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SUMMARY

Systemic infections with Gram-negative bacteria
are characterized by high mortality rates due to the
‘‘sepsis syndrome,’’ a widespread and uncontrolled
inflammatory response. Though it is well recognized
that the immune response during Gram-negative
bacterial infection is initiated after the recognition
of endotoxin by Toll-like receptor 4, the molecular
mechanisms underlying the detrimental inflamma-
tory response during Gram-negative bacteremia
remain poorly defined. Here, we identify a TRIF
pathway that licenses NLRP3 inflammasome acti-
vation by all Gram-negative bacteria. By engaging
TRIF, Gram-negative bacteria activate caspase-11.
TRIF activates caspase-11 via type I IFN signaling,
an event that is both necessary and sufficient for
caspase-11 induction and autoactivation. Caspase-
11 subsequently synergizes with the assembled
NLRP3 inflammasome to regulate caspase-1 activa-
tion and leads to caspase-1-independent cell death.
These events occur specifically during infection with
Gram-negative, but not Gram-positive, bacteria. The
identification of TRIF as a regulator of caspase-11
underscores the importance of TLRs as master
regulators of inflammasomes during Gram-negative
bacterial infection.
INTRODUCTION

Germline-encoded receptors survey extracellular and intracel-

lular compartments for signs of microbial infection. The cytosolic

compartment in particular has emerged as a frontline of host

defense, where distinct families of receptors recognize microbial

products and initiate protective immune defenses (Franchi et al.,

2012; Rathinam and Fitzgerald, 2011). A key component of
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cytosolic surveillance is the inflammasome, a multiprotein

complex that controls the maturation of the proinflammatory

cytokines interleukin-1b (IL-1b) and IL-18. Distinct inflamma-

somes have been identified that are differentiated by their

protein constituents, activators, and effectors. In most cases,

inflammasomes contain a nucleotide-binding and oligomeriza-

tion leucine-rich repeat (NLR) protein, the best studied of which

is NLRP3 (Franchi et al., 2012).

In response to diverse microbial, environmental, or endoge-

nous danger signals, the NLRP3 inflammasome complex

assembles, leading to the multimerization of the adaptor mole-

cule ASC. Subsequently, procaspase-1 is recruited leading to

caspase-1 autoactivation, which then cleaves IL-1b and IL-18

into biologically active cytokines. These cytokines have wide-

ranging proinflammatory effects important in early control of

microbial infection. Despite the identification of numerous trig-

gers, direct binding of any ligands to NLRP3 has not been clearly

demonstrated (Strowig et al., 2012). In the case of bacterial

infection, pore-forming toxins and bacterial mRNA represent

the major triggers of NLRP3 activation (Kanneganti et al., 2006;

Sander et al., 2011).

Given the significant potential of IL-1 and related cytokines to

cause detrimental inflammation, key regulatory checkpoints

ensure that inflammasome-dependent production of these

cytokines is tightly regulated (Rathinam et al., 2012). TLR sig-

naling is one such checkpoint. TLRs control the expression

of pro-IL-1b and of NLRP3 itself, events that depend predomi-

nantly on MyD88. TIR-domain-containing adaptor-inducing

interferon-b (TRIF) has also been linked to NLRP3 inflammasome

signaling in situations in which the autophagy machinery is

depleted or blocked (Saitoh et al., 2008; Zhou et al., 2011).

Depletion of the autophagic proteins Atg16L1, LC3B, or beclin

1 results in elevated activation of caspase-1 and secretion of

IL-1b and IL-18 (Nakahira et al., 2011; Saitoh et al., 2008; Zhou

et al., 2011). In the case of ATG16L1-deficiency, elevated

caspase-1 activation and IL-1b production are dependent on

TRIF (Saitoh et al., 2008). More recent studies have also linked

TRIF to NLRP3 inflammasome activation in cells infected with

avirulent Escherichia coli (Sander et al., 2011).
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These observations suggest that TRIF is linked to NLRP3

inflammasome activation by as yet undefined mechanisms.

Here, we identify a TRIF pathway that links TLR4 and NLRP3

signaling during the immune response to Gram-negative

bacteria. This pathway is initiated by TLR4 and mediated by

type I IFNs. Type I IFNs induce caspase-11 expression, an

event that is both necessary and sufficient to promote cas-

pase-11 autoprocessing in the absence of any other microbial

trigger. Caspase-11 activation via the TLR4-TRIF-IFNb pathway

synergizes with the NLRP3 pathway to coordinate caspase-1-

dependent IL-1b and IL-18 secretion and also leads to cas-

pase-1-independent cell death. The identification of TRIF as

a regulator of caspase-11 provides new insights into NLRP3 in-

flammasome activation during Gram-negative bacterial infec-

tion, highlights the central role of TLRs as master regulators

of inflammasome signaling, and unveils new targets that might

be manipulated to prevent uncontrolled inflammation during

septic shock.

RESULTS AND DISCUSSION

TRIF Is Essential for NLRP3 Inflammasome Activation
in Response to EHEC and Citrobacter rodentium

While conducting a systematic investigation of inflammasome

activation by enterohemorrhagic Escherichia coli (EHEC) and

Citrobacter rodentium, two related Gram-negative enteropath-

ogens, we revealed a requirement not only for NLRP3 (Fig-

ure 1A), but also for TRIF in the production of IL-1b or IL-18

at 16 hr postinfection (Figures 1B and 1C). Caspase-1 cleaves

pro-IL-1b and pro-IL-18 into their biologically active forms.

Secretion of the caspase-1 subunit p10, as well as of the

mature IL-1b-p17, was abrogated in TRIF-deficient macro-

phages infected with EHEC and C. rodentium (Figure 1D).

