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a b s t r a c t

This paper concerns outlier robust non-parametric regression with smoothing splines for
data that are possibly correlated. We define a robust smoother as the minimizer of a pe-
nalized robustified log likelihood. Our estimation algorithm uses iteratively reweighted
least squares to estimate the regression function. We develop two types of robust meth-
ods for joint estimation of the smoothing parameters and the correlation parameters:
indirect methods and direct methods, terms borrowed from the related generalized
smoothing spline literature. The indirect methods choose those parameters by conve-
niently approximating the distribution of the working data at each iteration as Gaussian.
The directmethods estimate those parameters tominimize an estimate of the loss between
the truth and the final estimated regression. Indirect methods are computationally more
efficient, but our empirical studies suggest that direct methods result in more accurate
estimates. Finally, the methods are applied to a data set from a macaque Simian–Human
Immunodeficiency Virus (SHIV) challenge study.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Smoothing spline regression is a widely used nonparametric regression technique. It smooths data with the optimal
balance between the goodness-of-fit and the smoothness of the regression functions. In the most common smoothing
spline model, the measure of goodness-of-fit is the sum of squared residuals, and estimation is done by penalized least
squares. That measure and estimation method are sensitive to outliers, which can lead to serious under-smoothing or
over-smoothing. Robust smoothing spline models have been proposed and studied by Huber [12], Cox [3], Cantoni and
Ronchetti [2] and Oh et al. [18]. In these models, the goodness-of-fit measure is replaced by a robust loss function such
as the commonly used Huber’s loss function, and the robust spline estimate is defined as the minimizer of that loss plus
a penalty to induce smoothing. These models are often termed M-type smoothing spline models. A deficiency is that all
existingM-type smoothing spline models consider independent data only. It is well known that nonparametric regression
techniques, including spline models, break down in the presence of correlation, with problems typically arising in the data-
driven smoothing parameter selection step [19]. Robust smoothing methods specifically designed for correlated data are
therefore necessary.
This paper’s novel contribution is to develop M-type smoothing spline models for correlated data. The presence of

correlation causes several non-trivial challenges. First, it is not immediately clear what makes an appropriate robust loss
function. Most robust approaches for correlated data define estimates as solutions to estimating equations, which often
do not have corresponding likelihood functions. Second, after a properly defined (non-quadratic) robust loss function has
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been established, the estimation algorithm needs to be determined. Third, the choice of smoothing parameter is crucial in
any smoothing technique. The importance of resistance selection has been emphasized by Cantoni and Ronchetti [2], and
a good selection criterion has to take into consideration both robustness and correlation. Finally, scale parameters and the
correlationmatrix have to be estimated aswell.We assume the correlationmatrix is parameterized by a fewparameters.We
seek to estimate the correlation parameters and the smoothing parameters simultaneously as recommended by Hart [10]
and Wang [26] for correlated data.
Huggins [14] proposed a robustified parametric likelihood for repeated measurements and showed the consistency and

asymptotic normality of the parameter estimates.We adapt thismethod to smoothing splines and use iteratively reweighted
least squares (IRLS)with Fisher scoring [6] to optimize the quadraticly penalized robustified likelihood. Similar to approaches
taken in generalized smoothing splines, we develop two ways to select the smoothing parameters and the covariance
parameters: indirect and direct selection. The indirect selection methods obtain parameters that are currently optimal at
each iteration of the iteratively reweighted least squares algorithm. Because we solve a penalized weighted least squares
problem at each iteration, existing (non-robust) simultaneous selection criteria can be used at each iteration, for example,
Generalized Maximum Likelihood (GML), Generalized Cross Validation (GCV) [26], and the Mallow’s CL type criterion [8].
The direct selection methods, on the other hand, optimize explicit objective functions of the smoothing parameters and
covariance parameters. These objective functions estimate the discrepancy between the true and estimated regression
functions. We use this method to develop three new robust direct criteria: robust GML (rGML), robust GCV (rGCV), and
robust UnBiased Risk (rUBR). These are extensions of the GML, GCV, and Mallow’s CL type criteria respectively.
In addition to building a framework for robust smoothing of correlated data, this paper also contributes to M-type

smoothing splines for independent data in the following ways. When the data are independent, our IRLS based algorithm
coincides with the E–S algorithm by Oh et al. [18], which is motivated by the theoretical property of the M-estimator. Our
indirect smoothing parameter selectionmethods are the same in spirit to Oh et al. [18], but ourmethods allow simultaneous
scale estimation. Our direct methods can be used for independent data as well, and they are new in that context.
Clustered and longitudinal data are special cases of the correlated data considered in the paper. Robust modeling for

clustered data and longitudinal data has been considered in [14,23,22,20,30,17,24,1,28,11,21,25]. All these papers except
for the last three considered parametric regression. Among the robust semiparametric regression methods for correlated
data, ours is the first semiparametric smoothing spline model.
The paper is organized as follows. In Section 2, Gaussian smoothing spline ANOVA models are reviewed. Section 3

proposes an M-type smoothing spline ANOVA for correlated data, followed by the selection methods of smoothing
parameters in Section 4. Simulations are carried out in Section 5 to evaluate the proposed methodology and an application
to a CD4 kinetics data set is demonstrated in Section 6. The final section contains conclusions and further remarks.

