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Abstract-we explore the notion of the geometric signature and demonstrate that it could be 

utilized in order to estimate dimensions, characterize lacunarity and type of attractor (self-similar, 
nonself-similar), and determine the length of transients for attractors. 
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Self-similar fractals obey the scaling law [l]: 

C(Z) = dC(pZ), P,O > 0, (1) 

where C(1) is a statistical measure on the set at a scale length 1. We can rewrite equation (1) in 

terms of the function 

f(z) := C(P”)l 

as 

f(x) = c7-lf(z + l), 

Ol- 

From the latter, we see that 

f(x + 1) = of(x). (2) 

f(z + k) = fJ”f(4, 5 E [O,l), 

or 

where [ ] is the integer value function (giving the integer part in decimal representation of z). 

The latter shows that f is completely determined by its values on the interval [0, 1). Noting that 

x(x) := f(x - [ z I) is P eriodic with period 1 for 2 E Re+ = [0, oo), we, therefore, have that f has 
the general form 

f(z) = @X(~), (3) 
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where x is an arbitrary function of period 1. If continuity of f at integer values is required, we 
have the additional condition 

f(1+) = ax(O) = x(1-) = f(I-)* (4) 

Rewriting this in terms of the function C again, we obtain 

C(Z) = ,lW/l~sPlx logl , 
( ) log P 

(5) 

It is easy to see that the power law C(Z) = BID, with D = (logc)/(logp) and B a constant, is a 
particular solution of the scaling law. Attempting to find a C of the form C(Z) = A(Z)ZD, we find 

’ that by the scaling law (since g- p D = 1 by the definition of D) the function A must satisfy the 
same scaling law as C but with u = 1. By the above considerations, we find now that 

where < is another function of period 1. Thus, 

C(Z) = p< logl ( > 1% P 
(6) 

is a solution of the scaling law. Comparison with the general solution (5) restricted to 
(logZ)/(logp) E [0, 1) shows 

Z?(S) =x(S) 

or 

E(z)o” = x(z), 5 E [O, 1). (7) 

Since any periodic x generates a periodic E by periodic extension of this relation, we have that 
the general solution (5) is indeed of the form 

C(Z) =ZD[ g , ( ) (8) 

where < is periodic of period 1. Moreover, to obtain continuity of C at integer values, we need 
to require according to (4) and (7) that 

C(O) = x(0) = x(1-) = [(l-). 
cl 

From the above, it is clear that the general solution contains oscillations as 1 --) 0. 

Given an attractor, its geometry can be described by a set of quantities known as dimensions. 
A purely geometric measure leads to the fractal or Hausdorff-Besicovitch dimension D [2,3], 
defined from the asymptotic relation 

N(Z) w+o z-“, 

where N(Z) is the number of cubes of size 1 needed to cover the attractor. If we assume C(l/Z) = 
N(Z), and take the logarithm on both sides of equation (8) and differentiate with respect to log I, 

we get (with p replaced by l/p) 

F(Z) = =-- -D + 

, 1ogz 
5 (4 log P 

logl 1 ’ 4 > -- 
1% P 1% P 
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where the prime indicates the first derivative with respect to the argument. Equation (10) 
reveals the box counting procedure to estimate the fractal or Hausdorff dimension D. According 
to the procedure on a d logN(l)/d log1 vs. logl plot, a periodic function of period 1 should be 
superimposed on the horizontal line of level D. Indeed, this is a more objective way to estimate 
the dimension of the attractor without the need of a linear regression on a log N(Z) vs. log 1 plot. 
In such plots, the scaling region is not objectively defined and often the dimension is calculated 
from the slope of the regression line which is obtained from a fit over an arbitrary chosen range 
of scales. In the past, such a procedure has resulted in errors (sometimes important) in the 
estimation of exponents like D [4]. The geometric signature offers guidance in this process. For a 
set of a dimension D oscillations superimposed on a plateau at 3(L) w D should be observed (see 
references [5-71). The range of the plateau will depend on the sample size of the set and will 
objectively define the scaling region. From that region, an estimation of the dimension can be 
obtained qualitatively (by visually judging where the plateau occurs) or quantitatively by, for 
example, averaging F(1) over the range of scales of the plateau. Note that this procedure to 
estimate dimensions does not constitute a new proposal, but somehow it has not been preferred 
over the least squares approach in the past. 