The requirement for TRIF was specific to EHEC and

C. rodentium because normal processing and secretion of cas-

pase-1 and IL-1b were observed in TRIF-deficient cells stimu-

lated with polydAdT, which engages the AIM2 inflammasome

(Rathinam et al., 2010), or nigericin, a canonical activator of

the NLRP3 inflammasome. The requirement for TRIF in EHEC

and C. rodentium infection was observed across a broad range

of bacterial doses (MOI, 6, 12, 25, and 50) and was also seen at

an earlier time point (8 hr postinfection) (Figures S1A and S1B

available online). Whereas MyD88 has been linked to transcrip-

tional regulation of pro-IL-1b and NLRP3 in LPS-primed cells,

the role of TRIF in EHEC and C. rodentium infection was unre-

lated to these so-called ‘‘priming signals’’ because Pam3Csk4,

which triggers TLR2 signaling, a TRIF-independent TLR, was

used to ensure equivalent levels of pro-IL-1b and NLRP3 in

all conditions. The protein levels of pro-IL-1b and NLRP3

were similar in wild-type and Trif�/� macrophages primed

with Pam3Csk4 and infected with EHEC and C. rodentium

(Figure 1E). EHEC and C. rodentium also triggered secretion

of IL-18, which unlike IL-1b is synthesized constitutively in cells,

and production of IL-18 was also dependent on TRIF. A role for

TRIF in the regulation of IL-1b in infected cells was also

observed in cells that were unprimed (data not shown), further

validating a role for TRIF in inflammasome activation rather than

priming.
TRIF Does Not Control Bacterial Uptake, Killing,
or Phagosomal Acidification
Nascent phagosomes mature by fusion with early and then late

endosomes, ultimately fusing with lysosomes. The formation

of an acidified mature phagolysosome is essential for NLRP3

inflammasome activation in response to extracellular bacteria

such as E. coli, so we investigated whether TRIF regulates

phagocytosis, phagosome maturation, or the destructive

capacity of phagosomes during EHEC infection. In a genta-

micin-killing assay, we observed no difference in internalization

and killing between wild-type and Trif�/� cells (Figure 1F). More-

over, using a ratiometric fluorescence-based assay, we found

that Trif�/� macrophages acidified EHEC-containing phago-

somes with kinetics comparable to that of wild-type cells (Fig-

ure 1G). Similar observations were made by lysotracker staining

analysis (data not shown). Phagosome membranes are perme-

ant to certain ligands and can facilitate delivery of bacterial

mRNA to the cytosol to engage NLRP3 (Sander et al., 2011).

Phagolysosomal integrity after EHEC infection as monitored by

acridine orange staining revealed no difference in the intrinsic

permeability of phagolysosomes in TRIF-deficient cells (Fig-

ure S1C). Additionally, production of reactive oxygen species,

which has been linked to NLRP3 activation, occurs indepen-

dently of TRIF in E. coli-infected cells (Sander et al., 2011).

Collectively, these observations indicated that TRIF does not

influence bacterial uptake, killing, or phagosomal acidification

and hence does not control egress of bacterial RNA into the

cytosol during infection to trigger NLRP3.

TRIF Acts Upstream of Caspase-11
A recent study identified caspase-11 as a key regulator of cas-

pase-1 activation in response to the enteric pathogens E. coli,

C. rodentium, and Vibrio cholerae (Kayagaki et al., 2011). Early

studies characterized caspase-11 as a critical component of

the caspase-1 complex (Wang et al., 1996, 1998). Although

caspase-11 does not process pro-IL-1b directly, it was shown

to be required for the activation of caspase-1 (Wang et al.,

1996). More recent studies have shown that secretion of the

caspase-1 subunits p10 and p20 as well as IL-1b and IL-18 in

response to enteropathogens required caspase-11, ASC, and

NLRP3 (Kayagaki et al., 2011). Caspase-11 was dispensable,

however, for caspase-1 activation in response to other NLRP3

agonists such as ATP. Caspase-1 activation by these atypical

enteropathogenic activators required NLRP3 and ASC, but

caspase-11 processing and cell death did not, suggesting that

caspase-11 was activated by distinct mechanisms independent

of NLRP3 and ASC. These data suggested that caspase-11 was

activated by NLRP3-independent mechanisms but synergized

with the assembled NLRP3 inflammasome to regulate cas-

pase-1 activation in response to enteric pathogens.

We hypothesized that TRIF might lie upstream of caspase-11

in order to regulate caspase-1 activation during infection with

EHEC and C. rodentium. We therefore monitored the activation

status of caspase-11 in wild-type and TRIF-deficient cells. The

caspase-11 locus encodes two isoforms of 43 and 38 kDa,

and the processed form of caspase-11 is a �26–30 kDa form.

Infection of wild-type BMDMs with EHEC or C. rodentium re-

sulted in the generation of the cleaved caspase-11 p30 subunit,
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Figure 1. TRIF Is Essential for NLRP3 Inflammasome Activation by EHEC and C. rodentium

(A) IL-1b production by Pam3CSK4-primed BMDMs stimulated with EHEC (MOI of 25), C. rodentium (MOI of 25), or polydAdT for 16 hr or silica for 16 hr.

(B–E) ELISA for IL-1b (B) and IL-18 (C), immunoblots for cleaved caspase-1 and IL-1b in the supernatants (D), and immunoblots for proIL-1b, NLRP3, and

GAPDH in the lysates (E) of Pam3CSK4-primed BMDMs stimulated with EHEC (MOI of 25 and/or 50), C. rodentium (MOI of 25 and/or 50), or polydAdT for 16 hr

or nigericin for 1 hr.