2. SS ANOVA for correlated errors

Suppose observations are generated from the following model

yi = f (ti)+ εi, i = 1, . . . , n (1)

where ti = (t1(i), . . . , td(i))′ and tk(i) belongs to an arbitrary set Tk, k = 1, . . . , d. Assume the function f has an ANOVA-like
decomposition

f (t) = µ+
∑
k

fk(tk)+
∑
k<l

fkl(tk, tl)+ · · · .

A reproducing kernel Hilbert Space (RKHS)H on
∏d
k=1 Tk can be constructed such that (1)H = H0⊕H1⊕· · ·⊕Hq, where

H0 = span{φ1, . . . , φM} is a finite dimensional space, andH1, . . . ,Hq are an orthogonal RKHS, and (2) the components of
the ANOVA decomposition are projections of f onto the orthogonal subspaces. Some of the decomposition components may
be eliminated to achieve model parsimony.
Let y = (y1, . . . , yn)′, f = (f (t1), . . . , f (tn))′, and ε = (ε1, . . . , εn)′. Assume ε ∼ N(0, σ 2W−1), the SS ANOVA estimate

of f is the solution to the following [7]:

min
f∈H

{
(y− f)′W (y− f)+

q∑
k=1

θ−1k ‖Pkf ‖
2

}
, (2)

where Pjf is the component of f inHj, and θ = (θ1, . . . , θq)′ are smoothing parameters.
Let Rk(·, ·) be the reproducing kernels of Hk. Denote Σk = {Rk(ti, tj)}ni,j=1. Denote Σθ = θ1Σ1 + · · · + θqΣq and

T = {φν(ti)}ν=1,...,Mi=1,...,n . Let the QR decomposition of T be T = (Q1Q2)(R
′0)′. For fixed θ andW , the smoothing spline estimate

at the design points is f̂ = (f̂ (t1), . . . , f̂ (tn)′) = AWy, where

AW = I −W−1Q2(Q ′2(Σθ +W
−1)Q2)−1Q ′2. (3)
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Assume that W is known up to a finite number of parameters, denoted by τ. Wang [26] proposed several joint selection
methods for θ and τ. Among the methods developed, the GML and GCV are recommended based on finite sample
performance. The GML score is defined as

GML(θ, τ) =
n−1y′W (I − AW )y

|W (I − AW )|
1/(n−M)
+

, (4)

where |.|+ represents the product of positive eigenvalues. The GCV score is defined as

GCV(θ, τ) =
n‖W (I − AW )y‖2

tr(W (I − AW ))2
. (5)

Gu and Han [8] recently developed a modified Mallows’ CL criterion and proved its asymptotic optimality as a proxy to the
Kullback–Leibler distance. We will refer the criterion as U . It is defined as

U(θ, τ) = log
{
n−1y′W (I − AW )2y

}
−
1
n
log |W | + 2α

tr(AW )
n− tr(AW )

(6)

where the recommended α value is 1.2–1.4.

3. M-type SS ANOVA for correlated errors

We again consider model (1), but from now on we only assume that E(ε) = 0 and Cov(ε) = σ 2W−1. Let the Cholesky
decomposition of σ−2W be σ−2W = VV ′ and denote the ith column of V as vi,= 1, . . . , n. Assume W has a known
parametric form with unknown parameters τ. For fixed θ, τ and σ 2, we define the robustified SS ANOVA estimate of f
as the minimizer of

min
f∈H

{
n∑
i=1

ρ(v′i(y− f))+
1
2σ 2

q∑
k=1

θ−1k ‖Pkf ‖
2

}
(7)

where ρ is a suitably chosen function that downweights outlying observations and is symmetrical about zero. We assume
the existence of a solution to the aboveminimization problem.With a convex ρ, the existence is guaranteed by Theorem 2.9
in [7] and the convexity of the quadratic penalty. Examples of convex ρ include Huber’s loss function and the cosh function.
Motivated by the robustified likelihood in [14], the first term in (7) measures goodness-of-fit. The robustified likelihood is
proportional to

p(y|f, τ) ∝ exp

{
K log |V | −

n∑
i=1

ρ(v′i(y− f))

}
, (8)

where K = E(zψ(z)), ψ(z) = ρ(1)(z) and z follows the standard normal distribution. The superscript (1) denotes the first
derivative.
The ρ function depends on f only through the evaluation functional. By the same argument as in Section 5.1 of [7], the

solution to (7) lies in a finite dimensional space and can be written as

f (t) =
M∑
ν=1

dνφν(t)+
n∑
i=1

ci

(
q∑
k=1

Rk(ti, t)

)
.