Figure 1. The function .7=(L) = d log N(Z)/d log 1 vs. log 1 for the triadic Cantor set. 

As expected from the theory outlined in the text, the function F’(1) exhibits periodic 
oscillations about a constant value equal to the fractal dimension of the set which is 
equal to 0.63. 

Figure 1 shows that plot for the triadic Cantor set. This set is self-similar with a theoretical 
dimension D = log 2/ log 3 x 0.63. . . [3]. A periodic oscillation superimposed on a constant 
value of D x 0.63 (indicated by the horizontal line) is evident. We call such a plot the geometric 
signature of the attracting set in question since it completely characterizes the relation between 
small and large scales, and thus the dynamics of the system in question. For nonself-similar fractal 
sets, however, the story may be quite different. Since equation (1) is not valid, the oscillations may 
not be asymptotically periodic as I + 0. For example, Figure 2 shows the geometric signature of 
the H&on attractor 

2t+l = 1 - az; + ylt, 

Yt+1 = bxt, 
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Figure 2. The geometric signature for the Henon attractor for M = lo7 points. The 
observed drop-off at very small scales is due to the finite number of points. Note 
that log1 = 0 corresponds to a square of side 1 that includes the whole set. This 
is considered as the unit square which is subsequently divided in four (l/2), sixteen 
(l/4) etc. boxes. By repeating this procedure for several different initial l’s, we can 
increase the resolution of the signature. If we exclude the drop-off and the very large 
scale (insufficient statistics, large fluctuations), a scaling region may be defined by 
the plateau in the range -1.0 < logl < -4.0. The horizontal line corresponds to 

the value dlogN(l)/d logl = 1.28 which has been claimed as the correct dimension 
for the attractor [8,9]. From the values of .7=(l) in the plateau, one can estimate the 
box-counting dimension. F(Z) is varying at different scales being in general smaller 

at the larger scales of the plateau than at the smaller scales, where it settles at a 
value of about 1.28 in agreement with [8,9]. 

where a = 1.4 and b = 0.3, for M = lo7 points. Note that the geometric signature of the 

approximate attractor depends on the number of points available. With an infinite number of 

points, the geometric signature is fixed and defined at all scales. With a finite number of points, 

the signature can be obtained only over at a certain range of scales. It is interesting to note 

that for the above range of scales the oscillations are not periodic. The irregular behavior of the 

function F(Z) is a result of the nonuniformity observed in a chaotic, fractal but nonself-similar 

attractor and completely characterizes the relation between the small and large scales of the 

attractor. Thus, the geometric signature can also be used to provide information as to whether 

or not an attractor is self-similar, assuming that there are enough data points. 
The basics behind the definition of the geometric signature are known and have been discussed 

in the past [l] h w ere the observed oscillations may be attributed to the lacunarity of the set. 

This quantity has been speculated to measure the texture of attractors [2] but unfortunately has 

not received any attention vis-a-vis its connection to dynamics. We believe that the geometric 

signature could provide, if used properly, more insights in the study of lacunar fractals. 
Apart from the above, we have discovered that the geometric signature can effectively be used 

in order to exactly determine the length of transients. This is extremely useful when determining 

quantities such as dimensions, Lyapunov exponents, etc. If the length is not known, transients 

may be included in the calculations thus altering the results. To demonstrate the above, we 
present Figure 3. This figure shows the geometric signature for the logistic map 

for exactly p = 3.5699456 for different initial conditions. Note that this value of p is smaller than 

the values of ,LL corresponding to the onset of chaos by about 10es. Figure 3 is “bizarre” in that 
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it indicates that the geometry of the attractor at small scales depends on the initial conditions. 