(F) Intracellular bacterial numbers at various time points from EHEC-infected BMDMs.

(G) Phagosomal pH assessed by ratiometric analysis at 5 and 60 min postinfection in E. coli K12- or EHEC-infected BMDMs.

Data are presented as the mean ± SEM of one experiment representative of three (A–E) or two (F and G) experiments. See also Figure S1.
and this response was completely absent in TRIF-deficient cells

(Figure 2A). Caspase-11 has also been shown to regulate the

secretion of IL-1a and high-mobility group box protein 1

(HMGB1), as well as cell death, in an NLRP3-caspase-1-inde-

pendent manner (Kayagaki et al., 2011). Consistent with a role
608 Cell 150, 606–619, August 3, 2012 ª2012 Elsevier Inc.
for TRIF upstream of caspase-11, secretion of IL-1a as well as

cell death were markedly impaired in Trif�/� cells infected with

EHEC or C. rodentium (Figures 2B and 2C). PolydAdT also stim-

ulated formation of the caspase-11 p30 subunit. However, cas-

pase-11 was dispensable for polydAdT-induced processing and
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secretion of IL-1b by macrophages from 129X1/SvJ mice (which

are mutant for caspase-11) or caspase-11-deficient mice (Fig-

ure 2D). This was in contrast to EHEC and C. rodentium, both

of which induced IL-1b release in a manner strictly dependent

on caspase-11. Caspase-11 processing after polydAdT treat-

ment is due to the promiscuous nature of caspase-1 activity in

the in vitro assay conditions and is not physiologically relevant.

This processing of caspase-11 (which occurred with delayed

kinetics) was suggested to be a consequence of caspase-1

activation in vitro (Kayagaki et al., 2011). These data reveal

a central requirement for TRIF in caspase-11 activation,

caspase-11-dependent caspase-1 activation, and caspase-

11-dependent IL-1a release and cell death during infection

with EHEC and C. rodentium, but not other triggers of the

NLRP3 inflammasome.

TRIF Signaling Downstream of TLR4 Is Essential
for Caspase-11-Dependent Inflammasome Activation
in Response to EHEC and C. rodentium

We next wanted to understand how TRIF could facilitate cas-

pase-11 activation. TRIF is an integral component of TLR3 and

TLR4 signaling (Kawai and Akira, 2010) and also functions in

an RNA-sensing pathway involving DDX1, DDX21, and DHX6

(Zhang et al., 2011). TRIF is recruited to TLR4 via TRAM or

directly to the TIR domain of TLR3 (Kagan et al., 2008; Yama-

moto et al., 2003). Like TRIF-deficient cells, TLR4-deficient cells

were impaired in their ability to induce proteolytic processing of

caspase-11 (Figure 2E) and, as a consequence, failed to induce

processing of caspase-1 and IL-1b in response to EHEC and

C. rodentium (Figures 2E and 2F). TLR4-deficient cells also failed

to secrete IL-1a (Figure 2G). Caspase-1 activation and IL-1b, as

well as IL-1a release in response to polydAdT, nigericin, or silica,

were all unaffected in Tlr4�/� cells. EHEC-induced IL-1b secre-

tion was normal in Tlr3�/� macrophages (Figure 2H). We also

observed a defect in IL-1b secretion in Tram�/� macrophages

infected with EHEC (Figure 2I). TRIF signaling downstream of

TLR4-TRAM leads to activation of the interferon regulatory

factors IRF3/7 (Fitzgerald et al., 2003), NFkB, or apoptosis

(Cusson-Hermance et al., 2005; Han et al., 2004; Kaiser and

Offermann, 2005; Weber et al., 2010). TRIF interacts with TBK1

to activate IRF3/7, with RIP kinases to mediate NFkB activation,

or with caspase-8 to induce apoptosis. IL-1b production as well

as cell death in EHEC- and C. rodentium-infected macrophages

from mice lacking RIP3 or RIP3 and caspase-8 were unaffected

(Figure S2). This was in contrast tomacrophages frommice lack-

ing IRF3/7 that were severely impaired in their ability to mediate

IL-1b release (Figure 2J). These data indicate that caspase-11

activation and caspase-11-dependent caspase-1 activation
Figure 2. TRIF Signaling Downstream of TLR4-TRAM Mediates Inflamm

(A) Cleaved caspase-11 in the supernatants of Pam3CSK4-primed BMDMs stimul

polydAdT.

(B, D, and F–J) IL-1b or IL-1a production by Pam3CSK4-primed BMDMs fromC57

polydAdT, or silica for 16 hr or nigericin for 1 hr.

(C) Cell death in BMDMs stimulated with EHEC, C. rodentium, polydAdT, or silic

(E) Immunoblots for cleaved caspase-11, caspase-1, and IL-1b in the supern

polydAdT, or silica for 16 hr.

Data are presented as the mean ± SEM of one experiment representative of thre
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are downstream of a pathway involving TLR4, TRAM, TRIF,

and IRF3/7 in response to a subset of NLRP3 activators,

including EHEC and C. rodentium.

TLR4, TRIF, and IFNAR Signaling Are Essential
for EHEC- and C. rodentium-Induced Caspase-11
Activation and Caspase-11 Effector Function
A prominent feature of TRIF-dependent IRF signaling is the

production of type I interferons. We examined IFNb production

in macrophages from mice lacking either TRIF or, as a control,

STING, a key mediator of cytosolic pathways (Ishikawa et al.,

2009). EHEC and C. rodentium both induced IFNb in a TRIF-

dependent but STING-independent manner (Figures 3A and

S3A). Consistent with a role for TRIF rather than STING in IFNb

induction, EHEC and C. rodentium induced normal levels of

IL-1b in macrophages from STING-deficient mice (Figure S3A).