As a result, the minimization problem in (7) becomes

min
d,c

{
n∑
i=1

ρ(v′i(y− Td−Σθc))+
1
2σ 2

c′Σθc

}
, (9)

where d = (d1, . . . , dM)′ and c = (c1, . . . , cn)′.
There is no close-form solution to the above minimization problem due to the non-quadratic form of the ρ function. We

propose to use the iteratively reweighted least squares algorithm with Fisher scoring for the optimization. We assume the
first and second derivatives of the ρ function exist. Denote the current estimates of d and c as d_ and c_ respectively. Let
f_ = Td_ +Σθc_. The Fisher scoring algorithm iteratively solves the following penalized weighted least squares problem:

min
d,c

{
(y_ − Td−Σθc)′W_(y_ − Td−Σθc)+ c′Σθc

}
, (10)

where y_ = f_ − σ 2W−1_ u_,u_ = ∂
∑n
i=1 ρ(v

′

i(y − f))/∂f|f=f_ = −
∑n
i=1 ψ(v

′

i(y − f_))vi = −Vψ(V ′(y − f_)), and
W_ = σ 2E(∂2

∑n
i=1 ρ(v

′

i(y − f))/∂f∂f′|f=f_) = σ 2
∑n
i=1 E(ψ

(1)(v′i(y − f_)))viv′i = σ 2Vdiag(E(ψ (1)(v′i(y − f_))))V ′. Here
the expectation is taken under the current values of V and f = f_. With V and f_ as the true values in the robustified
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likelihood (8), v′i(y − f_), i = 1, . . . , n have a common distribution. The common distribution is the standard normal
distribution when ρ is quadratic. Based on this observation, we further approximate E(ψ (1)(v′i(y − f_))) by E(ψ (1)(z)).
Therefore,W_ = E(ψ (1)(z))W , i.e., we use the same correlation structure to model the working data and the observed data.
We call y_ the working data. Note that when the data are independent with a common variance, i.e., W = I , we have

y_ = f_ + σψ((y− f_)/σ )/E(ψ (1)(z)). The working data differ from the empirical pseudo data in Oh et al. [18] only by the
multiplying factor E(ψ (1)(z)). Therefore, with a fixed smoothing parameter and scale parameter, the E–S algorithm can be
thought of as a modified Fisher scoring algorithm with a step size E(ψ (1)(z)). For example when ρ(x) = x2/2 when |x| ≤ c
and ρ(x) = c|x| − c/2 otherwise (Huber’s loss function), the step size is P(|z| ≤ 1.345) = 0.82 with c = 1.345.

4. Joint estimate of θ, τ, and σ2

4.1. Indirect methods

Indirect methods select optimal smoothing parameters at each iteration of the iteratively reweighted penalized least
squares algorithm. For generalized smoothing spline models, well-established smoothing parameter selection techniques
such as GML, UBR and GCV can be used at each iteration because the working data are independent. For our robust model,
the working data are correlated and involve unknown parameters τ; see (10). Choosing the optimal smoothing parameters
based on theworking data therefore needs techniques that allow for correlated data and preferably that also simultaneously
estimate the covariance parameters. In the following, we chose to use the GML, GCV and U methods as shown in (4)–(6).
Specifically, letting y_ be the current working data, the general procedure is as follows.

1. With the current values of θ and τ, obtain the estimate of f as f̂_ = AW_y_, where AW_ is defined in (3) and W_ =
E(ψ (1)(z))W .

2. Update θ and τ by optimizing (4), (5), or (6). In this optimization, y is fixed at y_,W is replaced withW_ = E(ψ (1)(z))W
which is a function of τ.

3. Obtain a robust estimate of σ 2. For instance, with f and τ fixed at their current values, one can maximize the robustified
likelihood (8) to obtain the estimate. Alternatively, one can resort to Huber’s proposal II [13], i.e., minimize the following
function with respect to σ

Q (σ , f ) =
1
n

n∑
i=1

σρH(v
′

i(y− f))+ βσ (11)

where ρH is the Huber’s loss function, β = E(zψ(z)−ρH(z)) and f is fixed at f̂_. Note that vi is the ith column of V which
involves σ 2 since VV ′ = σ−2W whereW is evaluated at the current τ.

4. Update the working data by f̂_ − σ 2W−1_ u_ with u_ = −Vψ(V ′(y− f̂_)).

The algorithm is iterated until estimates of the regression function, τ, and σ stabilize. Convergence is not guaranteed,
however. As one can see from the algorithm, the GML, GCV, and U functions change from iteration to iteration. These
changes in the objective functions along iterations make theoretical studies difficult. As noted in Gu [7], when it does
converge, it converges to the fixed point of the Newton iteration with θ and τ optimally chosen by the GML, GCV, or U .
Empirical studies suggest that the indirectmethods are computationally efficient and converge inmost situations. However,
for generalized smoothing spline models, direct methods are proposed to overcome the convergence problem and improve
effectiveness [29,31,16].
When data are independent with a common variance, i.e.,W = I , the indirect algorithm is essentially the same as the

E–S algorithm [18] with the added feature of joint scale estimation.

