could be weak. The

six bacterial ABC proteins yielding high resolution structural

information, show surprising TMD plasticity (three distinct

folds are evident) [9–16]. Moreover, recent data show that

two identical TMDs can adopt slightly different structures

when a periplasmic protein is bound [12]. If such plasticity

and asymmetry is at work in eukaryotic ABC proteins, then

modelling the crucial TMD regions will be challenging. The

work presented here, however, demonstrates that modelling

of eukaryotic transporters on the basis of bacterial counter-

parts is likely to be productive, especially where experimental

validation of models of eukaryotic ABC proteins is possible
using a combination of low to medium resolution structural

methods such as SAXS and EM.
Acknowledgements: We thank Drs. Ian Kerr (University of Notting-
ham), Megan O�Mara (University of British Columbia), Kenneth Lin-
ton (MRC Clinical Sciences Centre, Hammersmith) and Clair Baldock
(University of Manchester) for useful discussions, encouragement and
advice This work is funded by Project Grants from Cancer Research
UK (C362/A5806) and the Medical Research Council UK (G040063).
Appendix A. Supplementary material

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.

2008.07.022.
References

[1] Higgins, C.F. (2007) Multiple molecular mechanisms for multi-
drug resistance transporters. Nature 446, 749–757.

[2] Callaghan, R., Ford, R.C. and Kerr, I.D. (2006) The transloca-
tion mechanism of P-glycoprotein. FEBS Lett. 580, 1056–1063.

[3] Rosenberg, M.F., Callaghan, R., Ford, R.C. and Higgins, C.F.
(1997) Structure of the multidrug resistance P-glycoprotein to
2.5 nm resolution determined by electron microscopy and image
analysis. J. Biol. Chem. 272, 10685–10694.

[4] Rosenberg, M.F., Velarde, G., Ford, R.C., Martin, C., Berridge,
G., Kerr, I.D., Callaghan, R., Schmidlin, A., Wooding, C.,
Linton, K.J. and Higgins, C.F. (2001) Repacking of the trans-
membrane domains of P-glycoprotein during the transport
ATPase cycle. EMBO J. 20, 5615–5625.

http://dx.doi.org/10.1016/j.febslet.2008.07.022
http://dx.doi.org/10.1016/j.febslet.2008.07.022


C.A. McDevitt et al. / FEBS Letters 582 (2008) 2950–2956 2955
[5] Rosenberg, M.F., Mao, Q., Holzenburg, A., Ford, R.C., Deeley,
R.G. and Cole, S.P. (2001) The structure of the multidrug
resistance protein 1 (MRP1/ABCC1). Crystallization and single-
particle analysis. J. Biol. Chem. 276, 16076–16082.

[6] Rosenberg, M.F., Callaghan, R., Modok, S., Higgins, C.F. and
Ford, R.C. (2005) Three-dimensional structure of P-glycoprotein:
the transmembrane regions adopt an asymmetric configuration in
the nucleotide-bound state. J. Biol. Chem. 280, 2857–2862.

[7] Rosenberg, M.F., Kamis, A.B., Callaghan, R., Higgins, C.F. and
Ford, R.C. (2003) Three-dimensional structures of the mamma-
lian multidrug resistance P-glycoprotein demonstrate major
conformational changes in the transmembrane domains upon
nucleotide binding. J. Biol. Chem. 278, 8294–8299.

[8] Ford, R.C. and Holzenburg, A. (2008) Electron crystallography
of biomolecules: mysterious membranes and missing cones.
Trends Biochem. Sci. 33, 38–43.

[9] Dawson, R.J. and Locher, K.P. (2006) Structure of a bacterial
multidrug ABC transporter. Nature 443, 180–185.

[10] Dawson, R.J. and Locher, K.P. (2007) Structure of the multidrug
ABC transporter Sav1866 from Staphylococcus aureus in complex
with AMP–PNP. FEBS Lett. 581, 935–938.

[11] Hollenstein, K., Frei, D.C. and Locher, K.P. (2007) Structure of
an ABC transporter in complex with its binding protein. Nature
446, 213–216.

[12] Hvorup, R.N., Goetz, B.A., Niederer, M., Hollenstein, K.,
Perozo, E. and Locher, K.P. (2007) Asymmetry in the structure
of the ABC transporter-binding protein complex BtuCD–BtuF.
Science 317, 1387–1390.

[13] Locher, K.P., Lee, A.T. and Rees, D.C. (2002) The E. coli BtuCD
structure: a framework for ABC transporter architecture and
mechanism. Science 296, 1091–1098.

[14] Pinkett, H.W., Lee, A.T., Lum, P., Locher, K.P. and Rees, D.C.
(2007) An inward-facing conformation of a putative metal-
chelate-type ABC transporter. Science 315, 373–377.

[15] Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L. and
Chen, J. (2007) Crystal structure of a catalytic intermediate of the
maltose transporter. Nature 450, 515–521.

[16] Ward, A., Reyes, C.L., Yu, J., Roth, C.B. and Chang, G. (2007)
Flexibility in the ABC transporter MsbA: alternating access with
a twist. Proc. Natl. Acad. Sci. USA 104, 19005–19010.

[17] Rothnie, A., Storm, J., Campbell, J., Linton, K.J., Kerr, I.D. and
Callaghan, R. (2004) The topography of transmembrane segment
six is altered during the catalytic cycle of P-glycoprotein. J. Biol.
Chem. 279, 34913–34921.

[18] Rothnie, A., Storm, J., McMahon, R., Taylor, A., Kerr, I.D. and
Callaghan, R. (2005) The coupling mechanism of P-glycoprotein
involves residue L339 in the sixth membrane spanning segment.
FEBS Lett. 579, 3984–3990.

[19] Storm, J., O�Mara M, L., Crowley, E.H., Peall, J., Tieleman, D.P.,
Kerr, I.D. and Callaghan, R. (2007) Residue G346 in transmem-
brane segment six is involved in inter-domain communication in
P-glycoprotein. Biochemistry 46, 9899–9910.

[20] Hamada, D., Higurashi, T., Mayanagi, K., Miyata, T., Fukui, T.,
Iida, T., Honda, T. and Yanagihara, I. (2007) Tetrameric
structure of thermostable direct hemolysin from vibrio parahae-
molyticus revealed by ultracentrifugation, small-angle X-ray
scattering and electron microscopy. J. Mol. Biol. 365, 187–195.

[21] Vestergaard, B., Sanyal, S., Roessle, M., Mora, L., Buckingham,
R.H., Kastrup, J.S., Gajhede, M., Svergun, D.I. and Ehrenberg,
M. (2005) The SAXS solution structure of RF1 differs from its
crystal structure and is similar to its ribosome bound cryo-EM
structure. Mol. Cell 20, 929–938.

[22] Saad, A., Ludtke, S.J., Jakana, J., Rixon, F.J., Tsuruta, H. and
Chiu, W. (2001) Fourier amplitude decay of electron cryomicro-
scopic images of single particles and effects on structure determi-
nation. J. Struct. Biol. 133, 32–42.

[23] Amos, L.A., Henderson, R. and Unwin, P.N. (1982) Three-
dimensional structure determination by electron microscopy of
two-dimensional crystals. Prog. Biophys. Mol. Biol. 39, 183–231.

[24] Rice, W.J., Young, H.S., Martin, D.W., Sachs, J.R. and Stokes,
D.L. (2001) Structure of Na+, K+-ATPase at 11-Å resolution:
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