IFNb mediates TRIF-dependent caspase-11-inflammasome

activation during EHEC infection because processing of

caspase-11 was markedly impaired in IFNAR1-deficient cells

infected with EHEC (Figure 3B). Consequently, EHEC- or

C. rodentium-infected IFNAR1-deficient cells were extremely

defective in their ability to cleave caspase-1 and IL-1b, as well

as in their ability to secrete IL-1b (Figure 3B). The requirement

for IFNAR1 was seen regardless of the dose of bacteria used

(Figure S1A) Furthermore, the secretion of IL-1a, cell death,

and HMGB1 release—events unique to the caspase-11

pathway—were also defective in EHEC-infected Ifnar1�/� cells

(Figures 3C and S3B). In contrast, IFNAR1 was dispensable for

these events in cells stimulated with polydAdT and nigericin.

Similar to TRIF, IFNAR1 signaling did not control bacterial

phagocytosis, phagosomal acidification, or bacterial killing by

macrophages (Figures S3C and S3D).

Type I IFNs signal in an autocrine/paracrine manner via IFNa/

bR1 and IFNa/bR2. Dimerization of the receptor chains causes

the receptor-associated JAKs to become activated, resulting

in the engagement of signal transducer and activator of tran-

scription (STAT)-1 and STAT-2, which associate with IRF9 to

form the ISGF3 complex. ISGF3 translocates to the nucleus

and initiates transcription of multiple IFN-stimulated genes

(ISGs) (González-Navajas et al., 2012). Whereas STAT-1 and

IRF9 were dispensable for polydAdT and nigericin or silica-

induced production of IL-1b, both factors were essential for IL-

1b production in EHEC-infected macrophages (Figures 3D and

3E). We also tested the ability of exogenous type I IFN to rescue

the defect in inflammasome-dependent responses in Trif�/�

cells. Exogenous IFNb restored caspase-11 processing, cas-

pase-1 processing, and IL-18 production in TRIF-deficient cells

infected with EHEC and C. rodentium (Figures 3F and 3G).
asome Activation by EHEC and C. rodentium

ated for 16 hr with EHEC (MOI of 25 and 50),C. rodentium (MOI of 25 and 50), or

BL/6 wild-type and various knockoutmice stimulatedwith EHEC,C. rodentium,

a for 16 hr.

atants of Pam3CSK4-primed BMDMs stimulated with EHEC, C. rodentium,

e experiments. See also Figure S2.
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Type I IFN has been shown to impair transcription of pro-IL-1b,

thereby reducing the pool of precursor levels (Guarda et al.,

2011). Indeed, exogenous treatment with 1000 U/ml IFNb, the

dose used in previous experiments, led to a significant reduction

in pro-IL-1b levels and failed to rescue EHEC- or C. rodentium-

induced IL-1b production (Figure S3E). However, treatment of

TRIF-deficient macrophages with 25–200 U/ml of IFNb rescued

caspase-1 and IL-1b processing and IL-1b secretion in a dose-

dependent manner (Figure 3H). Neutralization of IFN-b also led

to a dose-dependent attenuation of EHEC-induced, but not

polydAdT-induced, IL-1b production (Figure S3F). These data

indicate that the processing of caspase-11 is dependent on

TLR4, TRAM, TRIF, and the type I IFN-STAT1-signaling pathway.

Transcriptional Induction of Caspase-11 Is Coupled
to Caspase-11 Autoprocessing
Caspase-11 is unique among caspases in its regulation at the

transcriptional level (Wang et al., 1996, 1998). Previous work

has shown that macrophages express very low levels of the

procaspase-11 isoforms p43 and p38, the expression of which

increases following LPS (Wang et al., 1996, 1998) or type I IFN

stimulation (Schauvliege et al., 2002; Yen and Ganea, 2009).

Similar findings have been reported in vivo (Wang et al., 1996,

1998). Consistent with these published data, we found that

caspase-11 was transcriptionally regulated during EHEC infec-

tion in a manner dependent on TRIF and IFNAR signaling

(Figure 4A). Procaspase-11 protein levels accumulated in

EHEC-infected macrophages in a manner dependent on TRIF

and IFNAR (Figure 4B). This was in contrast to MyD88-deficient

macrophages, in which expression of procaspase-11 was intact

(Figure 4C). As expected, pro-IL-1b levels in EHEC-infected

macrophages were impaired in the absence of MyD88. IFNb

and IFNg also turn on procaspase-11 expression (Schauvliege

et al., 2002; Yen and Ganea, 2009) (Figures 4A and 4B). In

the case of IFNg treatment, procaspase-11 mRNA induction

occurred independently of IFNAR signaling.

Based on the unique inducibility of caspase-11 and the

ability of IFNb to restore caspase-11-dependent activation of

caspase-1 in TRIF-deficient cells, we hypothesized that induc-

tion of procaspase-11 during infection with EHEC was sufficient

to facilitate caspase-11 autoactivation. To test this hypothesis

directly, we monitored procaspase-11 induction and processing

in macrophages stimulated with LPS, IFNb, or IFNg alone in the

absence of any other microbial trigger. Consistent with a model

whereby transcriptional induction of procaspase-11 is coupled
Figure 3. Type I Interferon Response Triggered by TLR4-TRIF Mediat

C. rodentium

(A) IFN-b production by BMDMs stimulated with EHEC (MOI of 25 and 50), C. ro

(B) ELISA for IL-1b and immunoblots for cleaved caspase-1, caspase-11, and I

polydAdT for 16 hr or nigericin for 1 hr.