4.2. Direct methods: the rGML criterion

The GML method has been shown to be a reliable smoothing parameter selection criterion for both independent and
correlated Gaussian data [5,26,8]. For general and generalized smoothing spline models, it is equivalent to the restricted
maximum likelihood (REML) estimation method for variance components in mixed effects models. It is also equivalent
to the marginal maximum likelihood estimation for hyper-parameters in an empirical Bayes model. In the following, we
develop our rGML criterion from the latter point of view.
We assume the following prior for f ,

F(t) =
M∑
i=1

aiφi(t)+ σZ(t), (12)

where a = (a1, . . . , aM)′
i.i.d.
∼ N(0, ξ), Z(t) is a Gaussian process independent of a with E(Z(t)) = 0 and E(Z(s)Z(t)) =

θ1R1(s, t)+ · · · + θqRk(s, t). Let q(f|a) be the Gaussian density of fwith mean Ta and covarianceΣθ . The rGML estimates of
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θ and τ are defined as the maximizer of the marginal likelihood of y as ξ →∞,

p(y|θ, τ, σ 2) =
∫
p(y|f, θ, τ, σ 2)q(f|a)dadf. (13)

Note as ξ → ∞, the prior on a goes to a noninformative prior. Let f̂ be the smoothing spline estimate at the convergence
of the Fisher Scoring algorithm for fixed θ and τ. To approximate the above integral, we first use the second-order Taylor
expansion of l(y|f, θ, τ, σ 2) = − log p(y|f, θ, τ, σ 2) around f̂. Let yc,uc , and Wc denote y_,u_, and W_ evaluated at f̂. The
Taylor expansion leads to

l(y|f, θ, τ, σ 2) ≈
1
2σ 2

(yc − f)′Wc(yc − f)+ C,

where C = l(y|f̂, θ, τ, σ 2)−σ 2u′cW
−1
c uc/2,which is independent of f. In the above expansion, theHessianmatrix is replaced

by Wc so it is robust and calculable. Also note that f̂, yc,uc , and Wc depend on θ, τ, and σ 2 implicitly. We suppress this
dependence for simpler notation.
Let the QR decomposition of T be T = (Q1Q2)(R′0)′. Following similar arguments to those in Liu et al. [15], the marginal

likelihood of y (13), which we define as the rGML criterion, now reduces to

rGML(θ, τ, σ 2) = C1σ−(n−M)|Q ′2(Σθ +W
−1
c )Q2|−

1
2 exp

{
−
1
2σ 2

y′cQ2(Q
′

2(Σθ +W
−1
c )Q2)−1Q ′2yc

}
, (14)

where C1 = exp(−C)|Wc/σ 2|−1/2.

4.3. Direct methods: the rUBR criterion

As in [8], we measure the distance between the estimated regression function and the true regression function with the
Kullback–Leibler distance. Let the likelihood of y be (8) with V0 and f0 as true values. We define the K–L distance as

L(f , f0|θ, τ, σ 2) = E

{
1
n

n∑
i=1

(ρ(v′i(y− f))− ρ(v′0i(y− f0)))−
K
n
log |VV−10 |

}
. (15)

Define zi = v′0i(y − f0) and z = (z1, . . . , zn)′ = V ′0(y − f0). From the robustified likelihood (8), zi’s are independent
and identically distributed. We again use the standard normal distribution to approximate the common distribution. We
also assume that ρ(zi) and ψ (1)(zi) are symmetrical functions and ψ(zi) is an odd function, which are satisfied by most
robust loss functions. In Appendix A, we derived an approximately unbiased estimate of the risk function R(θ, τ, σ 2) =
E(L(f̂ , f0|θ, τ, σ 2)) as follows

rUBR(θ, τ, σ 2) =
1
n
l(y|f̂)+

E(ψ2(z))tr AW_
nE(ψ (1)(z))

−
E(ψ (1)(z)ψ2(z))− E(ψ (1)(z))E(ψ2(z))

2n(E(ψ (1)(z)))2/tr
(
diag2(V−1A′W_V )

) , (16)

whereW_ = E(ψ (1)(z))W .
When ρ(x) = x2/2, it is can be checked that

rUBR(θ, τ, σ 2) =
1
2nσ 2

(y− f̂)′W (y− f̂)−
1
2n
log |σ−2W | +

1
n
tr AW .

Profiling out σ 2, Gu and Han [8] proved that the resulting function is asymptotically equivalent to (6) and consistent for
estimating θ and τ (see Theorem 4.2 in their paper).