Since this is not possible, the results could be due to the following problems: 

1. Not enough points are used. 

2. The accuracy of the calculations is not high enough resulting in large deviations from the 

true orbit after some time. 

3. Transients are included in the calculations and play the role of noise. 
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Figure 3. The geometric signature for the logistic map with exactly p = 3.5699456 
and for three different initial conditions (results are based on lo6 iterations in each 
case). Note the differences between the signatures at small scales. 

The plots in Figure 3 are produced with l,OOO,OOO points and an accuracy of 32 decimal points. 

In order to obtain the true value for d logN(l)/d log 1 at a given scale, a minimum number of 

points are needed. For the range of scales indicated in the figure, the number of points is more 

than sufficient, i.e., the plots do not change if more points are considered. Therefore, all three 

plots in Figure 3 are robust with respect to the number of points used. In addition, for each 

initial condition, it is observed that the corresponding plot varies at small scales if the number of 

decimal digits carried in the calculations is less than 10 or so, but it becomes invariant at all scales 

if the number of decimal digits used is anywhere between 12 and 32. Thus, 32 digits accuracy 

produces robust signature for a given initial condition and for the range of scales indicated in 

Figure 3. This is in accordance with [lo] where it is shown that the computer generated orbit 

remains close to a true orbit as long as A4 (the number of time steps) is approximately equal to 

10mi2 where m is the number of decimal places carried in the calculations. Thus, the observed 

“differences” in Figure 3 are not due to the accuracy used in the calculations. 

The question then arises whether or not they are due to the transients. In the above calcu- 

lations, we used lo6 points after we discarded 1,000 points. In order to test whether or not the 

differences in geometric signatures for different initial conditions are due to the length of tran- 

sients, we produced 2 x lo6 points, discarded the first lo6 points and repeated the calculations for 

the remaining lo6 points. We found that all the differences disappeared and that now all initial 

conditions produce the same signature shown in Figure 4. This result brings up the obvious 

question of what is the length of transients ? We can answer the question by discarding more 

and more points until signatures from different initial conditions become identical. In the case 
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Figure 4. As in Figure 3 but without the transients. Note that now there are no 
differences in the geometric signatures for different initial conditions. 

of p = 3.5699456, the length of transients is about 50,000! When transients are not included, 

we find that the attractor is a set of points that corresponds to a cycle of period 2,048! That is 

why in Figure 4 the signature tends to zero as 1 + 0. The dimension of such an attractor is zero. 

The 2,048 points “form” a certain geometry at larger scales. As soon as the size of the grid that 

counts all those 2,048 points has been considered in the box counting procedure, any smaller scale 

offers no more information (N(1) remains constant) and thus d log N(Z)/d log 1 + 0. If transients 

are included, they can act as noise in between the 2,048 points, thus altering the signature, and 

for certain initial conditions (see Figure 3) it may be possible to produce an apparent dimension 

of 0.5. Note also that the geometric signature at those large scales fluctuates about a value of 0.5. 

If one considers only those scales in a logN(Z) vs. logl, the dimension will again be close to 0.5. 

The geometric signature is a useful tool in characterizing the quantitative and qualitative geo- 

metric properties of the attractors such as dimensions and self similarity. In addition, we find 

it especially useful in accurately estimating the length of transients. Since it provides the com- 

plete relation between all scales involved in the geometry of the attractor, we believe that other 

applications such as application to observed data (weather, economics etc.) will be forthcoming. 

The only obstacle at this point is that in order to apply the above ideas to real data, one must 

a priori know the underlying data dimension which may or may not be possible especially if 

transients are included in the data. Work in this area is in progress and results will be reported 

later, elsewhere. 
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