(C) IL-1a secretion by and cell death in BMDMs stimulated with EHEC for 16 hr o

(D and E) IL-1b production by Pam3CSK4-primed C57BL/6 wild-type and Stat1�/�

nigericin for 1 hr.

(F and G) Cleaved caspase-1 and caspase-11 in the supernatants and NLRP3 in t

stimulated with EHEC, C. rodentium, or polydAdT for 16 hr. Cells were subjected

(H) Secreted IL-1b and cleaved caspase-1 and IL-1b in the supernatants of Pam3C

EHEC or polydAdT for 16 hr.

Data are presented as the mean ± SEM of one experiment representative of 2–3
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to autoprocessing of caspase-11, LPS treatment alone led not

only to transcriptional induction of both procaspase-11 isoforms

p43 and p38, but also to the appearance of processed caspase-

11 (Figure 4D). Similarly, IFNb or IFNg alone induced both

transcriptional induction and processing of caspase-11. Ectopic

expression of caspase-11 in HEK293 cells resulted in produc-

tion of the autoprocessed form (Figure S4A), and in-vitro-

transcribed/-translated caspase-11 generated in a rabbit

reticulocyte system also resulted in production of the autopro-

cessed form (Figure S4B). These findings are consistent with

published studies (Kang et al., 2000; Kayagaki et al., 2011).

Further support for this model is based on the fact that exoge-

nous IFNg could also induce procaspase-11 expression, auto-

processing, and restoration of caspase-1 and IL-1b processing

in TRIF-deficient macrophages after EHEC infection (Figure 4E).

Finally, IFNb or IFNg alone induced cell death in a caspase-11-

dependent manner (Figure 4F). Collectively, these data indicate

that elevated caspase-11 expression can result in autoprocess-

ing and activation. Though these findings do not exclude the

possibility of a distinct molecular scaffold regulating caspase-

11 processing, they indicate that the regulation of caspase-11

at the transcriptional level is sufficient for activation of cas-

pase-11 and suggest that it is the critical regulated step for its

downstream function. This mechanism is distinct from that

regulating all other inflammatory and initiator apoptotic cas-

pases in which a molecular scaffold promotes activation. It is

important to note here that active caspase-11 only leads to

caspase-1 activation when the NLRP3-ASC scaffold has been

assembled.

Caspase-11 Does Not Regulate Assembly of the NLRP3
Inflammasome
A key question that arises from these studies is how caspase-11

impacts NLRP3 inflammasome activation. Caspase-11 does not

process pro-IL-1b directly; however, it is required for the

activation of caspase-1 (Kang et al., 2000; Wang et al., 1996,

1998). One possibility is that caspase-11 promotes the assembly

of the NLRP3 inflammasome complex. To test this, we examined

the assembly of the NLRP3-ASC complex in EHEC- and

C. rodentium-infected macrophages by examining the oligomer-

ization status of ASC in wild-type and 129S6 macrophages

(which lack caspase-11). EHEC and C. rodentium induced

oligomerization of ASC in wild-type macrophages, and these

events were unaffected in macrophages from 129S6 mice,

which lack caspase-11 (Figure 4G), or in caspase-11-deficient
es Caspase-11-Dependent Inflammasome Activation by EHEC and

dentium (MOI of 25 and 50), or polydAdT for 16 hr.

L-1b in the supernatants of BMDMs stimulated with EHEC, C. rodentium, or

r nigericin for 1 hr.

(D) or Irf9�/� (E) BMDMs stimulated with EHEC, polydAdT, or silica for 16 hr or

he lysates (F) and IL-18 in the supernatants (G) of Pam3CSK4-primed BMDMs

to 1,000 U/ml IFN-b treatment at the time of infection as indicated.

SK4-primedBMDMs treatedwith indicated doses of IFN-b and stimulated with

experiments. See also Figures S1A and S3.
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macrophages (data not shown). These data suggest that forma-

tion of the NLRP3-ASC complex is not dependent on the pres-

ence of caspase-11. We also tested the possibility that cas-

pase-11 promotes the recruitment of caspase-1 to the

assembled NLRP3-ASC complex but found no difference in

the recruitment of caspase-1 to the oligomerized ASC complex

in cells lacking caspase-11 (Figure 4G). What was striking,

however, was the considerably weaker oligomerization of

both ASC and caspase-1 in EHEC- and C. rodentium-infected

macrophages compared to that observed with PolydAdT or

canonical activators of the NLRP3 inflammasome, such as

nigericin. This weaker response was particularly surprising in

light of the mostly comparable degree of IL-1b production seen

in all of these experimental conditions (Figure 2D). Previous

studies have shown that caspase-11 interacts with caspase-1

and forms a heterodimeric complex in infected cells (Kayagaki

et al., 2011; Wang et al., 1998). It is likely, therefore, that

caspase-11 amplifies caspase-1 activation by processing

caspase-1 itself or by enabling caspase-1 autoprocessing

through heterodimerization.