4.4. Direct methods: the rGCV for longitudinal data

The GCV method is well known for its optimal properties. In this section, we develop the direct robust GCV criterion
for longitudinal data with Cov(ε) = σ−2diag(WI)NI=1 where N is the number of independent subjects and σ

−2WI is the
covariance matrix for subject I . We develop the criterion based on the principle of cross validation. We did not do this for
general correlated data because the definition of cross validation then becomes unclear.
Define the leave-one-out robust cross validation function as

rCV(θ, τ, σ 2) =
1
n

N∑
I=1

nI∑
j=1

ρ(v′Ij(yI − f̂
−I
θ,τ,σ 2

(tI)))−
K
n

N∑
I=1

log(|VI |), (17)
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where nI is the number of observations for subject I, yI is the response vector of the Ith subject, f̂ −Iθ,τ,σ 2 is the smoothing
spline estimate from (2) with fixed θ, τ, and σ 2 and the Ith subject deleted, tI is the covariate matrix for subject I , and vIj is
the jth column of VI where VIV ′I = σ

−2WI .
Straightforward calculation of (17) is time-consuming. In Appendix C,we derived aGCV approximation to (17) as follows:

rGCV(θ, τ, σ 2) =
1
n
l(y|f̂)+

1
nE(ψ (1)(z))

N∑
I=1

ψ(V ′I (yI − f̂ (tI)))
′V ′I (I − ĀW_,N)

−1ĀW_,N(V
′

I )
−1ψ(V ′I (yI − f̂ (tI)))

+
1

2n(E(ψ (1)(z)))2

N∑
I=1

ψ(V ′I (yI − f̂ (tI)))
′V−1I Ā

′

W_,N(I − Ā
′

W_,N)
−1

× VI Diag(ψ (1)(V ′I (yI − f̂ (tI))))V
′

I (I − ĀW_,N)
−1ĀW_,N(V

′

I )
−1ψ(V ′I (yI − f̂ (tI))), (18)

where ĀW_,N =
∑N
I=1 AW_,II/N, AW_,II is the Ith block diagonalmatrix ofAW_ andweassumed thematrix I−ĀW_,N is invertible.

We suppressed the dependence of f̂ on θ, τ, and σ 2 for notational simplicity.
When data are independent with Cov(ε) = diag(σ−2i ), the above robust GCV function reduces to

rGCV(θ, τ, σ 2) =
1
n
l(y|f̂)+

tr AW_
nE(ψ (1)(z))(n− tr AW_)

n∑
i=1

ψ2((yi − f̂i)/σi)

+
tr2AW_

2n(E(ψ (1)(z)))2(n− tr AW_)2

n∑
i=1

ψ2((yi − f̂i)/σi)ψ (1)((yi − f̂i)/σi). (19)

5. Simulations

In this section, we evaluate the performances of the proposed methods in various settings in three simulation
experiments. We first compare the direct rGML, rUBR, rGCV, indirect GML (denoted as iGML), indirect GCV (denoted as
iGCV), and indirect U (denoted as iU) with independent errors. For this purpose, we generated data from model (1) with

f0(ti) = sin(2π(1− ti)2), (20)

where ti, i = 1, . . . , 100 is a sequence of evenly spaced points in [0, 1]. In this simulation, four settings for independent
εi are considered: U(−1.8, 1.8),N(0, 1), 0.9N(0, 1) + 0.1N(0.1, 10), and Cauchy (0, 0.6). We chose those to represent a
range of short to long tailed distributions. We used the redescending Tukey’s biweight ψ = ρ ′ function throughout the
simulations and applications, which is defined as ψ(x) = x

(
1− x2/c2

)2 when |x| < c and 0 otherwise. Here c is chosen
to be 4.6851 which gives 95% asymptotic efficiency with respect to the standard normal distribution when the regression
function is estimated parametrically.
Fig. 1 summarizes the simulation results based on 100 repetitions. Two metrics are used to compare among different

methods, the mean squared error (MSE) and the KL distance defined respectively as

MSE =
1
n

n∑
i=1

(f (ti)− f0(ti))2,

KL =
1
nσ 2

(f− f0)′W (f− f0)+ tr(σ 20WW
−1
0 /σ 2 − I)− log |σ 20WW

−1
0 /σ 2|,

where f is the estimated regression function, and σ 20W
−1
0 and σ 2W−1 are the true and estimated covariance matrices. The

relative MSE and KL are the ratios of the MSE and KL of a method over those of the nonrobust GML method in (4). From
Fig. 1, we observe that (1) the robust methods all perform better than the nonrobust GML when the error distribution has
a longer tail than the standard normal, in terms of both MSE and KL. When the error distribution is uniform or normal,
the nonrobust GML is more efficient. (2) The estimates of the regression function and scale parameter are accurate with all
robust methods even for heavy tailed distributions, as reflected in the small MSE and KL values. (3) The direct and indirect
approaches perform similarly in terms of MSE. The direct ones give slightly better KL. (4) The direct UBR method is good at
estimating the regression function but not at the scale parameter.
The second simulation considers model (1) with correlated errors and

f0(ti) = 5+ 3 sin(2π ti). (21)

Two error models are considered: (1) εi = γ εi−1 + 0.3ai and (2) εi = 0.3ai + 0.3γ ai−1. In both error models, we consider
γ = −0.6 and three distributions of ai,N(0, 1), 0.9N(0, 1)+ 0.1N(0.1, 10), and Cauchy (0, 0.6) respectively.
Figs. 2 and 3 show the simulation results based on 100 repetitions. We observe that (1) robust methods outperform the

nonrobust GML for longer tailed errors. With normal errors, the direct methods perform similarly to the nonrobust GML,
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Fig. 1. Comparison among different methods for independent errors. A reference line at one has been added to the relative MSE and KL plots.