NLRP3-Dependent Caspase-1 Activation and IL-1b
Production by All Gram-Negative Bacteria Is Mediated
by the TRIF-IFN-Caspase-11 Pathway
We next wanted to test whether this TRIF-IFNAR-caspase-11

pathway represented a fundamental mechanism by which

a broader range of bacterial pathogens activated the NLRP3

inflammasome. We chose to study three distinct classes of

bacterial pathogens. The first of these were Gram-negative

bacteria known to engage the NLRP3 inflammasome and

included Hemophilus influenzae, Klebsiella pneumoniae,

Neisseria gonorrhea, Shigella flexneri, Enterobacter cloacae,

Vibrio cholerae, and Proteus mirabilis (Duncan et al., 2009;

Willingham et al., 2009; Willingham et al., 2007). In all cases,

production of IL-1b and/or IL-18 was strictly dependent on

TRIF, IFNAR, STAT1, and caspase-11 (Figures 5A, 5B, 5C, S5A,

and S5B). Moreover, caspase-1 and IL-1b processing triggered

by these bacterial pathogens were impaired in macrophages

from mice lacking TRIF or IFNAR1 (Figure 5D). Interestingly, the

TRIF-IFN-caspase-11 pathway was dispensable for processing

of caspase-1 and/or IL-1b production in macrophages infected

with Salmonella typhimurium and Pseudomonas aeruginosa,

which predominantly engage the NLRC4 rather than the NLRP3

inflammasome (Figures 5A, 5B, and 5C) (Mariathasan et al.,

2004; Miao et al., 2006, 2010; Sutterwala et al., 2007).
Figure 4. EHEC-Induced Caspase-11 Transcriptional Induction Is TRIF

(A) Caspase-11 transcript levels in BMDMs infected with EHEC for 12 hr or stimu

(B) Procaspase-11 and HMGB-1 (as a loading control) in the lysates of BMDMs

(C) Caspase-11 transcript and protein levels and pro-IL-1b protein levels in C57B

Pam3CSK4 (400 ng/ml) for 12 hr (transcript) or 16 hr (protein).

(D) Pro- and processed caspase-11 in the lysates of BMDMs treated with EHEC

(E) Cleaved caspase-1 and IL-1b in the supernatants of Pam3CSK4-primed BMDM

for 16 hr.

(F) Cell death in immortalized C57BL/6 and 129S6 BMDMs stimulated with IFN-

for 24 hr.

(G) Oligomerization of ASC and caspase-1 in the inflammasome-enriched and c

EHEC or C. rodentium for 6 hr or polydAdT for 3 hr or nigericin for 30 min. Monom

Data are presented as the mean ± SEM of one experiment representative of thre
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We also examined a set of Gram-positive bacteria that engage

the NLRP3 inflammasome (Costa et al., 2012; Fang et al., 2011;

Franchi et al., 2007; Mariathasan et al., 2006). Inflammasome

activation in response to Group B Streptococcus (GBS),

Streptococcus pneumoniae (Pneumococcus), Staphylococcus

aureus, and Bacillus subtilis, however, proceeded independently

of the IFNAR-STAT-1-caspase-11 pathway (Figures 5B, 5C, S5A

and, S5B). Listeria monocytogenes also induced IL-1b produc-

tion in a manner that was TRIF and IFNAR independent (Fig-

ure S5C). Presumably the highly potent pore-forming cytotoxins

such as hemolysins expressed by these Gram-positive bacteria

facilitate direct activation of the NLRP3 inflammasome without

a requirement for the amplifying type I IFN-caspase-11 pathway.

We speculated that, in the absence of NLRC4 activation by a

functional T3SS, Gram-negative bacteria such asS. typhimurium

or P. aeruginosa might also engage the TRIF and caspase-11

pathway. We compared IL-1b production in macrophages in-

fected with wild-type P. aeruginosa and a mutant lacking a

T3SS (pscC). Whereas wild-type P. aeruginosa induced normal

levels of IL-1b in TRIF-deficient macrophages, the pscC mutant

became dependent on the TRIF-induced caspase-11 pathway

(Figure 5E). Similar findings were obtained using a T3SS mutant

of S. typhimurium (data not shown). Cholera toxin B (CTB) has

also been shown to engage the caspase-11-dependent NLRP3

pathway (Kayagaki et al., 2011). We speculated that CTB would

only engage the caspase-11 pathway in cells that were primed

with LPS to provide the TRIF-IFNb-caspase-11 response to

synergize with CTB-induced NLRP3 activation. Indeed, CTB

treatment of macrophages elicited IL-1b release only in macro-

phages that were first primed with LPS and not those primed

with the TLR2 ligand Pam3Csk4 (Figure 5F). In contrast to LPS,

priming with the TLR2 ligand Pam3Csk4 failed to induce

substantial caspase-11 expression (Figures 4B and 4C). Exoge-

nous treatment of TLR2-primed macrophages with IFNb

restored CTB-induced IL-1b processing.

Finally, we wanted to address the role of the TRIF-IFNAR

pathway in regulating inflammasome activation in vivo. Wild-

type and Ifnar1�/� mice were infected intraperitoneally (i.p.)

with E. coli, and cytokine levels were measured in both the

serum and peritoneal lavage.Whereas E. coli induced high levels

of IL-1b in serum and IL-18 in serum and the peritoneal lavage of

wild-type mice, both of these responses were significantly

impaired in IFNAR1-deficient mice (Figure 6A). In contrast,

induction of IL-6 and IFNb were not affected by IFNAR1

deficiency. Moreover, we observed enhanced survival of
and IFNAR Dependent

lated with IFN-b (500 units/ml) or IFN-g (40 ng/ml).

stimulated with indicated treatments for 16 hr.

L/6 and MyD88�/� BMDMs stimulated with EHEC, IFN-b, LPS (200 ng/ml), or

, IFN-b, IFN-g, or LPS (200 ng/ml) for 16 hr.

s treatedwith indicated doses of IFN-g and stimulated with EHEC or polydAdT

b (250 U/ml and 500 U/ml) or IFN-g (40 ng/ml) for 40 hr or etoposide (50 mM)

ross-linked lysates of immortalized C57BL/6 and 129S6 BMDMs treated with

ers, dimers, and oligomers of ASC and caspase-1 are indicated accordingly.

e (A–D) or two (E–G) experiments. See also Figure S4.
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TRIF-deficient mice following E. coli infection in vivo (Figure S6).

These data indicate the importance of the TRIF-IFNAR-caspase-

11 pathway in E. coli-induced IL-1b and IL-18 production not

only in vitro, but also in vivo.

The integration of TLR and NLR pathways during the inflamma-

tory response iswelldocumented.Here,wehave identifiedaTRIF-

dependent pathway that integrates TLR and NLRP3 signaling

during the immune response to all Gram-negative bacteria. TRIF

licenses NLRP3 inflammasome activation by all Gram-negative

bacteria (Figure 6B) via the type I IFNpathway. Type I IFNsupregu-

late caspase-11 expression, an event that is both necessary and

sufficient to enable caspase-11 autoactivation. At the same time,

by a mechanism still not understood in detail, bacterial mRNA

from viable bacteria that have been phagocytosed access the

cytosolic compartment, leading to assembly of the NLRP3 inflam-

masome(Sanderetal., 2011).Caspase-11activationvia theTLR4-

TRIF-IFN-b pathway then synergizes with this bacterial mRNA-

activated NLRP3 platform to orchestrate caspase-1-dependent

IL-1b and IL-18 processing and secretion (Figure 6B). Caspase-

11 also leads to cell death and release of endogenous alarmins,

such as IL-1a and HMGB1. The identification of TRIF signaling

as a key determinant of caspase-11 induction and activation and

the crosstalk revealed between TLR and NLR pathways provide

important insights into the integration of signaling events during

Gram-negative bacterial infection. This study establishes TLRs

as ‘‘master’’ regulators of inflammasome activation by revealing

the utilization of distinct modules of TLR signaling to orchestrate

IL-1b-driven inflammation. By engaging MyD88 downstream of

TLR4, Gram-negative bacteria turn on transcription of pro-IL-1b

and of Nlrp3 mRNA (signal 1). Phagocytosis of bacteria and the

destructive environment of the phagolysosomal compartment

then lead to the release of bacterial mRNA into the cytosolic

compartment, allowing assembly of the NLRP3 inflammasome

(signal 2). Simultaneously, engagement of TRIF downstream of

TLR4 couples transcription of caspase-11 to its autoactivation

via type I interferons (signal 3). Activated caspase-11 synergizes

with the bacterial mRNA-assembled NLRP3 complex to coordi-

nate caspase-1 activation andmaturation of IL-1b and IL18. These

studiessupport the rationaluseofneutralizing type I IFNantibodies

andJAK inhibitors, aswell as thedesignofadditional therapies tar-

geting this caspase-11 pathway for the treatment of detrimental

inflammation associated with infectious diseases caused by

a range of Gram-negative bacterial pathogens.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6 mice from The Jackson Laboratory (Bar Harbor, ME) were bred at

UMASS Medical School. Trif�/�, Nlrp3�/�, Tlr4�/�, Tlr3�/�, Tram�/�,
Figure 5. NLRP3 Inflammasome Activation by All Gram-Negative Bact

(A–C) IL-1b production by Pam3CSK4-primed C57BL/6 wild-type and Trif�/� (A) o

for 16 hr.

(D) Cleaved caspase-1 and IL-1b in the supernatants of Pam3CSK4-primed BMD

(E) IL-1b secretion by Pam3CSK4-primed C57BL/6 wild-type and Trif�/� BMDMs

lacks the type III secretion system) for 16 hr.

(F) Secreted and cleaved IL-1b in the supernatants of BMDMs primed as indicat

Data are presented as the mean ± SEM of one experiment representative of 2–3
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Irf3�/�Irf7�/�, Ifnar1�/�, Stat1�/� (kind gift of Christine Biron, Brown

University), Irf9�/� (kind gift of Karen Mossman, McMaster University),

Myd88�/�, and caspase-11�/� (kind gift of Vishva Dixit, Genentech) were all

on C57BL/6 background. 129X1/SvJ mice were purchased from The Jackson

Laboratory. Sting�/� mice (Sauer et al., 2011) and caspase-8�/� Rip3�/� and

caspase-8+/� Rip3�/� mice have been described previously (Kaiser et al.,

2011). Mouse strains were maintained in specific pathogen-free conditions

in UMASS Medical School, and the animal protocols were carried out in

accordance with the guidelines set forth by UMASS Medical School

Institutional Animal Care and Use Committee.

Bacteria

EHEC (EDL933 strain) andC. rodentium (ATCC51459) were grown overnight in

LB broth, and the macrophages were infected at an MOI of 25 unless other-

wise indicated. Strain names andMOI for additional bacteria used in this study

are given in Table S1.

BMDM Culture and Stimulations

Bone marrow cells from wild-type and various knockout mice were cultured in

DMEM with 10% fetal bovine serum and 20% L929 supernatants. BMDMs

were primed with 400 ng/ml Pam3CSK4 (Invivogen) unless otherwise indi-

cated for 4 hr and then stimulated with bacteria at indicated MOIs for 1 hr,

and then medium was replaced with medium containing gentamicin (100 mg/

ml). The supernatants were collected 16 hr postinfection. In certain experi-

ments, the cells were also stimulated with indicated doses of recombinant

murine IFN-b (PBL Interferon Source) or IFN-g (R & D systems) at the time of

infection. For control purposes, the cells were transfected with polydAdT

(1 mg/106 cells; Sigma-Aldrich) or stimulated with silica (200 mg/ml) or nigericin

(10 mM; Sigma-Aldrich). Additionally, BMDMs immortalized with J2 virus have

been used where indicated.