but the indirect ones are inferior in terms of the KL metric. (2) The direct methods generally outperform the indirect ones
in terms of both MSE and KL. (3) Among indirect methods, the indirect U does notably worse than others for the MA(1)
error model. This phenomenon was also reported in [8] with Gaussian errors, who noted an improved performance of the
U method when the sample size increases. Fig. 3 shows the function estimates with the rGMLmethod. The estimates are all
fairly close to the truth.
In the third simulation, we considermodel (1) for two groups of longitudinal data. Specifically, we consider the following

model:

ygij = f0(g, tij)+ bgi +
√
cjεgij, g = 1, 2, i = 1, . . . , 10, j = 1, . . . , 10, (22)

where

f0(g, tij) = 5I{g=1} + (1+ 2I{g=1}) sin(2π tij), (23)

and tij, j = 1, . . . , 10 are evenly spaced points in [0, 1]. For each i, bgi’s and εgij’s are mutually independent. Three different
distributions of bgi and εgij are considered:N(0, 1), 0.9N(0, 1)+0.1N(0.1, 10), and Cauchy (0, 0.6). Therefore, a total of nine
error distributions is considered in (22). To introduce heterogeneity, cj is defined as equally spaced numbers from 0.5 to 3.
In estimatingmodel (23), we used a compound-symmetry structure for the covariancematrix, where the diagonal elements
are a power series of tij, j = 1, . . . , 10, with the power to be estimated.
Figs. 4 and 5 show the simulation results for the longitudinal data. Similar conclusions are reached as those from the

correlated time series data. However, we note (1) the rUBR and indirect methods are less efficient when both the random
effect and error are normally distributed, and (2) from the last row of Fig. 5 where there are outlying subjects, although the
median estimates seem to be unbiased, the robust estimates showed sensitivity to subject-wise outliers.
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Fig. 2. Comparison among different methods with data generated from (21).

We have also performed simulations for other functions and sample sizes. In conclusion, the rGML and rGCV methods
have the most stable performance among all settings and are superior in terms of the KL criterion. The direct UBRmethod is
comparable and even slightly better in terms of the MSE for the regression function, however, its estimate of the covariance
parameters is less reliable. Similar conclusions have been reached in [26] where GML, GCV, and UBRmethods are developed
for correlated Gaussian data. The indirect methods are computationally more efficient than the direct methods, but their
performance is inferior when the errors are seriously correlated. While computational efficiency is important, it should be
noted that a fit using the indirect methods took approximately 8 and 200 s for model (21) and (23) with contaminated
normal errors, and one using the direct method took approximately 20 and 300 s. The timing is based on an unoptimized R
program on a workstation with two AMD dualcore Opteron 2.0 GHz chips and 4 GB of RAM.

6. An application

We applied the proposed methods to the longitudinal CD4+ T-cell responses from twenty-four infected macaques in
a Simian–Human Immunodeficiency Virus (SHIV89.6P) challenge study [4]. The goal of this analysis is to evaluate the
protection against the depletion of CD4+ T-cells post SHIV89.6P infection, from the study vaccines. Each of the four
priming-boosting vaccine regimens (1. DNA–DNA, 2. DNA–particle, 3. DNA-vaccinia virus, 4. vaccinia virus-DNA) was
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Fig. 3. Function estimates by the rGML method with data generated from (21). The solid line in each panel represents the true function, the short dashed
line is the fit corresponding to the 5th percentile of the MSE, the long dashed line is the median fit, and the dot–dash line represents the fit corresponding
to the 95th percentile of the MSE.

Table 1
Estimates of within and between subject standard deviations (sd) for group I: DNA/Vaccinia+ Vaccinia/DNA and II: DNA/DNA+ DNA/particle.

Within subject sd Between subject sd
Group I Group II Group I Group II

rGML 183.83 226.59 413.04 200.60
GML 230.46 243.26 476.39 203.97

randomly assigned to six macaques. Three weeks after the last immunization, all animals were challenged with SHIV89.6P
virus and infected afterwards. The observed CD4 trajectories show that most of the single-gene vaccinated (DNA–DNA
or DNA–particle) macaques suffered from severe CD4 depletion in the first 3 weeks, while most animals receiving a
combination of vaccinia virus and DNA vaccinations (DNA–Vaccinia or Vaccinia–Vaccinia) were protected from loss of
CD4+ T cells over time.
Within both the single-gene-vaccinated and multigene-vaccinated groups, the CD4 responses in some animals showed

distinct kinetics from the group average profile, either in terms of subject-specific trajectories or within-subject variability.
Therefore we applied our robust methods: rGML, rUBR and rGCV. For comparison, we also fit the non-robust GML method
to the data. Fig. 6 presents the observed CD4 counts (dotted lines) and the fitted CD4 curves from the day of challenge to
the end of the study (all three robust fits were almost identical). Note that the rGML estimate appears to be very similar to
the non-robust GML one for the unprotected group, which seems to show that the robust method is more sensitive to the
subject-level outliers; however after the initial decrease in the first two weeks, the rGML estimate for the protected group
backed up to a lower level than the non-robust GML estimate, which seems to fit the data better with the within-subject
outliers presented. In the unprotected group, the CD4 curve had a rapid decline to around 200 and then stayed low;whereas
after an initial drop in the CD4 counts the protected group had a rebound from around 600–750, then remained relatively
in a steady state. A compound symmetric variance structure was used to model correlation within each group, which has
two parameters: the within and between subject variances. Table 1 shows that the non-robust GML generally gives larger
variance estimates, possibly due to effects of outliers. Our finding confirmed that the multigene regimens helped protect
the macaques from disease.