ELISA and Cell Death Assay

Cell culture supernatants, serum, and peritoneal lavages were assayed by

ELISA for IL-1b (BD Biosciences), IL-1a (BD Biosciences), IL-18 (eBioscience),

and IL-6 (eBioscence). A sandwich ELISA for mouse IFN-b was used as

described (Roberts et al., 2007). Cell death was assessed by CellTiter-Glo

luminescent cell viability assay (Promega).

Immunoblotting

Proteins from the cell culture supernatants were precipitated by methanol-

chloroform extraction method. Cells were lysed with 1% NP-40 lysis buffer.

Immunoblot analysis was done with antibodies to mouse caspase-1 p10

(sc-514; Santa Cruz Biotechnology), mouse caspase-1 p20 (clone 5B10;

eBioscience), mouse IL-1b (AF-401-NA; R&D Systems), mouse caspase-11

(clone 17D9; Sigma-Aldrich), mouse HMGB-1 (clone 3E8; BioLegend), mouse

NLRP3 (clone cryo-2, Enzo Life Sciences), ASC (sc-22514-R; Santa Cruz

Biotechnology), b-actin, and GAPDH (clone 71.1, Sigma).

Gentamicin-Killing Assay

This assay was performed as described previously (Rathinam et al., 2008). In

brief, BMDMs were infected with EHEC at an MOI of 25. After 1 hr of infection,

nonphagocytosed bacteria were removed by treating the cells with 100 mg/ml

of gentamicin. At specified time points, intracellular viable bacteria were

counted by lysing the cells with 0.1% Triton X-100 and spreading serial

dilutions of lysates on LB agar plates. Colonies were counted after overnight

incubation at 37�C.
eria Requires TRIF-IFNb-Caspase-11 Axis

r Ifnar1�/� (B) or caspase-11�/� (C) BMDMs stimulated with indicated bacteria

Ms stimulated with indicated bacteria for 16 hr.

stimulated with P. aeruginosa PAK wild-type strain or pscCmutant strain (that

ed and stimulated with cholera toxin B for 16 hr.

experiments. See also Figure S5 and Table S1.



A

B

Figure 6. Type I Interferon Signaling Is Essential for Inflammasome Activation in an E. coli-Induced Acute Peritonitis Model

(A) Cytokines in the serum and peritoneal lavages of C57BL/6 and Ifnar1�/� mice infected with E. coli BL21 for 6 hr (n = 4–5). Data are presented as the mean ±

SEM of one experiment representative of two experiments.

(B) Integrative model of TLR4-TRIF-IFN and NLRP3 signaling to activate caspase-11-dependent caspase-1, IL-1b, as well as IL-18 processing.

See also Figure S6.
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Quantitative RT-PCR

RNA was extracted from infected BMDMs at indicated time points using

RNeasy kit (QIAGEN). cDNA was synthesized from total RNA using the iScript

Select cDNA synthesis kit (Bio-Rad). Quantitative RT-PCR for caspase-11 was

performed by using iQ SYBR green supermix (Bio-Rad) and the primers

(forward, 50-ACAATGCTGAACGCAGTGAC-30; reverse, 50-CTGGTTCCTCC

ATTTCCAGA-30; Kayagaki et al., 2011). Caspase-11 mRNA in the samples

was normalized to that of b-actin or GAPDH, and the fold difference in cas-

pase-11 transcript levels was analyzed by Livak’s method (Livak and Schmitt-

gen, 2001).

Phagosome Acidification Assay

Ratiometric acidification assay was done as previously described (Ip et al.,

2010). In brief, immortalized or primary BMDMs were incubated with heat-

inactivated (65�C for 30 min) E. coli K12 or EHEC at low MOI (%5) for 30 min

on ice to synchronize phagocytosis. In all cases, cells were prechilled for

15 min on ice before adding bacteria. Bacteria were labeled with FITC

(pH-sensitive) and Alexa Fluor 647 (pH-insensitive) fluorescent dyes, and

bacterial clusters were disrupted by repeated passage through a 30 gauge

needle before incubation with macrophages. Cells were further incubated at

37�C for 5, 30, or 60 min. Next, cells were washed twice with ice-cold PBS

with 5 mM EDTA, detached, and resuspended in PBS. Cells were analyzed

by flow cytometry to determine the MFI emission ratio between FITC and

Alexa Fluor 647 of the bacteria inside phagosomes. To calculate the pH using

the ratiometric assay, values were compared with a standard curve. For stan-

dard curve, cells after 2 hr of phagocytosis were permeabilized for 10 min at

room temperature in buffers with a fixed pH (ranging from pH 3.5 to 8) contain-

ing 0.05% Triton X-100. The cells were analyzed by flow cytometry to deter-

mine the emission ratio of the two fluorescent dyes at each pH.

ASC Oligomerization Assay

ASC oligomerization assay was performed as described with minor modifica-

tions (Fernandes-Alnemri et al., 2007). In brief, BMDMs were primed with

Pam3CSK4 for 3 hr and stimulated with EHEC or C. rodentium for 6 hr or

polydAdT for 3 hr or nigericin for 30 min. Cytosolic lysates from the cells

were enriched for inflammasome fractions by low-speed centrifugation and

subjected to cross-linking with disuccinimidyl suberate (2 mM). The cross-

linked samples were analyzed for ASC and caspase-1 oligomerization by

immunoblotting.

In Vivo Infection

Age- and sex-matched C57BL/6 and Ifnar1�/� mice were infected with 109

CFUofE. coliBL21 strain to induce acute peritonitis and shock. Cytokine levels

in the serum and peritoneal lavage were analyzed at 6 hr postinfection. Data

from in vivo experiments were analyzed by unpaired two-tailed Student’s t

test with Prism software. p values of less than 0.05were considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and one table and can be found

with this article online at http://dx.doi.org/10.1016/j.cell.2012.07.007.
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