A. Liu et al. / Journal of Multivariate Analysis 101 (2010) 2282–2296 2291

Fig. 4. Comparison among different methods for longitudinal data generated from (23). The middle strip is the distribution of the random effect and the
bottom strip is the distribution of the error.

7. Discussion

In this paper, we defined a robust smoother for smoothing spline ANOVA models with correlated data. An iterative
algorithm for solving the robust smoother was developed along with various robust smoothing parameter selection
methods. We addressed the case when the correlation matrix can be parameterized, and we advocate joint estimates of
the correlation parameters and the smoothing parameters. Indirect methods treat working data as normally distributed and
utilize joint selection methods for correlated Gaussian data at each iteration. Direct methods including the rGML, rUBR, and
rGCV are based on a robustified likelihood function. Simulations suggest that direct methods, althoughmore computational
costly than indirectmethods, providemore accurate estimates. The computational requirements of the directmethodswere
not prohibitive in our examples.
Longitudinal immunological data from infectious diseases such as HIV/AIDS studies often have irregular kinetics that

cannot be describedwell by parametric models. Due to the complexity of the infection process and the immunemechanism,
some subject-specific trajectories may display large departures from the population trend, and some subjects may have
outlying observations, both of which call for a robust nonparametric model. As has been shown by our real data example,
the proposed methods work well in such situations.
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Fig. 5. Function estimateswith rGML for longitudinal data generated from (22). The two groups of lines are the truth and fits for the functions 5+3 sin(2πx)
and sin(2πx) respectively. The top strip is the distribution of the random effect and the bottom strip is the distribution of the error.

Appendix A. Derivation of the rUBR criterion

There is no close-form representation for L(f , f0|θ, τ, σ 2). With the first order Taylor expansion, we have

L(f , f0|θ, τ, σ 2) ≈ E

{
−
K
n
log |VV−10 | +

1
n

n∑
i=1

ψ(zi)(v′i(y− f)− v′0i(y− f0))

−
1
n
ψ(z)′V ′(f− f0)+

1
2n

n∑
i=1

ψ (1)(zi)(v′i(y− f)− v′0i(y− f0))2
}

= E
{
−
K
n
log |VV−10 | +

1
n
ψ(z)′(V − V0)′(y− f0)

+
1
2n
tr
(
diag(ψ (1)(z))(V − V0)′(y− f0)(y− f0)′(V − V0)

)
−
1
n
tr
(
diag(ψ (1)(z))(V − V0)′(y− f0)(f− f0)′V

)
+
1
2n
tr
(
diag(ψ (1)(z))V ′(f− f0)(f− f0)′V

)}
.

It can be shown that E(ψ(z))′V ′(f − f0) = 0, E
(
tr
(
diag(ψ (1)(z))(V − V0)′(y− f0)(f− f0)′V

))
= 0, and E (tr (diag(

ψ (1)(z))V ′(f− f0)(f− f0)′V
))
= E(ψ (1)(z))(f − f0)′VV ′(f − f0). Now, the risk function R(θ, τ, σ 2) = E(L(f̂ , f0|θ, τ, σ 2))
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Fig. 6. Estimates of CD4 kinetics under two groups of treatments. The solid lines are with the nonrobust GML method and the dashed lines are with the
rGML method.

is

R(θ, τ, σ 2) ≈ −
K
n
log |VV−10 | +

1
n
E(ψ(z)′(V − V0)′(y− f0))

+
1
2n
E
(
tr
(
diag(ψ (1)(z))(V − V0)′(y− f0)(y− f0)′(V − V0)

))
+
1
2n
E(ψ (1)(z))E

(
(f̂− f0)′VV ′(f̂− f0)

)
. (A.1)

Suppose that when we take the initial value of the Fisher scoring algorithm as f0, it converges in one iteration. Then we
have f̂ ≈ AW_(f0 − σ 2W−1_ u), where W_ = σ 2Vdiag(E(ψ (1)(v′i(y − f0))))V ′ ≈ Vdiag(E(ψ (1)(zi)))V ′ = E(ψ (1)(z))W ,
and u = −Vψ(V ′(y − f0)) ≈ −Vψ(z). Here we assumed V is close to the truth V0. As a result, we have f̂ ≈ AW_ f0 +
AW_(V

′)−1ψ(z)/E(ψ (1)). Now, for the last term in (A.1)

E
(
(f̂− f0)′VV ′(f̂− f0)

)
= E

((
(AW_ − I)f0 + AW_(V

′)−1ψ(z)/E(ψ (1)(z))
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VV ′

(
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′)−1ψ(z)/E(ψ (1)(z))

) )
= f′0(AW_ − I)

′VV ′(AW_ − I)f0 + E
(
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′(AW_ − I)f0/E(ψ
(1)(z))

)
+ E

(
f′0(AW_ − I)

′VV ′AW_(V
′)−1ψ(z)/E(ψ (1)(z))

)
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(
ψ(z)′V−1A′W_VV

′AW_(V
′)−1ψ(z)/(E(ψ (1)(z)))2

)
= f′0(AW_ − I)

′VV ′(AW_ − I)f0 +
E(ψ2(z))

(E(ψ (1)(z)))2
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(
V ′AW_(V

′)−1V−1A′W_V
)
. (A.2)

To approximate the first term above, consider a first-order Taylor expansion

1
n
l(y|f̂) ≈ −

K
n
log |V | +

1
n
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ρ(zi)+
1
n
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+
1
2n
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= −
K
n
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1
n
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i=1
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1
n
ψ(z)′

(
(V − V0)′(y− f0)

)
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−
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)
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Some algebra yields

E(ψ(z))′
(
V ′(f̂− f0)
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≈ E(ψ(z))′V ′(AW_ − I)f0 + E(ψ(z))
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tr AW_ , (A.4)

E
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≈ E
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(
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and
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We ignore (A.6) based on the assumption that V and V0 are close. Now combining (A.1)–(A.5), we have
1
n
E(l(y|f̂)) ≈ R(θ, τ, σ 2)−

K log |V0|
n

+
E(ρ(z))
2
−
E(ψ2(z)) tr AW_
nE(ψ (1)(z))

+
E(ψ (1)(z)ψ2(z))− E(ψ (1)(z))E(ψ2(z))

2n(E(ψ (1)(z)))2
tr
(
diag2(V−1A′W_V )

)
.

Finally, a proxy of an unbiased risk estimator is proposed as

rUBR(θ, τ, σ 2) =
1
n
l(y|f̂)+

E(ψ2(z)) tr AW_
nE(ψ (1)(z))

−
E(ψ (1)(z)ψ2(z))− E(ψ (1)(z))E(ψ2(z))
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) . (A.7)

Appendix B. Leave-one-out lemma for longitudinal data

Lemma. The minimizer f −L
θ,τ,σ 2

of

N∑
I=1
I 6=L

(yI − f (tI))
′WI(yI − f (tI))+

q∑
k=1

θ−1k ‖Pkf ‖
2

is the minimizer of (2) with y = ỹ = (y′1, . . . , y
′

L−1, f
−L
θ,τ,σ 2

(tL)
′, y′L+1, . . . , y

′

N)
′.

The proof is very similar to that of Lemma 1 in [27] and is therefore omitted.
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Appendix C. Derivation of the rGCV criterion

Similar to Gu and Xiang [9], we approximate the rCV function by

rCV(θ, τ, σ 2) =
1
n

N∑
I=1

nI∑
j=1

ρ(v′Ij(yI − f̂
−I
θ,τ,σ 2,f̂

θ,τ,σ2
(tI)))−

K
n

N∑
I=1

log(|VI |),

where f̂ −I
θ,τ,σ 2,f̂

θ,τ,σ2
represents the smoothing spline estimate from (10) with the initial value being f̂θ,τ,σ 2 and the Ith subject

deleted. We note that f̂θ,τ,σ 2,f̂
θ,τ,σ2
= f̂θ,τ,σ 2 because the Fisher Scoring algorithm converges to the right solution.

With the leave-one-out lemma applied to (10), we have f̂−I
θ,τ,σ 2,f̂

θ,τ,σ2
= AW_ ỹ_, where ỹ_ is the working data y_ with

the Ith block component replaced by f̂ −I
θ,τ,σ 2,f̂

θ,τ,σ2
(tI). We also have f̂θ,τ,σ 2 = f̂θ,τ,σ 2,f̂

θ,τ,σ2
= AW_y_. Subtracting the two

equations, we obtain
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θ,τ,σ 2,f̂

θ,τ,σ2
(tI) = AW_,II(y_,I − f̂

−I
θ,τ,σ 2,f̂

θ,τ,σ2
(tI)),

where AW_,II is the Ith block diagonal matrix of AW_ . Similar to the GCV approximation to the CV function for independent
data, we replace AW_,II by ĀW_,N =

∑N
I=1 AW_,II/N and assume the matrix I − ĀW_,N is invertible. We thus obtain

f̂θ,τ,σ 2,f̂
θ,τ,σ2
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θ,τ,σ 2,f̂

θ,τ,σ2
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−1ĀW_,N(y_,I − f̂θ,τ,σ 2(tI)).

By the definition of working data, we have y_,I − f̂θ,τ,σ 2(tI) = (V
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Now, with a second order Taylor expansion,
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